1
|
Shao H, Gu C, Li H, Chen L, Guan X. Innovative Fe(IV)-Triggered Chemiluminescence Assay for Rapid and Selective Detection of Total Phenolic Content. Anal Chem 2025; 97:8545-8552. [PMID: 40119790 DOI: 10.1021/acs.analchem.5c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Total phenolic content reflecting the overall concentration of phenolics in water is a valuable indicator for evaluating water quality. However, current total phenolic content quantification technologies are unsatisfactory due to their complexity, time-consuming nature, limited reliability, and low selectivity. To overcome these problems, we utilized the high reactivity and selectivity of tetravalent iron (Fe(IV)) toward phenolics to develop a surrogate method for total phenolic content based on the quenching effect of phenolics on the chemiluminescence (CL) produced during the oxidation of naproxen (NAP) by Fe(IV) in the Fe(II)-activated periodate (Fe(II)/PI) process. Experimental results showed a strong linear relationship between the chemiluminescence quenching capacity (CLQC) values and total phenolic content in the Fe(II)/PI-NAP process. The high reactivity and superior selectivity of Fe(IV) toward phenolics enable rapid, highly sensitive, and robust anti-interference quantification of total phenolic content using the developed CL method. The limit of quantitation and limit of detection of the developed CL method for total phenolics determination were 1.34 and 0.40 μM, respectively, expressed as phenol equivalents. Finally, we validated the feasibility of using the CLQC value as a surrogate indicator for total phenolic content in various real water samples. This work introduces a novel method for quantifying total phenolic content by determining the CLQC value of water samples using the Fe(II)/PI-NAP process, offering a promising alternative for controlling the discharge of phenolics.
Collapse
Affiliation(s)
- Huixin Shao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chengyu Gu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Huajie Li
- Jiangsu Environmental Industry Co., Ltd, Nanjing, Jiangsu 210004, P. R. China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
2
|
Li J, Arslan M, Yang L, Gamal El-Din M. Fate of dissolved organics in oil sands process water during long-term storage: Mechanistic insights into toxicity removal and microbial processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125050. [PMID: 40117921 DOI: 10.1016/j.jenvman.2025.125050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Refining oil sand process water (OSPW), a byproduct of bitumen extraction from oil sands in Canada, presents significant environmental challenges due to its complex makeup. This complexity is mainly due to the presence of naphthenic acids (NAs), which play a substantial role in contributing to the toxicity of OSPW. Although various treatment technologies have been explored, the long-term behaviour of OSPW dissolved organics under different storage conditions has not been studied extensively. This study is the first to delve deeply into the natural attenuation of OSPW under diverse controlled conditions, focusing on the effects of temperature, dissolved oxygen, and ozone pretreatment on water quality, NAs degradation, toxicity, and bioavailability. Our results revealed the critical role of temperature in OSPW characteristics, with long-term storage at 4 °C demonstrating minimal degradation of dissolved organics, providing the first empirical support for current OSPW storage practices. In contrast, at 20 °C, ozoned OSPW exhibited maximum reduction in the following parameters: total NAs, 72.6 %; chemical oxygen demand, 25.3 %; acute toxicity towards A. fischeri by 60.7 %; and bioavailability of organics by 35.2 %. This suggests that ozone pretreatment facilitates the biodegradation process by breaking down NAs into more readily metabolized compounds, which are further degraded by microbial activity over time. Furthermore, the study identified evolving microbial communities during OSPW storage, highlighting the presence of Bacillus and Fontimonas genera, which may play a role in organics degradation but require further investigation into their specific functions. These findings provide critical insights into the long-term dynamics of organics in OSPW and provide a foundation for optimizing management strategies.
Collapse
Affiliation(s)
- Jia Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammed Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lingling Yang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
3
|
Faggiano A, Martínez-Piernas AB, Ricciardi M, Motta O, Fiorentino A, Proto A. A chemometric approach to the interaction of hydrogen peroxide and thermally activated persulfate in the removal of aromatic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123957. [PMID: 39740469 DOI: 10.1016/j.jenvman.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
This study evaluates the combined use of H₂O₂ and thermally activated S₂O₈2⁻ (T-PDS) for the degradation of phenolic compounds (PhOH) in wastewater, aiming to limit or eliminate sludge production. Phenolic compounds are common in industrial effluents, and their effective removal is crucial for reducing environmental impact. The study employs Response Surface Methodology (RSM) and Principal Component Analysis (PCA) to optimise critical variables such as temperature, pH, and oxidant concentrations. Optimal conditions were determined to be a temperature of 70 °C, pH 5, and a H2O2/S2O82- molar ratio of 1:6. Under these conditions, the system achieved an 89% PhOH degradation efficiency, reducing the concentration from 10 to 1.2 mg L-1 after 120 min of treatment. The kinetic analysis revealed a rapid initial reduction in PhOH concentration by 38% (from 10 to 6.2 mg L-1) within the first 15 min, followed by a slower degradation phase. This suggests a complex reaction mechanism, likely influenced by oxidant consumption and intermediate formation. The model demonstrated high precision, with R2 values of 0.99 for PhOH and S2O82-and slightly lower for H₂O₂ (R2 = 0.98). A brief cost analysis estimated the treatment cost at €6.86 per cubic meter of wastewater, showing the economic viability of the process. Additionally, eliminating sludge formation reduces operational costs related to sludge management and disposal, making the H2O2/T-PDS system a promising solution for large-scale industrial applications in sustainable wastewater treatment.
