1
|
Wang J, Zhang Y, Liu T, Shi Y, Ding Y, Zhang Y, Xu W, Zhang X, Wang Y, Li D. A biodegradable chitosan-based polymer for sustained nutrient release to stimulate groundwater hydrocarbon-degrading microflora. CHEMOSPHERE 2023; 344:140346. [PMID: 37832890 DOI: 10.1016/j.chemosphere.2023.140346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Petroleum hydrocarbon-contaminated groundwater often has a low indigenous microorganism population and lacks the necessary nutrient substrates for biodegradation reaction, resulting in a weak natural remediation ability within the groundwater ecosystem. In this paper, we utilized the principle of petroleum hydrocarbon degradation by microorganisms to identify effective nutrients (NaH2PO4, K2HPO4, NH4NO3, CaCl2, MgSO4·7H2O, FeSO4·7H2O, and VB12) and optimize nutrient substrate allocation through a combination of actual surveys of petroleum hydrocarbon-contaminated sites and microcosm experiments. Building on this, combining biostimulation and controlled-release technology, we developed a biodegradable chitosan-based encapsulated targeted biostimulant (i.e., YZ-1) characterized by easy uptake, good stability, controllable slow-release migration, and longevity to stimulate indigenous microflora in groundwater to efficiently degrade petroleum hydrocarbon. Results showed that YZ-1 extended the active duration of nutrient components by 5-6 times, with a sustainable release time exceeding 2 months. Under YZ-1 stimulation, microorganisms grew rapidly, increasing the degradation rate of petroleum hydrocarbon (10 mg L-1) by indigenous microorganisms from 43.03% to 79.80% within 7 d. YZ-1 can easily adapt to varying concentrations of petroleum hydrocarbon-contaminated groundwater. Specifically, in the range of 2-20 mg L-1 of petroleum hydrocarbon, the indigenous microflora was able to degrade 71.73-80.54% of the petroleum hydrocarbon within a mere 7 d. YZ-1 injection facilitated the delivery of nutrient components into the underground environment, improved the conversion ability of inorganic electron donors/receptors in the indigenous microbial community system, and strengthened the co-metabolism mechanism among microorganisms, achieving the goal of efficient petroleum hydrocarbon degradation.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China.
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China; Changchun Gold Research Institute Co., Ltd, Changchun 130021, China
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021,China
| |
Collapse
|
2
|
Ma XC, Wang K, Gao XL, Li XK, Liu GG, Chen HY, Piao CY, You SJ. Temperature-regulated and starvation-induced refractory para-toluic acid anaerobic biotransformation. CHEMOSPHERE 2023; 311:137008. [PMID: 36377119 DOI: 10.1016/j.chemosphere.2022.137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Little research was focused on the anerobic degradation of refractory para-toluic acid at present. Thus, temperature-regulated anaerobic system of para-toluic acid fed as sole substrate was built and investigated via microbiota, metabolism intermediates, and function prediction in this study. Results showed that low methane yield was produced in para-toluic acid anaerobic system at alkaline condition. And the causes were owing to anaerobic methane oxidation and potentially H2S production at 37 °C, N2 production by denitrification before starvation and propionic acid occurrence after starvation at 27 °C, and production of N2 and free ammonia, and accumulation of acetic acid at 52 °C. Simultaneously, hydrogenotrophic methanogenesis dependent on syntrophic acetate oxidation (SAO) was predominant, facilitating the removal of para-toluic acid at 52 °C. Moreover, the key intermediate changed from phthalic acid of 37 °C and 27 °C before starvation to terephthalic acid of 52 °C. Starvation promoted removal of para-toluic acid through benzoyl-CoA pathway by Syntrophorhabdus, enrichment of syntrophic propionate degraders of Bacteroidetes and Ignavibacteriaceae, and increase of methylotrophic methanogens.
