1
|
Olvera-Vargas H, Trellu C, Nidheesh PV, Mousset E, Ganiyu SO, Martínez-Huitle CA, Zhou M, Oturan MA. Challenges and opportunities for large-scale applications of the electro-Fenton process. WATER RESEARCH 2024; 266:122430. [PMID: 39278119 DOI: 10.1016/j.watres.2024.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Morelos 62580, Mexico.
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| | | | - Emmanuel Mousset
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche-sur-Yon, France
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB, T6G 2W2, Canada
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN 59078-970, Brazil
| | - Minghua Zhou
- Nankai University, College of Environmental Science and Engineering, Tianjin 300350, China
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| |
Collapse
|
2
|
Vinayagam V, Palani KN, Ganesh S, Rajesh S, Akula VV, Avoodaiappan R, Kushwaha OS, Pugazhendhi A. Recent developments on advanced oxidation processes for degradation of pollutants from wastewater with focus on antibiotics and organic dyes. ENVIRONMENTAL RESEARCH 2024; 240:117500. [PMID: 37914013 DOI: 10.1016/j.envres.2023.117500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The existence of various pollutants in water environment contributes to global pollution and poses significant threats to humans, wildlife, and other living beings. The emergence of an effective, realistic, cost-effective, and environmentally acceptable technique to treat wastewater generated from different sectors is critical for reducing pollutant accumulation in the environment. The electrochemical advanced oxidation method is a productive technology for treating hazardous effluents because of its potential benefits such as lack of secondary pollutant and high oxidation efficiency. Recent researches on advanced oxidation processes (AOPs) in the period of 2018-2022 are highlighted in this paper. This review emphasizes on recent advances in electro-oxidation (EO), ozone oxidation, sonolysis, radiation, electro-Fenton (EF), photolysis and photocatalysis targeted at treating pharmaceuticals, dyes and pesticides polluted effluents. In the first half of the review, the concept of the AOPs are discussed briefly. Later, the influence of increasing current density, pH, electrode, electrolyte and initial concentration of effluents on degradation are discussed. Lastly, previously reported designs of electrochemical reactors, as well as data on intermediates generated and energy consumption during the electro oxidation and Fenton processes are discussed. According to the literature study, the electro-oxidation technique is more appropriate for organic compounds, whilst the electro-Fenton technique appear to be more appropriate for more complex molecules.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | | | - Sudha Ganesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Siddharth Rajesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Ramapriyan Avoodaiappan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
3
|
Sathe SM, Chakraborty I, Doki MM, Dubey BK, Ghangrekar MM. Waste-derived iron catalyzed bio-electro-Fenton process for the cathodic degradation of surfactants. ENVIRONMENTAL RESEARCH 2022; 212:113141. [PMID: 35337835 DOI: 10.1016/j.envres.2022.113141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The application of waste-derived iron for reuse in wastewater treatment is an effective way of utilizing waste and attaining sustainability in the overall process. In the present investigation, bio-electro-Fenton process was initiated for the cathodic degradation of surfactants using waste-iron catalyzed MFC (WFe-MFC). The waste-iron was derived from spent tonner ink using calcination at 600 °C. Three surfactants namely, sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide, and Triton x-100 were selected as target pollutants. The effect of experimental factors like application of catalyst, contact time, external resistance, and anodic substrate concentration on the SDS degradation was investigated. At a neutral pH, the cathodic surfactants removal efficiency in WFe-MFC was above 85% in a contact time of 180 min with the initial surfactant concentration of ∼20 mg L-1 and external resistance of 100 Ω. The long-term operation using secondary treated real wastewater with unchanged cathode proved that the catalyst was still active to produce effluent SDS concentration of less than 1 mg L-1 in 4 h of contact time after 16 cycles. In a way, the present investigation suggests a potential application for spent tonner ink in the form of Fenton catalyst for wastewater treatment via bio-electro-Fenton MFC.