Collapse
Affiliation(s)
- Antonio Faggiano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Ana B Martínez-Piernas
- Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071, Malaga, Spain
| | - Maria Ricciardi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende 1, 84081, Baronissi, SA, Italy
| | - Antonino Fiorentino
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy.
| | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
4
|
Wang KL, Ma X, Li DB, Qi YL, Hua ZS, Tian T, Liu DF, Min D, Li WW, Huang GX, Yu HQ. Single Phototrophic Bacterium-Mediated Iron Cycling in Aquatic Environments. RESEARCH (WASHINGTON, D.C.) 2024; 7:0528. [PMID: 39559346 PMCID: PMC11570789 DOI: 10.34133/research.0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Redox cycling of iron plays a pivotal role in both nutrient acquisition by living organisms and the geochemical cycling of elements in aquatic environments. In nature, iron cycling is mediated by microbial Fe(II)-oxidizers and Fe(III)-reducers or through the interplay of biotic and abiotic iron transformation processes. Here, we unveil a specific iron cycling process driven by one single phototrophic species, Rhodobacter ferrooxidans SW2. It exhibits the capability to reduce Fe(III) during bacterial cultivation. A c-type cytochrome is identified with Fe(III)-reducing activity, implying the linkage of Fe(III) reduction with the electron transport system. R. ferrooxidans SW2 can mediate iron redox transformation, depending on the availability of light and/or organic substrates. Iron cycling driven by anoxygenic photoferrotrophs is proposed to exist worldwide in modern and ancient environments. Our work not only enriches the theoretical basis of iron cycling in nature but also implies multiple roles of anoxygenic photoferrotrophs in iron transformation processes.
Collapse
Affiliation(s)
- Kai-Li Wang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Xin Ma
- School of Life Sciences,
University of Science and Technology of China, Hefei 230026, China
| | - Dao-Bo Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Applied Microbiology Southern China,
Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yan-Ling Qi
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Tian Tian
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Dong-Feng Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Di Min
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Gui-Xiang Huang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Chen Y, Zhu J, Ma H, Gu Y, Liu T. Fe 2+-NTA synergized UV 254 photolytic defluorination of perfluorooctane sulfonate (PFOS): Enhancing through intramolecular electron density perturbation via electron acquisition. WATER RESEARCH 2024; 254:121421. [PMID: 38461601 DOI: 10.1016/j.watres.2024.121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant posing a risk in environmental persistence, bioaccumulation and biotoxicity. This study was to reach a comprehensive and deeper understanding of PFOS elimination in a UV254 photolytic treatment with the co-presence of Fe2+ and nitrilotriacetic acid trisodium salt (NTA). PFOS defluorination was noticeably enhanced in the UV/Fe2+-NTA treatment compared with UV/NTA, UV/Fe2+ and our previously studied UV/Fe3+ treatments. UV-vis, FTIR, and UPLC/MS-MS results indicated the formation of PFOS-Fe2+-NTA complex in PFOS, Fe2+ and NTA mixture. The transition energy gap of PFOS-Fe2+-NTA decreased below the excitation energy supplied by UV254 irradiation, corresponding with red shift appearing in UV-vis scanning spectrum. This favored intramolecular electron transfer from Fe2+-NTA to PFOS under UV254 irradiation to form electron-accepting PFOS. Molecular electrostatic potential and atom charge distribution analyses suggested electron density rearrangement and perturbation in the perfluorinated carbon chain of electron-accepting PFOS, leading to the decrease in bond dissociation energies. Intermediate products detection suggested the parallel defluorination pathways of PFOS desulfonation, middle carbon chain scission and direct C-F cleavage. NTA exhibited crucial functions in the UV/Fe2+-NTA treatment by holding Fe2+/Fe3+ in soluble form as a chelant and favoring water activation to generate hydrated electrons (eaq-) under UV irradiation as a photosensitizer. Fe2+ acting as the conduit for electron transfer and the bridge of PFOS anion and NTA was thought functioning best at 200 µM in this study. The degree of UV/Fe2+-NTA -synergized PFOS defluorination also depended on eaq- yield and UV254 photon flux. The structure dependence on the electron transfer process of PFOS and PFOA was explored incorporating molecular structure descriptors. Because of possessing greater potential to acquire electrons or less likeliness to donate its electrons than PFOA, PFOS exhibited faster defluorination kinetics in the published "reduction treatments" than "oxidation" ones. Whereas, PFOA defluorination kinetics were at similar level in both "reduction" and "oxidation" treatments.
