1
|
Singh P, Bisen M, Kulshreshtha S, Kumar L, Choudhury SR, Nath MJ, Mandal M, Kumar A, Patel SKS. Advancement in Anaerobic Ammonia Oxidation Technologies for Industrial Wastewater Treatment and Resource Recovery: A Comprehensive Review and Perspectives. Bioengineering (Basel) 2025; 12:330. [PMID: 40281690 PMCID: PMC12024423 DOI: 10.3390/bioengineering12040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage systems such as completely autotrophic nitrogen removal over nitrite, denitrifying ammonium oxidation, simultaneous nitrogen and phosphorus removal, partial denitrification-anammox, and partial nitrification and integrated fermentation denitritation. The one-stage system includes completely autotrophic nitrogen removal over nitrite, oxygen-limited autotrophic nitrification/denitrification, aerobic de-ammonification, single-stage nitrogen removal using anammox, and partial nitritation. Two-stage systems, such as the single reactor system for high-activity ammonium removal over nitrite, integrated fixed-film activated sludge, and simultaneous nitrogen and phosphorus removal, have also been developed. Three-stage systems comprise partial nitrification anammox, partial denitrification anammox, simultaneous ammonium oxidation denitrification, and partial nitrification and integrated fermentation denitritation. The performance of these systems is highly dependent on interactions between functional microbial communities, physiochemical parameters, and environmental factors. Mainstream applications are not well developed and require further research and development. Mainstream applications demand a high carbon/nitrogen ratio to maintain levels of nitrite-oxidizing bacteria, high concentrations of ammonium and nitrite in wastewater, and retention of anammox bacteria biomass. To summarize various aspects of the anammox processes, this review provides information regarding the microbial diversity of different genera of anammox bacteria and the engineering aspects of various side streams and mainstream anammox processes for wastewater treatment. Additionally, this review offers detailed insights into the challenges related to anammox technology and delivers solutions for future sustainable research.
Collapse
Affiliation(s)
- Pradeep Singh
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Sourabh Kulshreshtha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shubham R. Choudhury
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Mayur J. Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Aman Kumar
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| |
Collapse
|
2
|
Adams M, Issaka E, Chen C. Anammox-based technologies: A review of recent advances, mechanism, and bottlenecks. J Environ Sci (China) 2025; 148:151-173. [PMID: 39095154 DOI: 10.1016/j.jes.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
The removal of nitrogen via the ANAMMOX process is a promising green wastewater treatment technology, with numerous benefits. The incessant studies on the ANAMMOX process over the years due to its long start-up and high operational cost has positively influenced its technological advancement, even though at a rather slow pace. At the moment, relatively new ANAMMOX technologies are being developed with the goal of treating low carbon wastewater at low temperatures, tackling nitrite and nitrate accumulation and methane utilization from digestates while also recovering resources (phosphorus) in a sustainable manner. This review compares and contrasts the handful of ANAMMOX -based processes developed thus far with plausible solutions for addressing their respective bottlenecks hindering full-scale implementation. Ultimately, future prospects for advancing understanding of mechanisms and engineering application of ANAMMOX process are posited. As a whole, technological advances in process design and patents have greatly contributed to better understanding of the ANAMMOX process, which has greatly aided in the optimization and industrialization of the ANAMMOX process. This review is intended to provide researchers with an overview of the present state of research and technological development of the ANAMMOX process, thus serving as a guide for realizing energy autarkic future practical applications.
Collapse
Affiliation(s)
- Mabruk Adams
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China; Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Eliasu Issaka
- School of Environmental and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China.