Collapse
Affiliation(s)
- S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Manikanta M Doki
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
4
|
Zhu H, Yao J, Zhang Z, Jiang X, Zhou Y, Bai Y, Hu X, Ning H, Hu J. Sulfidised nanoscale zerovalent iron-modified pitaya peel-derived carbon for enrofloxacin degradation and swine wastewater treatment: Combination of electro-Fenton and bio-electro-Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128767. [PMID: 35398695 DOI: 10.1016/j.jhazmat.2022.128767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new Fenton system combining electro-Fenton and bio-electro-Fenton (EF-BEF) processes was proposed for ENR degradation and swine wastewater treatment, and pitaya peel-derived carbon modified with sulfidised nanoscale zerovalent iron (SnZVI) was developed as a catalyst for the system. The as-prepared PPC-800 carbon displayed a hierarchical porous structure (693.5 m2/g), abundant oxygen-containing groups, and carbon defects, which endowed it with a good adsorption capacity, high H2O2 generation capacity (151.9 ± 10.5 mg/L) during the EF period, and good power production performance (194.3 ± 12.50 mW/m2) during the BEF period. When modified with SnZVI, despite the decrease in the adsorption capacity and power output (102.05 ± 4.05 mW/m2), the SnZVI@PPC-2 exhibited the best ENR removal performance with that of 98.9 ± 0.2% in the EF period and 86.2 ± 5.6% during the BEF period. An increase in the current intensity and air flow rate promoted ENR degradation. Finally, swine wastewater was treated using the SnZVI@PPC-2 EF-BEF system, and 97.9 ± 1.3% of the TOC was removed using the combined system.
Collapse
Affiliation(s)
- Hongyi Zhu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Xu Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Haoming Ning
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiawei Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
5
|
Sun L, Mo Y, Zhang L. A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: State-of-the-art and future prospects. CHEMOSPHERE 2022; 294:133801. [PMID: 35104551 DOI: 10.1016/j.chemosphere.2022.133801] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Azo dyes are typical toxic and refractory organic pollutants widely used in the textile industry. Bio-electrochemical systems (BESs) have great potential for the treatment of azo dyes with the help of microorganisms as biocatalysts and have advanced significantly in recent years. However, the latest and significant advancement and achievements of BESs treating azo dyes have not been reviewed since 8 years ago. This review thus focuses on the recent investigations of BESs treating azo dyes from the year of 2013-2020 in order to broaden the knowledge and deepen the understanding in this field. In this review, azo dyes degradation mechanisms of BESs are first elaborated, followed by the introduction of BES configurations with the emphasis on the novelties. The azo dye degradation performance of BESs is then presented to demonstrate their effectiveness in azo dye removal. Effects of various operating parameters on the overall performance of BESs are comprehensively elucidated, including electrode materials, external resistances and applied potentials, initial concentrations of azo dyes, and co-substrates. Predominant microorganisms responsible for degradation of azo dyes in BESs are highlighted in details. Furthermore, the combination of BESs with other processes to further improve the azo dye removal are discussed. Finally, an outlook on the future research directions and challenges is provided from the viewpoint of realistic applications of the technology.
Collapse
Affiliation(s)
- Liping Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
6
|
Effectiveness of Advanced Oxidation Processes in Wastewater Treatment: State of the Art. WATER 2021. [DOI: 10.3390/w13152094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, many scientific studies have focused their efforts on quantifying the different types of pollutants that are not removed in wastewater treatment plants. Compounds of emerging concern (CECs) have been detected in different natural environments. The presence of these compounds in wastewater is not new, but they may have consequences in the future. These compounds reach the natural environment through various routes, such as wastewater. This review focuses on the study of tertiary treatment with advanced oxidation processes (AOPs) for the degradation of CECs. The main objective of the different existing AOPs applied to the treatment of wastewater is the degradation of pollutants that are not eliminated by means of traditional wastewater treatment.