Collapse
Affiliation(s)
- Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yurong Gu
- Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
6
|
Chen Y, Wang Y, Headley JV, Huang R. Sample preparation, analytical characterization, monitoring, risk assessment and treatment of naphthenic acids in industrial wastewater and surrounding water impacted by unconventional petroleum production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169636. [PMID: 38157903 DOI: 10.1016/j.scitotenv.2023.169636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Industrial extraction of unconventional petroleum results in notable volumes of oil sands process water (OSPW), containing elevated concentrations of naphthenic acids (NAs). The presence of NAs represents an intricate amalgamation of dissolved organic constituents, thereby presenting a notable hurdle for the domain of environmental analytical chemistry. There is growing concern about monitoring the potential seepage of OSPW NAs into nearby groundwater and river water. This review summarizes recent studies on sample preparation, characterization, monitoring, risk assessment, and treatment of NAs in industrial wastewater and surrounding water. Sample preparation approaches, such as liquid-liquid extraction, solid phase microextraction, and solid phase extraction, are crucial in isolating chemical standards, performing molecular level analysis, assessing aquatic toxicity, monitoring, and treating OSPW. Instrument techniques for NAs analysis were reviewed to cover different injection modes, ionization sources, and mass analyzers. Recent studies of transfer and transformation of NAs provide insights to differentiate between anthropogenic and natural bitumen-derived sources of NAs. In addition, related risk assessment and treatment studies were also present for elucidation of environmental implication and reclamation strategies. The synthesis of the current state of scientific knowledge presented in this review targets government regulators, academic researchers, and industrial scientists with interests spanning analytical chemistry, toxicology, and wastewater management.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yongjian Wang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - John V Headley
- Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Attar SBE, Soriano-Molina P, Pichel N, París-Reche A, Plaza-Bolaños P, Agüera A, Pérez JAS. Continuous flow operation of solar photo-Fenton fused with NaOCl as a novel tertiary treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132354. [PMID: 37651935 DOI: 10.1016/j.jhazmat.2023.132354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
A novel strategy based on solar photo-Fenton mediated by ferric nitrilotriacetate (Fe3+-NTA) combined with NaOCl in continuous flow mode for wastewater reclamation has been studied. Escherichia coli (E. coli) inactivation attained ≥ 5 log10-units, meeting the most restrictive EU 2020/741 target (10 CFU/100 mL), and 75% of organic microcontaminant total load was removed. As a remarkable finding, trihalomethanes (THMs) concentration was insignificant, complying by far with the Italian legislation limit. To attain these results, first the effect of liquid depth on E. coli inactivation and imidacloprid (IMD) removal from spiked municipal effluents was evaluated in continuous flow pilot-scale raceway pond reactors at 60-min hydraulic residence time with low reagent concentrations (0.10 mM Fe3+-NTA, 0.73 mM H2O2 and 0.13 mM NaOCl). Disinfection was due to the bactericidal effect of chlorine. In contrast, liquid depth notably influenced microcontaminant removal, highlighting that operation at 10-cm liquid depth allows achieving treatment capacities higher than at 5 cm (16.50 vs 28.20 mg IMD/m2∙day). Next, the monitoring of THMs was carried out to evaluate the generation and degradation of disinfection by-products, along with the removal of actual microcontaminants. These promising results draw attention to the treatment potential and open the way for its commercial application.
Collapse
Affiliation(s)
- S Belachqer-El Attar
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain; Chemical Engineering Department, University of Almería, Carretera de Sacramento s/n, Almería 04120, Spain
| | - P Soriano-Molina
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain; Chemical Engineering Department, University of Almería, Carretera de Sacramento s/n, Almería 04120, Spain.
| | - N Pichel
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain; Chemical Engineering Department, University of Almería, Carretera de Sacramento s/n, Almería 04120, Spain
| | - A París-Reche
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain; Department of Chemistry and Physics, University of Almería, Carretera de Sacramento s/n, Almería 04120, Spain
| | - P Plaza-Bolaños
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain; Department of Chemistry and Physics, University of Almería, Carretera de Sacramento s/n, Almería 04120, Spain
| | - A Agüera
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain; Department of Chemistry and Physics, University of Almería, Carretera de Sacramento s/n, Almería 04120, Spain
| | - J A Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain; Chemical Engineering Department, University of Almería, Carretera de Sacramento s/n, Almería 04120, Spain.
| |
Collapse
|
8
|
Chen Y, Li Y, Wang Y, Zhang IY, Huang R. Efficient removal of recalcitrant naphthenic acids with electro-cocatalytic activation of peroxymonosulfate by Fe(III)-nitrilotriacetic acid complex under neutral initial pH condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131524. [PMID: 37196437 DOI: 10.1016/j.jhazmat.2023.131524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