Collapse
Affiliation(s)
- Xiao-Chen Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin, 150090, China.
| | - Xin-Lei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin, 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| | - Gai-Ge Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Hong-Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen-Yu Piao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shi-Jie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Nkem BM, Halimoon N, Yusoff FM, Johari WLW. Use of Taguchi design for optimization of diesel-oil biodegradation using consortium of Pseudomonas stutzeri, Cellulosimicrobium cellulans, Acinetobacter baumannii and Pseudomonas balearica isolated from tarball in Terengganu Beach, Malaysia. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:729-747. [PMID: 36406595 PMCID: PMC9672190 DOI: 10.1007/s40201-022-00812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED A consortium of bacteria capable of decomposing oily hydrocarbons was isolated from tarballs on the beaches of Terengganu, Malaysia, and classified as Pseudomonas stutzeri, Cellulosimicrobium cellulans, Acinetobacter baumannii and Pseudomonas balearica. The Taguchi design was used to optimize the biodegradation of diesel using these bacteria as a consortium. The highest biodegradation of diesel-oil in the experimental tests was 93.6%, and the individual n-alkanes decomposed 87.6-97.6% over 30 days. Optimal settings were inoculum size of 2.5 mL (1.248 OD600nm); 12% (v/v) the initial diesel-oil in a minimal salt medium of pH 7.0, 30.0 gL-1 NaCl and 2.0 gL-1 NH4NO3 concentration, incubated at 42 °C temperature and 150 rpm agitation speed. Parameters significantly improved diesel-oil removal by consortium as shown by the model determination coefficient (R2 = 90.89%; P < 0.001) with a synergistic effect of agitation speed significantly contributing 81.03%. Taguchi design determined the optimal settings for the parameters under study, which significantly improved diesel-oil removal by consortium. This can be used to design a novel bioremediation strategy that can achieve optimal decontamination of oil pollution in a shorter time. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-022-00812-3.
Collapse
Affiliation(s)
- Bruno Martins Nkem
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan Malaysia
| | - Normala Halimoon
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Department of Aquaculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan Malaysia
| | - Wan Lutfi Wan Johari
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
4
|
Wang J, Zhang Y, Ding Y, Song H, Liu T, Xu W, Zhang Y, Shi Y. Stress response characteristics of indigenous microorganisms in aromatic-hydrocarbons-contaminated groundwater in the cold regions of Northeast China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114139. [PMID: 36193588 DOI: 10.1016/j.ecoenv.2022.114139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The resistance mechanism of microbial communities in contaminated groundwater under combined stresses of aromatic hydrocarbons (AHs), NH4+, and Fe-Mn exceeding standard levels was studied in an abandoned oil depot in Northeast China. The response of environmental parameters and microbial communities under different pollution levels in the study area was discussed, and microscopic experiments were conducted using background groundwater with different AHs concentrations. The results showed that indigenous microbial community were significantly affected by environmental factors, including pH, TH, CODMn, TFe, Cr (VI), NH4+, NO3-, and SO42-. AHs likely had a limited influence on microbial communities, mainly causing indirect changes in the microbial community structure by altering the electron donor/acceptor (mainly Fe, Mn, NO3-, NO2-, NH4+, and SO42-) content in groundwater, and there was no linear effect of AHs content on the microbial community. In low- and medium-AHs-contaminated groundwater, the microbial diversity increased, whereas high AHs contents decreased the diversity of the microbial community. The microbial community had the strongest ability to metabolize AHs in the medium-AHs-contaminated groundwater. In the high-AHs-contaminated groundwater, microbial communities mainly degraded AHs through a complex co-metabolic mechanism due to the inhibitory effect caused by the high concentration of AHs, whereas in low-AHs-contaminated groundwater, microbial communities mainly caused a mutual transformation of inorganic electron donors/acceptors (mainly including N, S), and the microbial community's ability to metabolize AHs was weak. In the high-AHs-contaminated groundwater, the microbial community resisted the inhibitory effect of AHs mainly via a series of resistance mechanisms, such as regulating their life processes, avoiding unfavorable environments, and enhancing their feedback to the external environment under high-AHs-contaminated conditions.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
5
|
A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms 2022; 10:microorganisms10071289. [PMID: 35889007 PMCID: PMC9324126 DOI: 10.3390/microorganisms10071289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for petroleum products generates needs for innovative and reliable methods for cleaning up crude oil spills. Annually, several oil spills occur around the world, which brings numerous ecological and environmental disasters on the surface of deep seawaters like oceans. Biological and physico-chemical remediation technologies can be efficient in terms of spill cleanup and microorganisms—mainly bacteria—are the main ones responsible for petroleum hydrocarbons (PHCs) degradation such as crude oil. Currently, biodegradation is considered as one of the most sustainable and efficient techniques for the removal of PHCs. However, environmental factors associated with the functioning and performance of microorganisms involved in hydrocarbon-degradation have remained relatively unclear. This has limited our understanding on how to select and inoculate microorganisms within technologies of cleaning and to optimize physico-chemical remediation and degradation methods. This review article presents the latest discoveries in bioremediation techniques such as biostimulation, bioaugmentation, and biosurfactants as well as immobilization strategies for increasing the efficiency. Besides, environmental affecting factors and microbial strains engaged in bioremediation and biodegradation of PHCs in marines are discussed.