Collapse
|
7
|
Taoufik N, Boumya W, Achak M, Sillanpää M, Barka N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112404. [PMID: 33780817 DOI: 10.1016/j.jenvman.2021.112404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 05/12/2023]
Abstract
Nowadays, pharmaceuticals are the center of significant environmental research due to their complex and highly stable bioactivity, increasing concentration in the water streams and high persistence in aquatic environments. Conventional wastewater treatment techniques are generally inadequate to remove these pollutants. Aiming to tackle this issue effectively, various methods have been developed and investigated on the light of chemical, physical and biological procedures. Increasing attention has recently been paid to the advanced oxidation processes (AOPs) as efficient methods for the complete mineralization of pharmaceuticals. Their high operating costs compared to other processes, however, remain a challenge. Hence, this review summarizes the current and state of art related to AOPs, biological treatment and their effective exploitation for the degradation of various pharmaceuticals and other emerging molecules present in wastewater. The review covers the last decade with a particular focus on the previous five years. It is further envisioned that this review of advanced oxidation methods and biological treatments, discussed herein, will help readers to better understand the mechanisms and limitations of these methods for the removal of pharmaceuticals from the environment. In addition, we compared AOPs and biological treatments for the disposal of pharmaceuticals from the point of view of cost, effectiveness, and popularity of their use. The exploitation of coupling AOPs and biological procedures for the degradation of pharmaceuticals in wastewater was also presented. It is worthy of note that an integrated AOPs/biological system is essential to reach the complete degradation of pharmaceuticals; other advantages of this hybrid technique involve low energy cost, an efficient degradation process and generation of non-toxic by-products.
Collapse
Affiliation(s)
- Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco
| | - Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco; Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| |
Collapse
|
8
|
Pelalak R, Heidari Z, Alizadeh R, Ghareshabani E, Nasseh N, Marjani A, Albadarin AB, Shirazian S. Efficient oxidation/mineralization of pharmaceutical pollutants using a novel Iron (III) oxyhydroxide nanostructure prepared via plasma technology: Experimental, modeling and DFT studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125074. [PMID: 33461011 DOI: 10.1016/j.jhazmat.2021.125074] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
High-performance novel iron oxyhydroxide (limonite) nanostructure, with improved surface reactive sites, was prepared via one-pot, eco-friendly, free precursor and cold glow discharge N2-plasma technique. Natural and plasma treated (PTNL/N2) limonite samples were characterized by FESEM, XPS, XRD, FTIR, AAS, EDX, BET/BJH and pHpzc to confirm the successful synthesis. Central composite design (CCD) and artificial neural network (ANN, topology of 4:8:1) methods were utilized to study the oxidation/mineralization of phenazopyridine (PhP) as a hazardous contaminant by heterogeneous catalytic ozonation process (HCOP). The obtained results indicated that PTNL/N2 had the highest catalytic performance in PhP degradation (98.6% in 40 min) and mineralization (80.4% in 120 min). The degradation mechanism in different processes was investigated by dissolved ozone concentration, various organic scavengers (BQ and TBA) and inorganic salts (NaNO3, NaCl, Na2CO3 and NaH2PO4). Moreover, reusability-stability, Fe and nitrogen (NO3- and NH4+) ions release were assessed during different AOPs. Furthermore, toxicity tests indicated that the HCOP using PTNL/N2 was able to detoxify the PhP solutions efficiently. Finally, Density Functional Theory (DFT) studies were employed to introduce the most plausible contaminant degradation pathway, reactive sites and byproducts. This research provided a new insight into the improvement of wastewater treatment studies by a combination of experiment and computer simulation.
Collapse
Affiliation(s)
- Rasool Pelalak
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Zahra Heidari
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Reza Alizadeh
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Eslam Ghareshabani
- Physics Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Negin Nasseh
- Social Determinants of Health Research Center, Faculty of Health, Environmental Health Engineering Department, Birjand University of Medical Sciences, Birjand, Iran
| | - Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Saeed Shirazian
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, Chelyabinsk 454080, Russia
| |
Collapse
|
9
|
Torres NH, Santos GDOS, Romanholo Ferreira LF, Américo-Pinheiro JHP, Eguiluz KIB, Salazar-Banda GR. Environmental aspects of hormones estriol, 17β-estradiol and 17α-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. CHEMOSPHERE 2021; 267:128888. [PMID: 33190907 DOI: 10.1016/j.chemosphere.2020.128888] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Hormones as a group of emerging contaminants have been increasingly used worldwide, which has increased their concern at the environmental level in various matrices, as they reach the water bodies through effluents due to the ineffectiveness of conventional treatments. Here we review the environmental scenario of hormones estriol (E3), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2), explicitly their origins, their characteristics, interactions, how they reach the environment, and, above all, the severe pathological and toxicological damage to animals and humans they produce. Furthermore, studies for the treatment of these endocrine disruptors (EDCs) are deepened using electrochemical processes as the remediation methods of the respective hormones. In the reported studies, these micropollutants were detected in samples of surface water, underground, soil, and sediment at concentrations that varied from ng L-1 to μg L-1 and are capable of causing changes in the endocrine system of various organisms. However, although there are studies on the ecotoxicological effects concerning E3, E2, and EE2 hormones, little is known about their environmental dispersion and damage in quantitative terms. Moreover, biodegradation becomes the primary mechanism of removal of steroid estrogens removal by sewage treatment plants, but it is still inefficient, which shows the importance of studying electrochemically-driven processes such as the Electrochemical Advanced Oxidation Processes (EAOP) and electrocoagulation for the removal of emerging micropollutants. Thus, this review covers information on the occurrence of these hormones in various environmental matrices, their respective treatment, and effects on exposed organisms for ecotoxicology purposes.