This work investigated the activation of peroxymonosulfate by electrochemical (EC) system assisted with Fe(III)-nitrilotriacetic acid (NTA) complex for degradation of persistent naphthenic acids (NAs) under neutral initial pH conditions. As NAs are a complicated mixture, 1-adamantanecarboxylic acid (ACA) was selected as the model NA compound for degradation experiment. The addition of NTA is to chelate with Fe(III), gaining stability under neutral pH condition to facilitate the circulation of Fe(II)/Fe(III) by the electrochemical process to activate PMS. The EC/Fe(III)-NTA/PMS system was explored with applicable pH range of 3-9 and an optimized molar ratio 1: 2 for Fe: NTA. Results of quenching and chemical probe experiment together with results of electron paramagnetic resonance (EPR) analysis revealed the main reactive species of the system, including •OH, SO4•-, 1O2 and possibly Fe(IV). With the addition of NTA, the yields of •OH, SO4•-, 1O2 were enhanced. Results of mass spectrometry analysis and DFT calculations indicated the formation of 9 degradation byproducts of ACA via three primary degradation pathways such as hydroxyl substitution, carbonyl substitution, and decarboxylation. Furthermore, the EC/Fe(III)-NTA/PMS system could achieve excellent removal efficiency of ACA with different anions such as Cl-, HCO3-, NO3- and H2PO4- in the background. The practical applicability of the system was also verified with the high removal of commercial NAs mixture standard. Overall results have indicated the EC/Fe(III)-NTA/PMS system could be utilized for efficient reclamation of authentic oil and gas industrial wastewater under natural pH conditions.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yajing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yongjian Wang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Pan Y, Qin R, Hou M, Xue J, Zhou M, Xu L, Zhang Y. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Impacts of bioreactor operating parameters on removal efficiency, biodegradation rate, molecular distribution, and toxicity of commercial naphthenic acids. Bioprocess Biosyst Eng 2021; 45:391-407. [PMID: 34854976 DOI: 10.1007/s00449-021-02669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Effects of naphthenic acids (NAs) concentration (50-200 mg NA L-1; 35-140 mg TOC L-1) and loading rate (1.4-1249 mg NA L-1 h-1; 1-874 mg TOC L-1 h-1) on removal efficiency, removal rate, and molecular distribution of NAs, and effluent toxicity were evaluated for biodegradation of commercial NAs mixture in circulating packed bed bioreactors (CPBBs). Increase of NAs concentration and loading rate (shorter residence times) increased the removal rate, while removal efficiency initially declined and then stabilized. The maximum biodegradation rates for 50, 100, 150, and 200 mg NA L-1 were 128.0, 321.7, 430.2, and 630.0 mg TOC L-1 h-1 at loading rates of 218.5, 455.6, 673.5 and 874.0 mg TOC L-1 h-1, respectively, with removal efficiencies of 58.6, 70.6, 63.9 and 72.1%. Analysis of influent and treated effluents with gas chromatography-mass spectrometry showed that molecular weight and cyclicity (C and Z numbers) affected the biodegradation, with low molecular weight acyclic NAs (C = 6-12) were the most amenable to biodegradation and those with intermediate and high molecular weights (C = 13-22) and moderate cyclicity (Z = - 4, - 6) were the most recalcitrant. In the biofilm, Proteobacteria and Actinobacteria were the most abundant phyla, and Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were the dominant classes. Toxicity analyses with Artemia salina and Vibrio fischeri (Microtox) showed that high influent concentrations and loading rates (short residence times) led to higher NAs residual concentration and effluent toxicity. To design and operate large-scale CPBBs, intermediate loading rates and residence times that result in high removal efficiency, reasonable removal rates, and low toxicity are recommended.
Collapse
|
11
|
Miralles-Cuevas S, Soriano-Molina P, de la Obra I, Gualda-Alonso E, Pérez JAS. Simultaneous bacterial inactivation and microcontaminant removal by solar photo-Fenton mediated by Fe 3+-NTA in WWTP secondary effluents. WATER RESEARCH 2021; 205:117686. [PMID: 34600227 DOI: 10.1016/j.watres.2021.117686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous microorganism inactivation and organic microcontaminant removal in municipal wastewater treatment plant (WWTP) secondary effluents by the solar photo-Fenton process mediated by Fe3+-NTA is studied in depth. To achieve this objective, different key aspects were addressed: (i) the effect of initial Fe3+-NTA concentration at 1:1 molar ratio (0.10-0.30 mM) and H2O2 concentration (1.47-5.88 mM), (ii) the effect of initial microorganism load (103 and 106 CFU/mL) and (iii) the impact of the disinfection target on treatment cost. The first stage of this work was carried out in simulated WWTP effluent spiked with 100 µg/L of imidacloprid (IMD) as model microcontaminant and inoculated with Escherichia coli (E. coli) K-12 as reference strain, in a pilot scale raceway pond reactor with 5-cm of liquid-depth. Secondly, the most cost-effective conditions were validated in actual WWTP effluent. The kinetic analysis revealed that increasing Fe3+-NTA concentration over 0.20 mM does not significantly reduce treatment time due to the limited effect caused on the volumetric rate photon absorption. Treatment cost is determined by the disinfection process, since IMD removal was always faster than E. coli inactivation. The most cost-effective strategy to achieve 10 CFU/100 mL of E. coli (Regulation EU 2020/741) was 0.20/4.41 mM Fe3+-NTA/H2O2, with a cost of 0.32 €/m3. A less restrictive disinfection target, 100 CFU/100 mL, allowed reducing reactant concentration and cost, 0.10/1.47 mM Fe3+-NTA/H2O2 and 0.15 €/m3, respectively. In both cases, no regrowth at 24 h and more than 90% of IMD removal were observed.
Collapse
Affiliation(s)
- S Miralles-Cuevas
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Av. Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - P Soriano-Molina
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería, ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería, 04120, Spain
| | - I de la Obra
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería, ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería, 04120, Spain
| | - E Gualda-Alonso
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería, ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería, 04120, Spain
| | - J A Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería, ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería, 04120, Spain.