Collapse
|
6
|
Nwankwegu AS, Zhang L, Xie D, Onwosi CO, Muhammad WI, Odoh CK, Sam K, Idenyi JN. Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114313. [PMID: 34942548 DOI: 10.1016/j.jenvman.2021.114313] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Environmental pollution mitigation measure involving bioremediation technology is a sustainable intervention for a greener ecosystem biorecovery, especially the obnoxious hydrocarbons, xenobiotics, and other environmental pollutants induced by anthropogenic stressors. Several successful case studies have provided evidence to this paradigm including the putative adoption that the technology is eco-friendly, cost-effective, and shows a high tendency for total contaminants mineralization into innocuous bye-products. The present review reports advances in bioremediation, types, and strategies conventionally adopted in contaminant clean-up. It identified that natural attenuation and biostimulation are faced with notable limitations including the poor remedial outcome under the natural attenuation system and the residual contamination occasion following a biostimulation operation. It remarks that the use of genetically engineered microorganisms shows a potentially promising insight as a prudent remedial approach but is currently challenged by few ethical restrictions and the rural unavailability of the technology. It underscores that bioaugmentation, particularly the use of high cell density assemblages referred to as microbial consortia possess promising remedial prospects thus offers a more sustainable environmental security. The authors, therefore, recommend bioaugmentation for large scale contaminated sites in regions where environmental degradation is commonplace.
Collapse
Affiliation(s)
- Amechi S Nwankwegu
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya.
| | - Lei Zhang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Deti Xie
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Wada I Muhammad
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; College of Water Conservancy, Hohai University, No.1 Xikang Road, Gulou District, Nanjing, 210098, China
| | - Chuks K Odoh
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Beijing, China
| | - Kabari Sam
- Faculty of Environmental Management, Department of Marine Environment and Pollution Control, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
| | - John N Idenyi
- Department of Biotechnology, Ebonyi State University Abakaliki, Nigeria
| |
Collapse
|
7
|
Liu HY, Yang GF, Cheng ZW, Chu QY, Xu YF, Zhang WX, Ye JX, Chen JM, Wang LN, Yang ZY, Tang ZQ, Chen DZ. Interaction of tetrahydrofuran and methyl tert-butyl ether in waste gas treatment by a biotrickling filter bioaugmented with Piscinibacter caeni MQ-18 and Pseudomonas oleovorans DT4. CHEMOSPHERE 2022; 286:131552. [PMID: 34320440 DOI: 10.1016/j.chemosphere.2021.131552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/26/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmented biotrickling filter (BTF) seeded with Piscinibacter caeni MQ-18, Pseudomonas oleovorans DT4, and activated sludge was established to investigate the treatment performance and biodegradation kinetics of the gaseous mixtures of tetrahydrofuran (THF) and methyl tert-butyl ether (MTBE). Experimental results showed an enhanced startup performance with a startup period of 9 d in bioaugmented BTF (25 d in control BTF seeded with activated sludge). The interaction parameter I2,1 of control (7.462) and bioaugmented BTF (3.267) obtained by the elimination capacity-sum kinetics with interaction parameter (EC-SKIP) model indicated that THF has a stronger inhibition of MTBE biodegradation in the control BTF than in the bioaugmented BTF. Similarly, the self-inhibition EC-SKIP model quantified the positive effects of MTBE on THF biodegradation, as well as the negative effects of THF on MTBE biodegradation and the self-inhibition of MTBE and THF. Metabolic intermediate analysis, real-time quantitative polymerase chain reaction, biofilm-biomass determination, and high-throughput sequencing revealed the possible mechanism of the enhanced treatment performance and biodegradation interactions of MTBE and THF.