Collapse
Affiliation(s)
- Nádia Hortense Torres
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - Géssica de Oliveira Santiago Santos
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | | | - Katlin Ivon Barrios Eguiluz
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Giancarlo Richard Salazar-Banda
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| |
Collapse
|
10
|
Kuang C, Xu Y, Xie G, Pan Z, Zheng L, Lai W, Ling J, Talawar M, Zhou X. Preparation of CeO 2-doped carbon nanotubes cathode and its mechanism for advanced treatment of pig farm wastewater. CHEMOSPHERE 2021; 262:128215. [PMID: 33182126 DOI: 10.1016/j.chemosphere.2020.128215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The effluent from conventional treatment process (including anaerobic digestion and anoxic-oxic treatment) for pig farm wastewater was difficult to treat due to its low ratio of biochemical oxygen demand to chemical oxygen demand (BOD5/CODCr) (<0.1). In the present study, electro-Fenton (EF) was used to improve the biodegradability of the mentioned effluent and the properties of self-prepared CeO2-doped multi-wall carbon nanotubes (MWCNTs) electrodes were also studied. An excellent H2O2 production (165 mg L-1) was recorded, after an 80-min electrolysis, when the mass ratio of MWCNTs, CeO2 and pore-forming agent (NH4HCO3) was 6:1:1. Results of scanning electron microscopy (SEM), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS) showed that addition of NH4HCO3 and the doping of CeO2 could increase the superficial area of the electrode as well as the oxygen reduction reaction (ORR) electro-catalytic performance. The BOD5/CODCr of the wastewater from the first stage AO process increased from 0.08 to 0.45 and CODCr reduced 71.5% after an 80-min electrolysis, with 0.3 mM Fe2+ solution. The non-biodegradable chemical pollutants from the first stage AO process were degraded by EF. The non-biodegradable pollutants identified by LC-MS/MS in the effluent from AO process including aminopyrine, oxadixyl and 3-methyl-2-quinoxalinecarboxylic acid could be degraded by EF process, with the removal rates of 81.86%, 34.39% and 7.13% in 80 min, and oxytetracycline with the removal rate of 100% in 20 min. Therefore, electro-Fenton with the new CeO2-doped MWCNTs cathode electrode will be a promising supplement for advanced treatment of pig farm wastewater.