| |
Collapse
|
3
|
Aguilar-Alarcón P, Zherebker A, Rubekina A, Shirshin E, Simonsen MA, Kolarevic J, Lazado CC, Nikolaev EN, Asimakopoulos AG, Mikkelsen Ø. Impact of ozone treatment on dissolved organic matter in land-based recirculating aquaculture systems studied by Fourier transform ion cyclotron resonance mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157009. [PMID: 35772561 DOI: 10.1016/j.scitotenv.2022.157009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In land-based recirculating aquaculture systems (RAS), the accumulation of dissolved organic matter (DOM) can have detrimental effects on water quality impacting the system performance, microbial community, and consequently fish health and welfare. Ozone is used in the RAS water treatment process to improve water quality and remove DOM. However, little is known about the molecular composition of DOM in RAS and its transformation when exposed to ozone. In this study, we performed a detailed molecular characterization of DOM in RAS and explored its transformation induced by ozonation of RAS waters. Ultra-high resolution (UHR) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) was used to characterize the DOM matrix of RAS waters (pump-sump and tanks) and to evaluate its transformation by ozonation. The analysis of DOM extracted from makeup water and feed samples allowed for the determination of DOM sources in RAS prior to ozonation. The CHO and unsaturated group of compounds were the most abundant class found in water samples. On the contrary, the DOM from feed samples was unique and consisted mainly of CHO, CHON and unsaturated group of compounds. After the ozonation of RAS waters, humic-like and unsaturated compounds [positive oxygen subtracted double bond equivalent per carbon (DBE-O)/C)] were decomposed, particularly the CHO-DOM that contained fewer -CH2- features. Fulvic-like compounds and several hundred saturated compounds [negative (DBE-O)/C)] were formed post ozonation, particularly the CHON and CHONS group of compounds that were associated with fish diets, makeup waters and transformation products from the ozonation of the RAS waters. This study showed that the high accuracy of the ultra-high resolution FTICR MS can be applied to characterize and monitor the changes of DOM at a molecular level in RAS waters. To our knowledge, this is the first study where FTICR MS was incorporated for the characterization of DOM and its sources in RAS.
Collapse
Affiliation(s)
- Patricia Aguilar-Alarcón
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway.
| | - Alexander Zherebker
- Skolkovo Institute of Science and Technology, Novaya St., 100, 143025 Moscow, Russia
| | - Anna Rubekina
- Department of Physics, Lomonosov Moscow State University, 119991 Leninskie gory 1/2, Moscow, Russia
| | - Evgeny Shirshin
- Department of Physics, Lomonosov Moscow State University, 119991 Leninskie gory 1/2, Moscow, Russia; Laboratory of Clinical Biophotonics, Scientific and Technological Biomedical Park, Sechenov University, Moscow, Russian Federation
| | - Mads Adrian Simonsen
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| | - Jelena Kolarevic
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 6600 Sunndalsøra, Norway
| | - Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Novaya St., 100, 143025 Moscow, Russia
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway.
| | - Øyvind Mikkelsen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| |
Collapse
|
4
|
Oliveira EP, de Souza TSO, Okada DY, Damasceno LHS, Salustiano RE, de Moura RB. Optimization of airflow and aeration cycles in a new structured bed reactor configuration for carbon and nitrogen removal. ENVIRONMENTAL TECHNOLOGY 2022; 43:2540-2552. [PMID: 33546577 DOI: 10.1080/09593330.2021.1887370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The Structured Bed Reactor with Recirculation and Intermittent Aeration (SBRRIA) is a reactor configuration that presents high efficiency of organic matter and nitrogen removal, besides low sludge production. However, operational parameters, as the recirculation rate, aeration time, and airflow, are not fully established. A bench-scale structured bed reactor with intermittent aeration was fed with synthetic effluent simulating the characteristics of sanitary sewage. The reactor was operated for 280 days with an operational hydraulic retention time (HRT) of 10 h. The reactor was operated without effluent recirculation for the first time since this approach was not yet reported, and was named Structured Bed Reactor with Intermittent Aeration (SBRIA). The COD removal was higher than 81% for all operational conditions, and the total nitrogen removal ranged from 10 to 80%. The highest efficiencies were obtained with an aeration time of 1 h 45 min (total cycle of 3 h) and an airflow rate of 4.5 L.min-1. Different nitrification and denitrification behaviours were observed, resulting in nitrification efficiencies over 90% when the reactor was submitted to higher aeration times and denitrification efficiencies above 90% when the reactor was submitted to low aeration times. The airflow ranges tested in this study affected the nitrification and the total nitrogen efficiencies. Even without effluent recirculation, the temporal profile showed that there were no peaks in the concentration of the nitrogen forms in the reactor effluent, saving electrical energy up to 75% due to pumping.