Collapse
Affiliation(s)
- Hao-Yang Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guang-Feng Yang
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China; Key Laboratory of Petrochemical Environmental Pollution Control of Zhejiang Province, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhuo-Wei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qi-Ying Chu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yu-Feng Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wei-Xi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie-Xu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jian-Meng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Li-Ning Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ze-Yu Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ze-Qin Tang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dong-Zhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China; School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
8
|
Hansen J, Melchiorsen J, Ciacotich N, Gram L, Sonnenschein EC. Effect of polymer type on the colonization of plastic pellets by marine bacteria. FEMS Microbiol Lett 2021; 368:6152281. [PMID: 33640965 DOI: 10.1093/femsle/fnab026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Plastic is omnipresent in the oceans and serves as a surface for biofilm-forming microorganisms. Plastic debris comprises different polymers, which may influence microbial colonization; here, we evaluated whether polymer type affects bacterial biofilm formation. Quantifying the biofilm on polyethylene (PE), polypropylene (PP) or polystyrene (PS) pellets by six marine bacterial strains (Vibrio,Pseudoalteromonas,Phaeobacter) demonstrated that each strain had a unique colonization behavior with either a preference for PS or PP over the other polymer types or no preference for a specific plastic type. PE, PP and PS pellets were exposed to natural seawater microbiota using free-living or total communities as inoculum. Microbial assembly as determined by 16S rRNA (V4) amplicon sequencing was affected by the composition of the initial inoculum and also by the plastic type. Known polymer and hydrocarbon degraders such as Paraglaciecola, Oleibacter and Hydrogenophaga were found in the plastic biofilms. Thus, on a community level, bacterial colonization on plastic is influenced by the microorganisms as well as the polymer type, and also individual strains can demonstrate polymer-specific colonization.
Collapse
Affiliation(s)
- Josefine Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs Lyngby, Denmark
| | - Jette Melchiorsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs Lyngby, Denmark
| | - Nicole Ciacotich
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
9
|
Microaerobic conditions caused the overwhelming dominance of Acinetobacter spp. and the marginalization of Rhodococcus spp. in diesel fuel/crude oil mixture-amended enrichment cultures. Arch Microbiol 2019; 202:329-342. [PMID: 31664492 PMCID: PMC7012980 DOI: 10.1007/s00203-019-01749-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to reveal how different microbial communities evolve in diesel fuel/crude oil-contaminated environments under aerobic and microaerobic conditions. To investigate this question, aerobic and microaerobic bacterial enrichments amended with a diesel fuel/crude oil mixture were established and analysed. The representative aerobic enrichment community was dominated by Gammaproteobacteria (64.5%) with high an abundance of Betaproteobacteriales (36.5%), followed by Alphaproteobacteria (8.7%), Actinobacteria (5.6%), and Candidatus Saccharibacteria (4.5%). The most abundant alkane monooxygenase (alkB) genotypes in this enrichment could be linked to members of the genus Rhodococcus and to a novel Gammaproteobacterium, for which we generated a high-quality draft genome using genome-resolved metagenomics of the enrichment culture. Contrarily, in the microaerobic enrichment, Gammaproteobacteria (99%) overwhelmingly dominated the microbial community with a high abundance of the genera Acinetobacter (66.3%), Pseudomonas (11%) and Acidovorax (11%). Under microaerobic conditions, the vast majority of alkB gene sequences could be linked to Pseudomonas veronii. Consequently, results shed light on the fact that the excellent aliphatic hydrocarbon degrading Rhodococcus species favour clear aerobic conditions, while oxygen-limited conditions can facilitate the high abundance of Acinetobacter species in aliphatic hydrocarbon-contaminated subsurface environments.