| |
Collapse
|
12
|
Li Y, Shi Y, Huang D, Wu Y, Dong W. Enhanced activation of persulfate by Fe(III) and catechin without light: Reaction kinetics, parameters and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125420. [PMID: 33618272 DOI: 10.1016/j.jhazmat.2021.125420] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
An environmental-friendly plant polyphenol, catechin (CAT), was applied in Fe(III) activated persulfate (PS) system for naproxen (NPX) degradation in this research. Reaction kinetics, parameters, NPX degradation products and reaction mechanism were investigated. Combining the results of quenching experiments as well as Electron Spin Resonance (ESR), it was observed that SO4•- was critical in NPX degradation, and the contribution of HO• was minor in the Fe(III)/CAT/PS system. O2•- was generated during the reaction but did not contribute to NPX degradation. SO4•- and HO• were produced from the PS activation by Fe(II), which was formed from the transient complexing and reduction process between Fe(III) and CAT. The effects of Fe(III), CAT, PS concentration and pH value on NPX degradation were evaluated. Moreover, the mineralization rate was 20.2%, and the toxicity of the treated solution were lower than the initial solution. Nine possible intermediates were determined when using LC-QTOF-MS to analyze, and three degradation pathways were put ward. The results proved that CAT could accelerate the redox cycle of Fe(III)/Fe(II), consequently to strengthen PS activation without light. It was a promising oxidation technology as it offered an energy-saving and hypo-toxic way for refractory organic pollutants treatment, and it was applicable at a comparatively wide pH range.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yahong Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Dingfeng Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Simultaneous Disinfection and Organic Microcontaminant Removal by UVC-LED-Driven Advanced Oxidation Processes. WATER 2021. [DOI: 10.3390/w13111507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work presents the comparison of four advanced oxidation processes driven by UVC-LED radiation (278 nm—2 W/m2) for simultaneous bacteria inactivation (Escherichia coli—106 CFU/mL) and microcontaminant removal (imidacloprid—50 µg/L) in simulated wastewater secondary effluent. To this end, the activation of H2O2 and S2O82− as precursors of HO• and SO4•−, respectively, by UVC-LED and UVC-LED/Fe3+–NTA (ferric nitrilotriacetate at 0.1 mM) has been studied at different oxidant concentrations. For the purpose of comparison, conventional chlorination was used as the baseline along with bacterial regrowth 24 h after treatment. Disinfection was achieved within the first 30 min in all of the processes, mainly due to the bactericidal effect of UVC-LED radiation. UVC-LED/H2O2 did not substantially affect imidacloprid removal due to the low HO• generation by UVC irradiation at 278 nm, while more than 80% imidacloprid removal was achieved by the UVC-LED/S2O82−, UVC-LED/Fe3+–NTA/S2O82−, and UVC-LED/Fe3+–NTA/H2O2 processes. The most efficient concentration of both oxidants for the simultaneous disinfection and microcontaminant removal was 1.47 mM. Chlorination was the most effective treatment for bacterial inactivation without imidacloprid removal. These findings are relevant for scaling up UVC-LED photoreactors for tertiary wastewater treatment aimed at removing bacteria and microcontaminants.
Collapse
|
14
|
Xiong L, Ren W, Lin H, Zhang H. Efficient removal of bisphenol A with activation of peroxydisulfate via electrochemically assisted Fe(III)-nitrilotriacetic acid system under neutral condition. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123874. [PMID: 33264946 DOI: 10.1016/j.jhazmat.2020.123874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/10/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
In this work, an innovative electrochemically assisted Fe(III)-nitrilotriacetic acid system for the activation of peroxydisulfate (electro/Fe(III)-NTA/PDS) was proposed for the removal of bisphenol A (BPA) at neutral pH with commercial graphite electrodes. The efficient BPA decay was mainly originated from the continuous activation of PDS by Fe(II) reduced from Fe(III)-NTA complexes at the cathode. Scavenger experiments and electron paramagnetic resonance (EPR) measurements confirmed that the removal of BPA occurred through graphite adsorption, direct electron transfer (DET) and radical oxidation. Sulfate and hydroxyl radicals were primarily responsible for the oxidation of BPA while graphite adsorption and DET played a minor role in BPA removal. The influence of Fe(III) concentration, PDS dosage, input current, NTA to Fe(III) molar ratio as well as coexisting inorganic anions (Cl-, NO3-, H2PO4- and HCO3-) on BPA elimination was explored. The BPA removal efficiency reached 93.5 % after 60 min reaction in the electro/Fe(III)-NTA/PDS system under the conditions of initial pH 7.0, 0.30 mM Fe(III), 0.15 mM NTA, 5 mM PDS and 5 mA constant current. Overall, this research provided a novel perspective and potential for remediation of organic wastewater using NTA in combination with electrochemistry in the homogeneous Fe(III)/persulfate system.
Collapse
Affiliation(s)
- Liangliang Xiong
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Wei Ren
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Heng Lin
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
15
|
Abdalrhman AS, Wang C, How ZT, Gamal El-Din M. Degradation of cyclohexanecarboxylic acid as a model naphthenic acid by the UV/chlorine process: Kinetics and by-products identification. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123476. [PMID: 32711384 DOI: 10.1016/j.jhazmat.2020.123476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Degradation kinetics, by-products identification and pathways of a model naphthenic acid, cyclohexanecarboxylic acid (CHA), by the UV/Chlorine process were investigated in this study. Mathematical modeling indicated that the initial CHA decay rate increased rapidly with the chlorine dose when the chlorine dose was lower than 45 mg/L and decreased with further chlorine dose increases. Increasing the chlorine dose from 400 to 800 mg/L resulted in a steady increase in the total removal of CHA after 60 min of UV photolysis. By dividing the 700 mg/L chlorine dose into five separated doses (140 mg/L each) added at 10 min intervals, the total CHA removal increased from 72% to 91%. This implies that the ideal condition of the UV/Chlorine process in degrading CHA is to add chlorine continuously at a constant rate to compensate any chlorine consumption to reduce the radical scavenging effect. It was found that the CHA decay was mainly attributed to the hydroxyl radical (OH) attack and the reactive chlorine species (RCS) contribution was relatively small. Various by-products, including the mono-chlorinated and di-chlorinated by-products, were identified and the reaction pathway for CHA degradation during UV/Chlorine treatment was proposed.