Collapse
Affiliation(s)
- Eduardo Paniguel Oliveira
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | - Theo Syrto Octavio de Souza
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | | | - Leonardo H S Damasceno
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | | | - Rafael Brito de Moura
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| |
Collapse
|
5
|
Guo Y, Sanjaya EH, Rong C, Wang T, Luo Z, Chen H, Wang H, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Li YY. Treating the filtrate of mainstream anaerobic membrane bioreactor with the pilot-scale sludge-type one-stage partial nitritation/anammox process operated from 25 to 15 °C. BIORESOURCE TECHNOLOGY 2022; 351:127062. [PMID: 35351558 DOI: 10.1016/j.biortech.2022.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
At ambient temperature condition, the one-stage partial nitritation/anammox (PNA) process has been successfully adopted to treat the filtrate from the mainstream anaerobic membrane bioreactor (AnMBR). However, there is no investigation of the performance of this process at low-temperature condition. In this study, the nitrogen removal performance of a pilot-scale PNA reactor at the temperature of 15 °C for treating the filtrate of a mainstream AnMBR was investigated. The nitrogen removal rate of 0.09 kg/m3/d and the nitrogen removal efficiency of 37.6% were achieved. The anammox reaction was the rate-limiting step of the nitrogen removal. Nitrogen removal was attributed in part to denitrification activity. The microbial community analysis confirmed that the main functional bacteria comprised of genus Nitrosomonas and genus Kuenenia. In sum, this research demonstrated the applicability of PNA process for mainstream AnMBR filtrate treatment to some extent and enriched the related knowledge.
Collapse
Affiliation(s)
- Yan Guo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Eli Hendrik Sanjaya
- Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang No. 5, Malang, East Java 65145, Indonesia
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha 410004, PR China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha 410004, PR China
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd, 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd, 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
6
|
Nitrogen Removal from Mature Landfill Leachate via Anammox Based Processes: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mature landfill leachate is a complex and highly polluted effluent with a large amount of ammonia nitrogen, toxic components and low biodegradability. Its COD/N and BOD5/COD ratios are low, which is not suitable for traditional nitrification and denitrification processes. Anaerobic ammonia oxidation (anammox) is an innovative biological denitrification process, relying on anammox bacteria to form stable biofilms or granules. It has been extensively used in nitrogen removal of mature landfill leachate due to its high efficiency, low cost and sludge yield. This paper reviewed recent advances of anammox based processes for mature landfill leachate treatment. The state of the art anammox process for mature landfill leachate is systematically described, mainly including partial nitrification–anammox, partial nitrification–anammox coupled denitrification. At the same time, the microbiological analysis of the process operation was given. Anaerobic ammonium oxidation (anammox) has the merit of saving the carbon source and aeration energy, while its practical application is mainly limited by an unstable influent condition, operational control and seasonal temperature variation. To improve process efficiency, it is suggested to develop some novel denitrification processes coupled with anammox to reduce the inhibition of anammox bacteria by mature landfill leachate, and to find cheap new carbon sources (methane, waste fruits) to improve the biological denitrification efficiency of the anammox system.
Collapse
|
7
|
Islam Chowdhury MM, Nakhla G. Anammox enrichment: impact of sludge retention time on nitrogen removal. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-12. [PMID: 34240682 DOI: 10.1080/09593330.2021.1951846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Enrichment of anammox bacteria has long been considered to be time-consuming because of the slow growth rate. This study evaluated the impact of sludge retention time (SRT) on the enrichment of anammox bacteria with a focus on nitrogen removal and specific anammox activity (SAA) in sequencing batch reactors (SBR). A total of eight different SRTs in the range of 30-1280 days at nitrogen loading rates (NLR) range from 12.1 to 122.1 mg/L-d were used to evaluate the anammox activity. SAA was negligible during the first 105 days due to denitrification and continued to increase thereafter to peak at 0.22 g N/g VSS-d on day 530 as the solids and hydraulic retention times (SRT and HRT) decreased from 120 to 80 days and 10 to 2 days, respectively. The stability of SAA (0.21 ± 0.02 g N/g VSS-d) from day 503 to day 670 indicates that anammox bacteria should be enriched at SRTs ranging from 30 to 80 days and NLR of 122.1 mg N/L-d. Moreover, the SBR achieved a maximum nitrogen removal efficiency of 86.6% at an SRT of 30 days and an NLR of 122 mg/L-d. Microbial analysis indicated that the two most abundant microorganisms accounting for 48% of the bacterial population are Anammoxoglobus followed by the heterotrophic denitrifier Rhizobiales. The maximum specific growth rate (was estimated as 0.062 d-1, consistent with typical of 0.057 d-1. The average first-order decay rate was estimated as 0.008 d-1, and the half-saturation constants (ks) averaged 16.2 mg NH4-N/L.