Collapse
|
10
|
Lico D, Vuono D, Siciliano C, B Nagy J, De Luca P. Removal of unleaded gasoline from water by multi-walled carbon nanotubes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:636-643. [PMID: 30851592 DOI: 10.1016/j.jenvman.2019.02.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
This article displays an efficient and cost effective technique for the removal of unleaded gasoline from water. Multi-walled carbon nanotubes (MWCNTs) were used as the sorbent material. Nanotubes were synthesized according to a well-known procedure and successfully used avoiding cumbersome purifications from traces of catalyst. A series of lab-scale experiments was performed on dispersions of commercial unleaded gasoline (20 mL) in water (30 mL), which were subjected to the action of variable amounts of MWCNTs at room temperature. Physicochemical characteristics and sorbent capacity of nanotubes were investigated by thermal analysis and FT-IR spectroscopy. The highest percentage of removed unleaded gasoline was obtained using small amounts (0.7 g) of MWCNTs, over very short stirring times (5 min). The composition of residual organic materials in water was investigated by 1H and 13C high-resolution NMR spectroscopy, which confirmed the almost complete removal of unleaded gasoline hydrocarbon components from polluted waters.
Collapse
Affiliation(s)
- Daniele Lico
- Dipartimento di Ingegneria per l'Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, I-87036, Arcavacata di Rende, CS, Italy
| | - Danilo Vuono
- Dipartimento di Ingegneria per l'Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, I-87036, Arcavacata di Rende, CS, Italy
| | - Carlo Siciliano
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, I-87036, Arcavacata di Rende, CS, Italy
| | - Janos B Nagy
- Dipartimento di Ingegneria per l'Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, I-87036, Arcavacata di Rende, CS, Italy
| | - Pierantonio De Luca
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università della Calabria, I-87036, Arcavacata di Rende, CS, Italy.
| |
Collapse
|
11
|
Kuyukina MS, Ivshina IB. Bioremediation of Contaminated Environments Using Rhodococcus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11461-9_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, Mele M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J Dairy Sci 2019; 102:3781-3804. [PMID: 30904293 DOI: 10.3168/jds.2018-14985] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/13/2019] [Indexed: 12/29/2022]
Abstract
The interest of the scientific community in the effects of plant polyphenols on animal nutrition is increasing. These compounds, in fact, are ubiquitous in the plant kingdom, especially in some spontaneous plants exploited as feeding resources alternative to cultivated crops and in several agro-industry by-products. Polyphenols interact with rumen microbiota, affecting carbohydrate fermentation, protein degradation, and lipid metabolism. Some of these aspects have been largely reviewed, especially for tannins; however, less information is available about the direct effect of polyphenols on the composition of rumen microbiota. In the present paper, we review the most recent literature about the effect of plant polyphenols on rumen microbiota responsible for unsaturated fatty acid biohydrogenation, fiber digestion, and methane production, taking into consideration the advances in microbiota analysis achieved in the last 10 yr. Key aspects, such as sample collection, sample storage, DNA extraction, and the main phylogenetic markers used in the reconstruction of microbial community structure, are examined. Furthermore, a summary of the new high-throughput methods based on next generation sequencing is reviewed. Several effects can be associated with dietary polyphenols. Polyphenols are able to depress or modulate the biohydrogenation of unsaturated fatty acids by a perturbation of ruminal microbiota composition. In particular, condensed tannins have an inhibitory effect on biohydrogenation, whereas hydrolyzable tannins seem to have a modulatory effect on biohydrogenation. With regard to fiber digestion, data from literature are quite consistent about a general depressive effect of polyphenols on gram-positive fibrolytic bacteria and ciliate protozoa, resulting in a reduction of volatile fatty acid production (mostly acetate molar production). Methane production is also usually reduced when tannins are included in the diet of ruminants, probably as a consequence of the inhibition of fiber digestion. However, some evidence suggests that hydrolyzable tannins may reduce methane emission by directly interacting with rumen microbiota without affecting fiber digestion.