Collapse
Affiliation(s)
- Abdallatif Satti Abdalrhman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada; Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada
| | - Chengjin Wang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada; Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
16
|
Abdalrhman AS, Zhang Y, Arslan M, Gamal El-Din M. Low-current electro-oxidation enhanced the biodegradation of the recalcitrant naphthenic acids in oil sands process water. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122807. [PMID: 32497857 DOI: 10.1016/j.jhazmat.2020.122807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Combining electro-oxidation (EO) with biodegradation for real oil sands process water (OSPW) treatment was evaluated in terms of naphthenic acid (NA) biodegradation enhancement. Ion mobility spectrometry (IMS) qualitative analysis showed that EO by graphite was able to degrade the different NA clusters in OSPW including: classical, oxidized and heteroatomic NAs. Applying EO even at current density as low as 0.2 mA/cm2 was still able to reduce classical NAs and acid extractable fraction (AEF) by 19% and 7%, respectively. EO pretreatment preferentially broke long carbon chains and highly cyclic carboxylic fractions of NAs in OSPW to improve the biodegradation of NAs. Aerobic biodegradation for 40 days reduced NAs by up to 30.9% when the samples were pre-treated with EO. Applying EO at current densities below 2 mA/cm2 maintained current efficiency as high as 48% and resulted in improvement in the biodegradation rate of remaining NAs by up to 2.7 folds. It was further revealed that applying EO before biodegradation could reduce the biodegradation half-life of classical NAs by up to 4.4 folds. 16S amplicon sequencing analysis showed that the samples subjected to biodegradation had increased abundances of Sphingomonadales and Rhodocyclales with increasing applied current density for EO pre-treatments.
Collapse
Affiliation(s)
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, New Mexico, 88003, United States
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada.
| |
Collapse
|
17
|
Zhou Y, Zhang Y, Li Z, Hao C, Wang Y, Li Y, Dang Y, Sun X, Han G, Fu Y. Oxygen reduction reaction electrocatalysis inducing Fenton-like processes with enhanced electrocatalytic performance based on mesoporous ZnO/CuO cathodes: Treatment of organic wastewater and catalytic principle. CHEMOSPHERE 2020; 259:127463. [PMID: 32599388 DOI: 10.1016/j.chemosphere.2020.127463] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
To treat typical organic wastewater efficiently, a novel Fenton-like processes based on ZnO/CuO composite cathode induced by oxygen reduction reaction (ORR) electrocatalysis with enhanced electrocatalytic performance was established successfully. Electrochemical testing investigation indicated that the ZnO/CuO cathode possessed conspicuous redox peak and better conductivity than uncompounded electrodes. Additionally, the removal efficiency of methylene blue and its chemical oxygen demand (COD) reached 96.4% and 70.8% after 120 min, respectively. Next, the feasibility of the material in practical application was also discussed. Subsequently, electrocatalytic principle based on valence state changes of metal elements on the electrode surface were also studied by x-ray photoelectron spectroscopy (XPS). Redox reactions between the active species H2O2 and the species Cu+ promoting Fenton-like processes were deduced. Namely, the conversion of Cu(I) and Cu(II) on the electrode surface was accompanied by OH generation. The combination of ZnO and CuO improved the surface morphology, increasing the active site of ORR and the yield of H2O2, thus greatly enhanced the Fenton-like activity. Finally, the main intermediates were identified by Gas chromatography-mass spectrometer (GC-MS), and possible pathways for dye degradation were proposed. In short, the research of ZnO/CuO cathode provided great significance for heterogeneous Fenton-like degradation and also showed its application potential in water treatment and remediation.
Collapse
Affiliation(s)
- Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yichen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zonglu Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chentao Hao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guoping Han
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yile Fu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
18
|
Mejri A, Soriano-Molina P, Miralles-Cuevas S, Sánchez Pérez JA. Fe 3+-NTA as iron source for solar photo-Fenton at neutral pH in raceway pond reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139617. [PMID: 32485381 DOI: 10.1016/j.scitotenv.2020.139617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
This work presents, for the first time, a kinetic study of the solar photo-Fenton process at neutral pH mediated by the Fe3+-NTA complex (molar ratio 1: 1) applied to remove contaminants of emerging concern (CECs). To this end, wastewater treatment plant (WWTP) secondary effluents were treated in a raceway pond reactor (RPR) at pilot plant scale with 0.1 mM Fe3+-NTA and 0.88 mM H2O2 under average solar UVA irradiance of 35 W/m2. Sulfamethoxazole and imidacloprid, at 50 μg/L of initial concentration each, were selected as model CECs. Up to 40% of the sum of both model CECs was removed from simulated WWTP effluent by the Fe3+-NTA Fenton-like process, and >80% was removed by solar photo-Fenton. The effect of liquid depth in the reactor was evaluated, showing an increase of the treatment capacity from 12 mg CEC/m2·h to 18 mg CEC/m2·h when liquid depth increased from 5 to 15 cm. Afterwards, these results were validated with real WWTP effluents and compared with the results obtained with the Fe3+-EDDS complex under the same operating conditions. The same CEC removal rates were obtained with Fe3+-NTA and Fe3+-EDDS at 5 cm of liquid depth (kinetic constants of 0.110 min-1 and 0.046 min-1 for sulfamethoxazole and imidacloprid, respectively). Conversely, at 15 cm of liquid depth, the degradation rates were lower with Fe3+-NTA (kinetic constants of 0.034 min-1 for sulfamethoxazole and 0.017 min-1 for imidacloprid), whereas with Fe3+-EDDS the values were 0.076 min-1 and 0.047 min-1 for sulfamethoxazole and imidacloprid, respectively. Regarding process cost estimation, the use of NTA as iron chelate for solar photo-Fenton at neutral pH at pilot plant scale resulted very cost-effective (0.13-0.14 €/m3) in comparison with the use of EDDS (0.46-0.48 €/m3) at the two liquid depths tested.