Collapse
Affiliation(s)
| | - George Nakhla
- Civil and Environmental Engineering, University of Western Ontario, London, Canada
- Chemical and Biochemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
8
|
Lai C, Sun Y, Guo Y, Cai Q, Yang P. A novel integrated bio-reactor of moving bed and constructed wetland (MBCW) for domestic wastewater treatment and its microbial community diversity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2653-2668. [PMID: 31902307 DOI: 10.1080/09593330.2019.1709904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
An MBBR and CW combo bio-reactor (MBCW) was designed as a novel hybrid process for simultaneous organic, nitrogen and phosphate removal through the long-term operation. The effect of the internal recycling rate (IRR), hydraulic retention time (HRT) and chemical oxygen demand/total nitrogen (C/N) ratio were all discussed, and the recommended values were 5:1, 12 h and >6, respectively. A higher C/N ratio was a key factor for achieving a higher TN removal. The mixed biocarrier system was realized by inoculating porous polymer carriers (PPC) and cylindrical polyethylene carriers (CPC) and achieving a higher organic biodegradation and nitrification rate compared to a single carrier system. Microorganism activities and plants' uptake or utilization both contributed to the nutrient removal in a constructed wetland. High-throughput sequencing results revealed an abundant microbial diversity and a distinct microbial distribution in the whole system where Flavobacterium (14.2%), Acinetobacter (12.87%) and Rhodobacter (10.83%) dominated on PPC, Terrimonas (8.88%), Reyranella (6.61%) and Rubinisphaera (5.63%) dominated on CPC, Comamonas (4.18%), Gemmobacter (4.02%) and Hydrogenophaga (3.97%) dominated on CWs, as well as Citrobacter (53.13%) on suspended floc.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yu Sun
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
González-Martínez A, Muñoz-Palazon B, Kruglova A, Vilpanen M, Kuokkanen A, Mikola A, Heinonen M. Performance and microbial community structure of a full-scale ANITA TMMox bioreactor for treating reject water located in Finland. CHEMOSPHERE 2021; 271:129526. [PMID: 33445025 DOI: 10.1016/j.chemosphere.2020.129526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study the operational performance and the microbial community dynamics during the start-up of ANITATMMox technology implemented at full-scale wastewater treatment plant in Finland to treat reject water from anaerobic digesters. The average ammonium removal in the studied setup reached around 90%, withstanding ammonium loads up to 0.13 g N m-2h-1. The nitrite concentration in the effluent did not exceed 10 mg L-1, and there was a slight accumulation of NO3--N during the operation which was controlled. Thus, the result showed a robust success to high ammonium loading in presence of organic matter. The sequencing showed a heterogeneous microbial population where Methanosaeta, WCHA1-57 genus, Sphingobacteriia, Chlorobia and diverse unknown fungi were found as dominant phylotypes. Moreover, members of the Brocadiaceae family were dominant in the adhered biomass, mostly represented by Candidatus Scalindua, rarely reported in WWTPs. Overall, the results demonstrated a drastic effect of region-specific operational conditions on carrier biofilm microbial communities as it was demonstrated by the microbial studies.
Collapse
Affiliation(s)
- A González-Martínez
- Department of Microbiology, Campus Universitario de la Cartuja C.P. 18071 University of Granada, Spain; Institute of Water Research, C.P. 18071 University of Granada, Spain
| | - B Muñoz-Palazon
- Department of Microbiology, Campus Universitario de la Cartuja C.P. 18071 University of Granada, Spain; Institute of Water Research, C.P. 18071 University of Granada, Spain.