Collapse
Affiliation(s)
- V Vasta
- Food Scientist, viale delle Alpi 40, 90144, Palermo, Italy
| | - M Daghio
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Cappucci
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - A Buccioni
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Viti
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Centro di Ricerche Agro-ambientali "E. Avanzi," University of Pisa, Via Vecchia di Masrina, 6, 56100 Pisa, Italy.
| |
Collapse
|
13
|
Microbial desulfurization of ground tire rubber (GTR): Characterization of microbial communities and rheological and mechanical properties of GTR and natural rubber composites (GTR/NR). Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2018.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Gholami F, Shavandi M, Dastgheib SMM, Amoozegar MA. Naphthalene remediation form groundwater by calcium peroxide (CaO 2) nanoparticles in permeable reactive barrier (PRB). CHEMOSPHERE 2018; 212:105-113. [PMID: 30144671 DOI: 10.1016/j.chemosphere.2018.08.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the applicability of synthesized calcium peroxide (CaO2) nanoparticles for naphthalene bioremediation by permeable reactive barrier (PRB) from groundwater. According to the batch experiments the application of 400 mg/L of CaO2 nanoparticles was the optimum concentration for naphthalene (20 mg/L) bioremediation. Furthermore, the effect of environmental conditions on the stability of nanoparticles showed the tremendous impacts of the initial pH and temperature on the stability and oxygen releasing potential of CaO2. Therefore, raising the initial pH from 3 to 12 elevated the dissolved oxygen from 4 to 13.6 mg/L and the stability of nanoparticles was significantly improved around 70 d. Moreover, by increasing the temperature from 4 to 30 °C, the stability of CaO2 declined from 120 to 30 d. The continuous-flow experiments revealed that the naphthalene-contaminated groundwater was completely bio-remediated in the presence of CaO2 nanoparticles and microorganisms from the effluent of the column within 50 d. While, the natural remediation of the contaminant resulted in 19.7% removal at the end of the experiments (350 d). Additionally, the attached biofilm on the surface of the PRB zone was studied by scanning electron microscopy (SEM) which showed the higher biofilm formation on the pumice surfaces in the bioremediation column in comparison to the natural remediation column. The physic-chemical characteristics of the effluents from each column was also analyzed and indicated no negative impact of the bioremediation process on the groundwater. Consequently, the present paper provides a comprehensive study on the application of the CaO2 nanoparticles in PAH-contaminated groundwater treatment.
Collapse
Affiliation(s)
- Fatemeh Gholami
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Mahmoud Shavandi
- Environment and Biotechnology Research Division, Research Institute of Petroleum Industry, Tehran, Iran
| | - Seyed Mohammad Mehdi Dastgheib
- Microbiology and Biotechnology Group, Environment and Biotechnology Research Division, Research Institute of Petroleum Industry, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Kouzuma A, Ishii S, Watanabe K. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 255:302-307. [PMID: 29426790 DOI: 10.1016/j.biortech.2018.01.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
In bioelectrochemical systems (BESs), electrons are transferred between electrochemically active microbes (EAMs) and conductive materials, such as electrodes, via extracellular electron transfer (EET) pathways, and electrons thus transferred stimulate intracellular catabolic reactions. Catabolic and EET pathways have extensively been studied for several model EAMs, such as Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA, whereas it is also important to understand the ecophysiology of EAMs in naturally occurring microbiomes, such as those in anode biofilms in microbial fuel cells treating wastewater. Recent studies have exploited metagenomics and metatranscriptomics (meta-omics) approaches to characterize EAMs in BES-associated microbiomes. Here we review recent BES studies that used meta-omics approaches and show that these studies have discovered unexpected features of EAMs and deepened our understanding of functions and behaviors of microbes in BESs. It is desired that more studies will employ meta-omics approaches for advancing our knowledge on microbes in BESs.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shun'ichi Ishii