Collapse
Affiliation(s)
- Amal Mejri
- Laboratory of Wastewater Treatment and Recycling, Research and Technology Center of Water, University of Carthage, BP 273, 8020 Soliman, Tunisia; National School of Engineers of Sfax, University of Sfax, Soukra road, Km 4, 3038 Sfax, Tunisia
| | - Paula Soriano-Molina
- Solar Energy Research Centre (CIESOL), Ctra de Sacramento s/n, Almería ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra de Sacramento s/n, Almería ES04120, Spain
| | - Sara Miralles-Cuevas
- Solar Energy Research Centre (CIESOL), Ctra de Sacramento s/n, Almería ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra de Sacramento s/n, Almería ES04120, Spain
| | - José Antonio Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Ctra de Sacramento s/n, Almería ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra de Sacramento s/n, Almería ES04120, Spain.
| |
Collapse
|
19
|
Tan Z, Wang B, Yin Y, Liu Q, Li X, Liu J. In Situ Tracking Photodegradation of Trace Graphene Oxide by the Online Coupling of Photoinduced Chemical Vapor Generation with a Point Discharge Optical Emission Spectrometer. Anal Chem 2020; 92:1549-1556. [PMID: 31823604 DOI: 10.1021/acs.analchem.9b04837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The photostability of graphene oxide (GO) strongly affects the performance of its products in optics and photonics. However, the photostability of GO, especially at trace levels, remains largely unexplored mainly because of the lack of available techniques. Herein, we developed a novel online system consisting of a highly efficient photoinduced chemical vapor generation reactor and an in situ measurement technique using a miniaturized and sensitive point discharge optical emission spectrometer. On the basis of the results of inorganic carbon species, abundant oxygen-containing functional groups on GO nanosheets made the degradation much easier than graphene. Under the optimized conditions (e.g., initial pH of 2.8 and binary photocatalysts dose of 200 mM H2O2, 1.0 mM Fe3+ ions, and 50 mg/L TiO2 NPs), the limit of detection for GO was 87.5 μg/L C with a linear range of 0.5-10 mg/L C. Specifically, the accuracy and reliability of the developed system was verified by quantifying self-prepared GO as well as aggregated GO in natural organic matter-rich water samples. Finally, the sunlight-induced photodegradation of GO under simulated environmental conditions was successfully tracked. The developed system is a promising platform for in-time quality control of GO-based products as well as predicting the occurrence, transformation, and fate of GO at environmentally relevant concentrations in the natural aquatic environment.
Collapse
Affiliation(s)
- Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , 100085 Beijing , P. R. China
| | - Bowen Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , 100085 Beijing , P. R. China.,School of Environmental Science , Liaoning University , 110036 Shenyang , P. R. China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , 100085 Beijing , P. R. China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , 100085 Beijing , P. R. China
| | - Xia Li
- School of Environmental Science , Liaoning University , 110036 Shenyang , P. R. China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , 100085 Beijing , P. R. China
| |
Collapse
|
20
|
Fang Z, Huang R, Chelme-Ayala P, Shi Q, Xu C, Gamal El-Din M. Comparison of UV/Persulfate and UV/H 2O 2 for the removal of naphthenic acids and acute toxicity towards Vibrio fischeri from petroleum production process water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133686. [PMID: 31400695 DOI: 10.1016/j.scitotenv.2019.133686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The ultraviolet light-activated persulfate process (UV/Persulfate) has received much attention in recent years as a novel advanced oxidation method for the treatment of municipal and industrial wastewater. This work investigated the UV/Persulfate and UV/H2O2 processes for the treatment of real oil sands process water (OSPW) at ambient pH condition using a medium pressure mercury lamp (emission between 200 and 530 nm). The degradation performances towards fluorophore organic compounds and naphthenic acids (NAs) in OSPW were evaluated using synchronous fluorescence spectrometry and ultra performance liquid chromatography time-of-flight mass spectrometry, respectively. Compared to the UV/H2O2 process, the UV/Persulfate process exhibited higher efficiency to remove both NAs and fluorophore organic compounds. Under 40 min of UV exposure and incident irradiance of 3.50 mW cm-2, fluorophore organic compounds were greatly degraded by UV/Persulfate (2 mM) and two- and three-ring fused organics were completely removed. 59.4%, 83.8% and 92.2% of O2-NAs in OSPW were removed with persulfate dosages of 0.5, 2, and 4 mM, respectively. The removal efficiency decreased along with the number of oxygen atoms in NAs (83.8%, 49.3%, and 46.8% for O2-, O3-, and O4-NAs, respectively) with 2 mM of persulfate, because of the formation of oxidized NAs in the same process. The structure-reactivity of O2-NA compounds fitted pseudo-first order kinetics in UV/Persulfate process with the rate constants ranging from 0.0156 min-1 to 0.1511 min-1. NAs with higher carbon numbers and double bond equivalence were more reactive in the UV/Persulfate oxidation process. The acute toxicity of OSPW to Vibrio fischeri was significantly reduced after the UV/Persulfate and UV/H2O2 treatments. Overall results demonstrated that the UV/Persulfate oxidation can be an effective alternative for future reclamation of OSPW.