| | - A Kruglova
- Aalto University, P.O. Box 15200, FI-00076 AALTO, Tietotie 1E, Espoo, Finland
| | - M Vilpanen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| | - A Kuokkanen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| | - A Mikola
- Aalto University, P.O. Box 15200, FI-00076 AALTO, Tietotie 1E, Espoo, Finland
| | - M Heinonen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| |
Collapse
|
10
|
Bai S, Qin L, Liu L, Gao X, Ding Y, Li Y. Effect of substrate types on contaminant removals, electrochemical characteristics and microbial community in vertical flow constructed wetlands for treatment of urban sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111682. [PMID: 33243625 DOI: 10.1016/j.jenvman.2020.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/27/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to investigate the influence of substrates (quartz sand and coke) on the removal of pollutants (COD, NH4+-N and TP), electrochemical characteristics and microbial communities of vertical flow constructed wetlands (VFCW) under high pollutant loads. During operation, the removal rates of COD, NH4+-N and TP by VFCW-C (coke as substrate) were higher than that of VFCW-Q (quartz sand as substrate) by 9.73-19.41%, 5.03%-13.15% and 8.83%-14.58%, respectively. And the resistances of the VFCW-Q and VFCW-C were increased by 1228.9 Ω and 38.3 Ω, while their potentials were dropped from 182.4 mV to 377.9 mV-85.6 mV and 222.0 mV, respectively. The dominant bacteria at the bottoms of VFCW-Q and VFCW-C were individually aerobic denitrifying bacteria (ADNB; 14.98%)/ammonia oxidizing bacteria (AOB; 5.73%) and organics aerobic degrading bacteria (OADB; 12.48%)/ammonia oxidizing bacteria (AOB; 7.24%), while the predominant bacteria at their tops were separately ADNB (11.36%)/OADB (10.52%)/AOB (4.69%) and ADNB (15.09%)/AOB (8.86%) and OADB (3.20%) The removal of pollutants by VFCW-Q and VFCW-C may be mainly attributed to substrate adsorption and microbial degradation.
Collapse
Affiliation(s)
- Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Lanqian Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Xutao Gao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yanli Ding
- College of Earth Science, Guilin University of Technology, Guilin, 541004, China
| | - Yanhong Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
11
|
Aguilar-Alarcón P, Gonzalez SV, Simonsen MA, Borrero-Santiago AR, Sanchís J, Meriac A, Kolarevic J, Asimakopoulos AG, Mikkelsen Ø. Characterizing changes of dissolved organic matter composition with the use of distinct feeds in recirculating aquaculture systems via high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142326. [PMID: 33370913 DOI: 10.1016/j.scitotenv.2020.142326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Recirculating aquaculture systems (RAS) are a new alternative to traditional aquaculture approaches, allowing full control over the fish production conditions, while reducing the water demand. The reduction of water exchange leads to an accumulation of dissolved organic matter (DOM) that can have potential effects on water quality, fish welfare and system performance. Despite the growing awareness of DOM in aquaculture, scarce scientific information exists for understanding the composition and transformation of DOM in RAS. In this study, a non-targeted approach using ultra-performance liquid chromatography coupled to a hybrid quadrupole-time of flight mass spectrometer (UPLC-QTOF-MS) was used to characterize compositional changes of low molecular weight (LMW) DOM in RAS, when operated under two different feed types. A total of 1823 chemicals were identified and the majority of those contained a CHON chemical group in their structure. Changes in the composition of LMW-DOM in RAS waters were observed when the standard feed was switched to RAS feed. The DOM with the use of standard feed, consisted mainly of lignin/CRAM-like, CHO and CHOS chemical groups, while the DOM that used RAS feed, was mainly composed by unsaturated hydrocarbon, CHNO and CHNOS chemical groups. The Bray-Curtis dissimilarity cluster demonstrated differences in the composition of DOM from RAS and was associated to the type of feed used. When the RAS feed was used, the Kendrick mass defect plots of -CH2- homologous units in the pump-sump (after the water treatment) showed a high removal capacity for CHNO, CHNOS and halogenated chemicals with high Kendrick mass defect, KMD > 0.7. To our knowledge, this is the first report of LMW-DOM characterization of RAS by high-resolution mass spectrometry (HRMS).
Collapse
Affiliation(s)
- Patricia Aguilar-Alarcón
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway.
| | - Susana V Gonzalez
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| | - Mads A Simonsen
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| | - Ana R Borrero-Santiago
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| | - Josep Sanchís
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H(2)O Building, C/Emili Grahit, 101, E17003 Girona, Spain; University of Girona, 17071 Girona, Spain
| | | | | | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway.