Collapse
Affiliation(s)
- Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Zhanchang Pan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Manjunatha Talawar
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Xiao Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| |
Collapse
|
11
|
Zou R, Angelidaki I, Yang X, Tang K, Andersen HR, Zhang Y. Degradation of pharmaceuticals from wastewater in a 20-L continuous flow bio-electro-Fenton (BEF) system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138684. [PMID: 32330723 DOI: 10.1016/j.scitotenv.2020.138684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The bio-electro-Fenton (BEF) technology has proven to be an effective and energy-saving method for treating wastewaters containing a single pharmaceutical in the lab-scale. However, the continuous degradation of pharmaceuticals in a scaled-up BEF has never been reported. In this study, a 20-L dual-chamber BEF reactor was designed and tested for treating six model pharmaceuticals. The effect of key operational factors including applied voltage, cathode Fe2+ dosage, initial pharmaceuticals concentration and hydraulic retention time (HRT), were assessed. By implementing 0.1 V voltage, 0.3 mM Fe2+ and HRT of 26 h, the six selected pharmaceuticals (500 μg L-1 for each) were removed completely. Moreover, transformation products during clofibric acid degradation, such as 4-chlororesorcinol, were detected and the relevant transformation pathway was proposed. Additionally, it successfully removed these pharmaceuticals in the real wastewater matrix. This paper contributes to scaling-up the BEF process for continuous and effective treating pharmaceuticals-contaminated wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Xiaoyong Yang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
12
|
Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116800] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Chen Z, Yang S, Wang Y, Zhu M, Wei C. Enhanced energy efficiency for the complete mineralization of diclofenac by self-sequential ultrasound enhanced ozonation. RSC Adv 2020; 10:15493-15500. [PMID: 35495448 PMCID: PMC9052383 DOI: 10.1039/d0ra00285b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/04/2022] Open
Abstract
Diclofenac (DCF), an anti-biodegradable drug, needs to be post-treated after conventional biochemical treatment. In this paper, ultrasound enhanced ozonation (UEO) under different conditions was employed to degrade DCF. The results showed that DCF was completely degraded by UEO in 8 min and complete total organic carbon (TOC) removal occurred in 120 min. The generation of ˙OH via UEO could be achieved through ozone decomposition, H2O sonolysis, and ozone sonolysis, which contributed to the complete mineralization of DCF. The total amount of ˙OH produced by 200 kHz UEO was 3.8 times higher than that of single ozonation plus single sonolysis in 120 min. Typical persistent intermediates of DCF, such as oxalic acid and oxamic acid, could be efficiently degraded by UEO. It was found that 60 min ozonation followed by 60 min UEO had the best mineralization energy efficiency (MEE) (113 mg (kW h)-1) at the base of complete mineralization and there was one-third reduction in the total energy consumption compared to that for single UEO. Based on the analysis of the evolution index (EI), pH was selected as the best judgment index of self-sequential UEO for indicating the time point of ultrasound irradiation, which saves irradiation times for practical use.
Collapse
Affiliation(s)
- Zhen Chen
- School of Environment and Energy, South China University of Technology Guangzhou 510006 PR China
- Guangdong Provincial Academy of Environmental Sciences Guangzhou 510045 PR China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality PR China
| | - Shewei Yang
- Guangdong Provincial Academy of Environmental Sciences Guangzhou 510045 PR China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality PR China
| | - Yonghong Wang
- Guangdong Provincial Academy of Environmental Sciences Guangzhou 510045 PR China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality PR China
| | - Mingshan Zhu
- School of Environment, Jinan University Guangzhou 510632 PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology Guangzhou 510006 PR China
| |
Collapse
|
14
|
Xu P, Zheng D, Xie Z, Ma J, Yu J, Hou B. The mechanism and oxidation efficiency of bio-electro-Fenton system with Fe@Fe2O3/ACF composite cathode. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116103] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Coupling electro-Fenton process to a biological treatment, a new methodology for the removal of ionic liquids? Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Zou R, Angelidaki I, Jin B, Zhang Y. Feasibility and applicability of the scaling-up of bio-electro-Fenton system for textile wastewater treatment. ENVIRONMENT INTERNATIONAL 2020; 134:105352. [PMID: 31778935 DOI: 10.1016/j.envint.2019.105352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Textile wastewater entering natural water bodies could cause serious environment and health issues. Bio-electro-Fenton (BEF) as an efficient and energy saving wastewater treatment technology has recently attracted widespread attention. So far, there is no research available on the scaling-up of BEF process. In this work, an innovative 20 L up-scaled BEF system was constructed for the treatment of methylene blue (MB) containing wastewater. The system was first tested in batch mode. The results showed that the system performance was majorly related to the operating parameters including initial MB concentration, catholyte pH and concentration, cathodic aeration rate, Fe2+ dosage, and applied voltage. At the optimal condition, 20 mg L-1 of MB was efficiently removed following the apparent first order kinetics. The corresponding rate constants for the decolorization and mineralization were 0.68 and 0.20 h-1, respectively. Furthermore, MB decolorization efficiency of 99% and mineralization efficiency of 74% were observed when the hydraulic retention time was 28 h in continuous mode. This work demonstrates the scaling-up potential of BEF for recalcitrant wastewater treatment.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
17
|
Popat A, Nidheesh PV, Anantha Singh TS, Suresh Kumar M. Mixed industrial wastewater treatment by combined electrochemical advanced oxidation and biological processes. CHEMOSPHERE 2019; 237:124419. [PMID: 31356998 DOI: 10.1016/j.chemosphere.2019.124419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 05/12/2023]
Abstract
Nowadays, because the quality and quantity of mixed industrial wastewater keep fluctuating in recent times, the treatment of mixed industrial wastewater has gained more attention. The main target of this study is to degrade the wastewater through a combination of electrochemical advanced oxidation processes (EAOPs) and biological treatment. To enhance the biodegradability of the wastewater, Electro-Fenton process, along with external persulphate addition, was applied before the biological treatment. The effect of voltage, catalyst concentration and persulphate dosage was studied. The optimized conditions selected for the experiments were pH-3, effective area-25 cm2, electrode spacing-1 cm while voltage-10 V, persulphate dosage-200 mg L-1, and catalyst dosage-10 mg L-1 were optimized during the experiments leading towards 60% of COD removal efficiency in course of 1 h of electrolysis. Addition of tert-butyl alcohol and ethanol revealed the existence of sulphate and hydroxyl radicals as the major oxidants that help in pollutant degradation by combining EAOPs and biological treatment. Overall 94% COD removal efficiency was achieved. Therefore, for the organic pollutant degradation, combined process serves to be an efficient and effective treatment option.
Collapse
Affiliation(s)
- Amishi Popat
- CSIR, National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Department of Civil Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
| | - P V Nidheesh
- CSIR, National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - T S Anantha Singh
- Department of Civil Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
| | - M Suresh Kumar
- CSIR, National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
18
|
Three-dimensional electro-Fenton system with iron foam as particle electrode for folic acid wastewater pretreatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Deng F, Olvera-Vargas H, Garcia-Rodriguez O, Zhu Y, Jiang J, Qiu S, Yang J. Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:249-258. [PMID: 31170573 DOI: 10.1016/j.jhazmat.2019.05.077] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 05/26/2019] [Indexed: 05/03/2023]
Abstract
For the first time, a biomass-derived porous carbon cathode (WDC) was fabricated via a facile one-step pyrolysis of recovered wood-waste without any post-treatment. The WDC along with pyrophosphate (PP) as electrolyte were used in electro-Fenton (EF) at pH 8 for sulfathiazole (STZ) treatment. The H2O2 accumulation capacity of WDC was optimized via the following parameters: pyrolysis temperature, applied current and electrolyte. Results showed that the WDC cathode prepared at 900 °C achieved the highest H2O2 accumulation (13.80 mg L-1 in 3 h) due to its larger electroactive surface area (28.81 cm2). Interestingly, it was found that PP decreased the decomposition rate of H2O2 in solution as compared to conventional electrolyte, which resulted in higher H2O2 accumulation. PP allowed operating EF at pH of 8 due to the formation of Fe2+-PP complexes in solution. Moreover, Fe2+-PP was able to activate oxygen to produce OH. In this way, the degradation of STZ took place through four main pathways: 1) via OH from the Fe2+-PP complex, 2) via OH from EF reactions, 3) via surface OH at the boron doped diamond electrode (BDD) and 4) via SO4- from BDD activation. Finally, microtox tests revealed that some toxic intermediates were generated during WDC/BDD/PP EF treatment, but they were removed at the end of the process.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; School of Chemical and Environmental Engineering, Jiang Han University, Wuhan, 430056, PR China
| | - Hugo Olvera-Vargas
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Orlando Garcia-Rodriguez
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Yingshi Zhu
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China.