Collapse
Affiliation(s)
- Zhi Fang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Rongfu Huang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
21
|
Dong W, Jin Y, Zhou K, Sun SP, Li Y, Chen XD. Efficient degradation of pharmaceutical micropollutants in water and wastewater by Fe III-NTA-catalyzed neutral photo-Fenton process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:513-520. [PMID: 31726571 DOI: 10.1016/j.scitotenv.2019.06.315] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Ferric-nitrilotriacetate complex (FeIII-NTA) has been adopted to catalyze the photo-Fenton degradation of emerging pharmaceutical micropollutants in water and wastewater at neutral pH. The generation of hydroxyl radicals (HO) in UVA/FeIII-NTA/H2O2 was identified by using electron spin resonance (ESR) trapping technique. The effects of critical parameters (e.g., NTA:FeIII molar ratio, FeIII-NTA and H2O2 dosages) on the steady-state HO concentrations were studied in terms of the degradation of carbamazepine (CBZ, as a model compound) in Milli-Q water. In addition, the degradation of pharmaceuticals mixtures (including CBZ, crotamiton (CRMT) and ibuprofen (IBP)) in wastewater effluents from a biological aerated filter (BAF) by UVA/FeIII-NTA/H2O2 was studied in continuous-flow mode. The results showed that the efficacies of FeIII-NTA in catalyzing photo-Fenton degradation of pharmaceuticals in wastewater effluents were comparable to those obtained by FeIII-ethylenediamine-N,N'-disuccinic acid (FeIII-EDDS), and far exceeded other FeIII-L complex (e.g., citric acid, malonic acid, oxalic acid and tartaric acid). More than 92% degradation efficiencies of CBZ, CRMT and IBP were obtained in continuous-flow mode under the given conditions of 0.178 mM FeIII-NTA (1:1), 4.54 mM H2O2, UVA intensity 4.05 mW cm-2, hydraulic retention time (HRT) 2 h, influent pH 7.6 (±0.2) and temperature 20 °C. The results presented herein suggest that FeIII-NTA-catalyzed neutral photo-Fenton reaction can be an alternative tertiary process for the treatment of pharmaceutical micropollutants in secondary wastewater effluents.
Collapse
Affiliation(s)
- Weiyang Dong
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yaoyao Jin
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kang Zhou
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng-Peng Sun
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yifan Li
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao Dong Chen
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
22
|
Xiong Z, Wang Z, Muthu M, Zhang Y. Construction of an in-situ Fenton-like system based on a g-C 3N 4 composite photocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:565-571. [PMID: 30952001 DOI: 10.1016/j.jhazmat.2019.03.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
In this study, g-C3N4/PDI/Fe (gCPF) composite material was prepared by incorporating Fe ion on the composite catalyst of g-C3N4/PDI (gCP). X-ray photoelectron spectroscopy (XPS) showed that the Fe was successfully incorporated on the pristine g-C3N4/PDI. UV-vis diffuse reflectance spectrometry (UV-vis DRS) and Photoluminescence spectral (PL) analysis confirmed the enhancement of the visible absorption band following a decline in the photoelectron/hole recombination rate with gCPF. A preparatory experiment was performed on photocatalytic degradation of p-nitrophenol (PNP) to examine the activity of gCPF. Results obtained in the radical quenching and the electron paramagnetic resonance (EPR) spectroscopic studies indicated that an in-situ Fenton-like system has been successfully established and the main reactive oxygen species (ROS) changed from O2- to both O2- and OH in the gCPF system. However, a competition toward conduction band electrons between Fe3+ and O2 caused an inhibitory effect on PNP degradation. To overcome the effect, nitrilotriacetic acid (NTA) was introduced as a reducing agent for Fe3+. Upon adding NTA, the efficiency of PNP degradation greatly enhanced from 33 to 80%. The effect of initial pH, dosage of NTA and content of dissolved O2 on PNP degradation was also studied. The photocatalytic stability was confirmed by recycling experiments.
Collapse
Affiliation(s)
- Zhiwei Xiong
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhao Wang
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Murugananthan Muthu
- Department of Chemistry, PSG College of Technology, Peelamedu, Coimbatore 641004, India
| | - Yanrong Zhang
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
23
|
Fang Z, Chelme-Ayala P, Shi Q, Xu C, Gamal El-Din M. Degradation of naphthenic acid model compounds in aqueous solution by UV activated persulfate: Influencing factors, kinetics and reaction mechanisms. CHEMOSPHERE 2018; 211:271-277. [PMID: 30077106 DOI: 10.1016/j.chemosphere.2018.07.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/30/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
Naphthenic acids (NAs) are one of the constituents of concerns in oil sands process water (OSPW) because of their persistence and recalcitrance. Herein, we investigated the degradation of five model NA compounds by UV-activated persulfate (UV/persulfate) process under medium-pressure UV lamp irradiation at pH 8.0. UV/persulfate process showed higher degradation efficiency towards cyclohexanoic acid (CHA) compared to UV/H2O2 process under the same experimental conditions. CHA (0.39 mM) was completely removed within 30 min when 2 mM persulfate was used as oxidant, while more than 60 min were needed for the UV/H2O2 process. The removal of CHA decreased from 100% to 10% when 300 mM tert-butyl alcohol (TBA) was used as the scavenger, indicating that hydroxyl radical (OH) was responsible for the CHA degradation in the UV/persulfate process. Sulfate (SO4-) radicals reacted slowly with CHA in the UV/persulfate process with a second-order rate constant of k = 5.3 × 107 M-1s-1. Relative kinetics studies using binary mixtures of model NA compounds showed similar structure-reactivity to that under UV/H2O2 process. NAs with long carbon chain, cyclic ring, and aromatic ring were more reactive in the UV/persulfate process. The presence of high concentration of chloride ions dramatically inhibited the reaction. The OH radicals in the UV/persulfate process were generated by capturing OH- in solutions, as evidenced by the decrease of the pH value from 8.0 to 2.8 before and after treatment, respectively, in a pure water matrix. Primary intermediate products (oxy-CHA, hydroxyl-CHA, and dihydroxyl-CHA) of UV/persulfate process were confirmed by UPLC-MS.
Collapse
Affiliation(s)
- Zhi Fang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|