- R&D Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
16
|
Marchesi M, Alberti L, Shouakar-Stash O, Pietrini I, de Ferra F, Carpani G, Aravena R, Franzetti A, Stella T. 37Cl-compound specific isotope analysis and assessment of functional genes for monitoring monochlorobenzene (MCB) biodegradation under aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:784-793. [PMID: 29161603 DOI: 10.1016/j.scitotenv.2017.11.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
A laboratory approach was adopted in this study to explore the potential of 37Cl-CSIA in combination with 13C-CSIA and Biological Molecular Tools (BMTs) to estimate the occurrence of monochloroenzene (MCB) aerobic biodegradation. A new analytical method for 37Cl-CSIA of MCB was developed in this study. This methodology using a GC-IRMS allowed to determine δ37Cl values within an internal error of ±0.3‰. Samples from a heavily MCB contaminated site were collected and MCB aerobic biodegradation microcosms with indigenous cultures in natural and enhanced conditions were set up. The microcosms data show a negligible fractionation for 13C associated to MCB mass decrease of >95% over the incubation time. Conversely, an enrichment factor of -0.6±0.1‰ was estimated for 37Cl, which is a reflection of a secondary isotope effect. Moreover, the dual isotope approach showed a pattern for aerobic degradation which differ from the theoretical trend for reductive dehalogenation. Quantitative Polymerase Chain Reaction (qPCR) results showed a significant increase in todC gene copy number with respect to its initial levels for both natural attenuation and biostimulated microcosms, suggesting its involvement in the MCB aerobic degradation, whereas phe gene copy number increased only in the biostimulated ones. Indeed, 37Cl fractionation in combination with the dual carbon‑chlorine isotope approach and the todC gene copy number represent valuable indicators for a qualitative assessment of MCB aerobic biodegradation in the field.
Collapse
Affiliation(s)
- Massimo Marchesi
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Luca Alberti
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada; Isotope Tracer Technologies Inc., Waterloo N2V 1Z5, Ontario, Canada
| | - Ilaria Pietrini
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesca de Ferra
- Research Center for Non-Conventional Energy, Istituto Eni Donegani Environmental Technologies, via Maritano 26, 20097 San Donato Milanese, Milan, Italy
| | - Giovanna Carpani
- Research Center for Non-Conventional Energy, Istituto Eni Donegani Environmental Technologies, via Maritano 26, 20097 San Donato Milanese, Milan, Italy
| | - Ramon Aravena
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada
| | - Andrea Franzetti
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Tatiana Stella
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza, 1, 20126 Milan, Italy
| |
Collapse
|
17
|
Daghio M, Espinoza Tofalos A, Leoni B, Cristiani P, Papacchini M, Jalilnejad E, Bestetti G, Franzetti A. Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:120-127. [PMID: 28772251 DOI: 10.1016/j.jhazmat.2017.07.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/23/2017] [Accepted: 07/22/2017] [Indexed: 05/20/2023]
Abstract
BTEX compounds (Benzene, Toluene, Ethylbenzene and Xylenes) are toxic hydrocarbons that can be found in groundwater due to accidental spills. Bioelectrochemical systems (BES) are an innovative technology to stimulate the anaerobic degradation of hydrocarbons. In this work, single chamber BESs were used to assess the degradation of a BTEX mixture at different applied voltages (0.8V, 1.0V, 1.2V) between the electrodes. Hydrocarbon degradation was linked to current production and to sulfate reduction, at all the tested potentials. The highest current densities (about 200mA/m2 with a maximum peak at 480mA/m2) were observed when 0.8V were applied. The application of an external voltage increased the removal of toluene, m-xylene and p-xylene. The highest removal rate constants at 0.8V were: 0.4±0.1days-1, 0.34±0.09days-1 and 0.16±0.02days-1, respectively. At the end of the experiment, the microbial communities were characterized by high throughput sequencing of the 16S rRNA gene. Microorganisms belonging to the families Desulfobulbaceae, Desulfuromonadaceae and Geobacteraceae were enriched on the anodes suggesting that both direct electron transfer and sulfur cycling occurred. The cathodic communities were dominated by the family Desulfomicrobiaceae that may be involved in hydrogen production.