| | - Shan Qiu
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Jixian Yang
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
20
|
Nidheesh PV, Divyapriya G, Oturan N, Trellu C, Oturan MA. Environmental Applications of Boron‐Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment. ChemElectroChem 2019. [DOI: 10.1002/celc.201801876] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- P. V. Nidheesh
- CSIR-National Environmental Engineering Research Institute Nagpur, Maharashtra India
| | - G. Divyapriya
- Environmental Water Resources Engineering DivisionDepartment of Civil EngineeringIndian Institute of Technology Madra Chennai, Tamilnadu India
| | - Nihal Oturan
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| | - Mehmet A. Oturan
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| |
Collapse
|
21
|
Dynamic cross-flow electro-Fenton process coupled to anodic oxidation for wastewater treatment: Application to the degradation of acetaminophen. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Nidheesh PV, Zhou M, Oturan MA. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. CHEMOSPHERE 2018; 197:210-227. [PMID: 29366952 DOI: 10.1016/j.chemosphere.2017.12.195] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 05/21/2023]
Abstract
Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Mehmet A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, (LGE), EA 4508, UPEM, 5 Bd Descartes, 77454 Marne-la-Vallée Cedex 2, France.
| |
Collapse
|
23
|
da Costa Soares IC, da Silva DR, do Nascimento JHO, Garcia-Segura S, Martínez-Huitle CA. Functional group influences on the reactive azo dye decolorization performance by electrochemical oxidation and electro-Fenton technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24167-24176. [PMID: 28884274 DOI: 10.1007/s11356-017-0041-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Electrochemical water treatment technologies are highly promising to achieve complete decolorization of dyebath effluents, as demonstrated by several studies reported in the literature. However, these works are focused on the treatment of one model pollutant and generalize the performances of the processes which are not transposable since they depend on the pollutant treated. Thus, in the present study, we evaluate, for the first time, the influence of different functional groups that modify the dye structure on the electrochemical process decolorization performance. The textile azo dyes Reactive Orange 16, Reactive Violet 4, Reactive Red 228, and Reactive Black 5 have been selected because they present the same molecular basis structure with different functional groups. The results demonstrate that the functional groups that reduce the nucleophilicity of the pollutant hinder the electrophilic attack of electrogenerated hydroxyl radical. Thereby, the overall decolorization efficiency is consequently reduced as well as the decolorization rate. Moreover, the presence of an additional chromophore azo bond in the molecule enhances the recalcitrant character of the azo dyes as pollutants. The formation of a larger and more stable conjugated π system increases the activation energy required for the electrophyilic attack of •OH, affecting the performance of electrochemical technologies on effluent decolorization.
Collapse
Affiliation(s)
- Izabelle Cristina da Costa Soares
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN, 59078-970, Brazil
| | - Djalma Ribeiro da Silva
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN, 59078-970, Brazil
| | | | - Sergi Garcia-Segura
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN, 59078-970, Brazil.
| | - Carlos Alberto Martínez-Huitle
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN, 59078-970, Brazil.
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Unesp, P.O. Box 355, Araraquara, SP, 14800-900, Brazil.
| |
Collapse
|
24
|
Flores N, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E, Sirés I. 4-Hydroxyphenylacetic acid oxidation in sulfate and real olive oil mill wastewater by electrochemical advanced processes with a boron-doped diamond anode. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:566-575. [PMID: 27694020 DOI: 10.1016/j.jhazmat.2016.09.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
The degradation of 4-hydroxyphenylacetic acid, a ubiquitous component of olive oil mill wastewater (OOMW), has been studied by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed in either a 0.050M Na2SO4 solution or a real OOMW at pH 3.0, using a cell with a boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 generation. Hydroxyl radicals formed at the BDD surface from water oxidation in all processes and/or in the bulk from Fenton's reaction between added Fe2+ and generated H2O2 in EF and PEF were the main oxidants. In both matrices, the oxidation ability of the processes increased in the order AO-H2O2<EF<PEF. The superiority of PEF was due to the photolytic action of UVA radiation on photosensitive by-products, as deduced from the quick removal of Fe(III)-oxalate complexes. The effect of current density and organic content on the performance of all treatments was examined. 4-Hydroxyphenylacetic acid decay obeyed a pseudo-first-order kinetics. The PEF treatment of 1.03mM 4-hydroxyphenylacetic acid in 0.050M Na2SO4 allowed 98% mineralization at 360min even at low current density, whereas 80% mineralization and a significant enhancement of biodegradability were achieved with the real OOMW.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José Antonio Garrido
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rosa María Rodríguez
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
25
|
Bio-electro-Fenton: A New Combined Process – Principles and Applications. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2017. [DOI: 10.1007/698_2017_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|