Collapse
Affiliation(s)
- Matteo Daghio
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Anna Espinoza Tofalos
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy; Department of Chemistry, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Barbara Leoni
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Pierangela Cristiani
- Ricerca sul Sistema Energetico - RSE Spa, Department of Sustainable Development and Energy Sources, Via Rubattino, 54, 20134 Milan, Italy
| | - Maddalena Papacchini
- INAIL Settore Ricerca, Certificazione e Verifica, Dipartimento di Innovazione Tecnologica (DIT) Laboratorio di Biotecnologie, Rome, Italy
| | - Elham Jalilnejad
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy; Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Giuseppina Bestetti
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy.
| |
Collapse
|
18
|
Mahmoud GAE, Bagy MMK. Microbial Degradation of Petroleum Hydrocarbons. MICROBIAL ACTION ON HYDROCARBONS 2018:299-320. [DOI: 10.1007/978-981-13-1840-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Blain NP, Helgason BL, Germida JJ. Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic site. Can J Microbiol 2017; 63:502-515. [DOI: 10.1139/cjm-2017-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bitumount Provincial Historic site is the location of 2 of the world’s first oil-extracting and -refining operations. Despite hydrocarbon levels ranging from 330 to 24 700 mg·(kg soil)−1, plants have been able to recolonize the site through means of natural revegetation. This study was designed to achieve a better understanding of the plant-root-associated bacterial partnerships occurring within naturally revegetated hydrocarbon-contaminated soils. Root endophytic bacterial communities were characterized from representative plant species throughout the site by both high-throughput sequencing and culturing techniques. Population abundance of rhizosphere and root endosphere bacteria was significantly influenced (p < 0.05) by plant species and sampling location. In general, members of the Actinomycetales, Rhizobiales, Pseudomonadales, Burkholderiales, and Sphingomonadales orders were the most commonly identified orders. Community structure of root-associated bacteria was influenced by both plant species and sampling location. Quantitative real-time polymerase chain reaction was used to determine the potential functional diversity of the root endophytic bacteria. The gene copy numbers of 16S rRNA and 2 hydrocarbon-degrading genes (CYP153 and alkB) were significantly affected (p < 0.05) by the interaction of plant species and sampling location. Our findings suggest that some of the bacterial communities detected are known to exhibit plant growth promotion characteristics.
Collapse
Affiliation(s)
- Natalie P. Blain
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada
| | - Bobbi L. Helgason
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - James J. Germida
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada
| |
Collapse
|
20
|
Daghio M, Aulenta F, Vaiopoulou E, Franzetti A, Arends JBA, Sherry A, Suárez-Suárez A, Head IM, Bestetti G, Rabaey K. Electrobioremediation of oil spills. WATER RESEARCH 2017; 114:351-370. [PMID: 28279880 DOI: 10.1016/j.watres.2017.02.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process.
Collapse
Affiliation(s)
- Matteo Daghio
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29,300, 00015 Monterotondo, RM, Italy
| | - Eleni Vaiopoulou
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jan B A Arends
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Angela Sherry
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ana Suárez-Suárez
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ian M Head
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Giuseppina Bestetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| |
Collapse
|
21
|
Biodegradation of BTEX Aromatics by a Haloduric Microbial Consortium Enriched from a Sediment of Bohai Sea, China. Appl Biochem Biotechnol 2017; 183:893-905. [DOI: 10.1007/s12010-017-2471-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
22
|
Wu M, Li W, Dick WA, Ye X, Chen K, Kost D, Chen L. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. CHEMOSPHERE 2017; 169:124-130. [PMID: 27870933 DOI: 10.1016/j.chemosphere.2016.11.059] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory.
Collapse
Affiliation(s)
- Manli Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Wei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Warren A Dick
- School of Environment and Natural Resources, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Xiqiong Ye
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - Kaili Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | - David Kost
- School of Environment and Natural Resources, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Liming Chen
- School of Environment and Natural Resources, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA.
| |
Collapse
|
23
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
24
|
Daghio M, Vaiopoulou E, Patil SA, Suárez-Suárez A, Head IM, Franzetti A, Rabaey K. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments. Appl Environ Microbiol 2016; 82:297-307. [PMID: 26497463 PMCID: PMC4702649 DOI: 10.1128/aem.02250-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/17/2015] [Indexed: 11/20/2022] Open
Abstract
Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m(-2) and 431 mA m(-2) for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.
Collapse
Affiliation(s)
- Matteo Daghio
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Eleni Vaiopoulou
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Sunil A Patil
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Ana Suárez-Suárez
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian M Head
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|