| | - Øyvind Mikkelsen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| |
Collapse
|
12
|
Wang J, Liu T, Sun W, Chen Q. Bioavailable metal(loid)s and physicochemical features co-mediating microbial communities at combined metal(loid) pollution sites. CHEMOSPHERE 2020; 260:127619. [PMID: 32683027 DOI: 10.1016/j.chemosphere.2020.127619] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal contamination poses considerable threats to various ecosystems, yet little is known about the assembly and adaptation of microbial communities at sites with combined heavy metal(loid) pollution. Here, we examined metal(loid) pollutants and bacterial communities in three zones (Zones Ⅰ, Ⅱ, and Ⅲ) of an abandoned sewage reservoir with different usage years. The contamination level of multiple metal(loid)s was higher in Zone Ⅰ than in the other zones, and arsenic (As), zinc (Zn), selenium (Se), copper (Cu), tin (Sn), molybdenum (Mo), antimony (Sb), cadmium (Cd), lead (Pb), thallium (Tl), and nickel (Ni) were the major contaminants (pollution load index > 1). Bioavailable forms of titanium (Ti), chromium (Cr), Sn, and cobalt (Co) played essential roles in shaping the microbial structure, and physicochemical properties, especially organic matter (OM) and pH, also mediated the microbial diversity and composition in the metal(loid) contaminated zones. Metal-microbe interactions and heatmap analysis revealed that the bioavailability of metal(loid)s promoted the niche partitioning of microbial species. Metal-resistant species were abundant in Zone Ⅰ that had the highest metal-contaminated level, whereas metal-sensitive species prevailed in Zone Ⅲ that had the lowest pollution level. The bioavailable metal(loid)s rather than physicochemical and spatial variables explained a larger portion of the variance in the microbial community, and the homogeneous selection was the dominant ecological process driving the assembly of the microbial community. Overall, our study highlighted the importance of metal(loid) bioavailability in shaping microbial structure, future bioremediation, and environmental management of metal(loid) contaminated sites.
Collapse
Affiliation(s)
- Jiawen Wang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Tang Liu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
13
|
Guo Y, Niu Q, Sugano T, Li YY. Biodegradable organic matter-containing ammonium wastewater treatment through simultaneous partial nitritation, anammox, denitrification and COD oxidization process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136740. [PMID: 32018962 DOI: 10.1016/j.scitotenv.2020.136740] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
For both nitrogen and COD removal from biodegradable organic matter (BOM)-containing ammonium wastewater, the simultaneous partial nitritation, anammox, denitrification and COD oxidization (SNADCO) process is a promising solution. In this study, with the stable influent ammonium concentration of 250.0 mg/L (nitrogen loading rate of 0.5 kg/m3/d) and the variation of influent COD/NH4+-N (C/N) ratio from 0.0 to 1.6, the performance of the SNADCO process in a one-stage carrier-packing airlift reactor with continuous mode was investigated for the first time. The results showed that until the C/N ratio of 0.8, both the well nitrogen and COD removal targets could be reached. Mass balance calculations indicated that the average nitrogen removal efficiency (NRE) of 80.9% achieved at the C/N ratio of 0.8 were due to both the anammox and denitrification pathways. Correspondingly, the achieved average COD removal efficiency of 94.6% was attributed to both the denitrification and COD oxidization pathways. Based on the specific sludge activity tests and Fluorescence in Situ Hybridization observation, anammox and denitrification bacteria were mainly distributed in the biofilm sludge, while ammonium oxidizing bacteria and ordinary heterotrophic organisms were mainly in the suspended sludge. At the C/N ratio of 1.6, the washout of suspended sludge became serious while the biofilm sludge was well retained, resulting in inefficient nitritation and a subsequent decrease in NRE. The microbial interaction analysis provided a clear explanation of the performance change of the SNADCO process under different C/N ratios. This research enriches the knowledge of the SNADCO process in BOM-containing ammonium wastewater treatment.
Collapse
Affiliation(s)
- Yan Guo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 27# Shanda South Road, Jinan 250100, China
| | - Takumi Sugano
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
14
|
Zhang X, Liu X, Zhang M. Performance and microbial community of the CANON process in a sequencing batch membrane bioreactor with elevated COD/N ratios. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:138-147. [PMID: 32293597 DOI: 10.2166/wst.2020.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the effects of elevated chemical oxygen demand/nitrogen (COD/N) ratios on nitrogen removal, production and composition of the extracellular polymer substances (EPS) and microbial community of a completely autotrophic nitrogen removal via nitrite (CANON) process were studied in a sequencing batch membrane bioreactor (SBMBR). The whole experiment was divided into two stages: the CANON stage (without organic matter in influent) and the simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) stage (with organic matter in influent). When the inflow ammonia nitrogen was 420 mg/L and the COD/N ratio was no higher than 0.8, the addition of COD was helpful to the CANON process; the total nitrogen removal efficiency (TNE) was improved from approximately 65% to more than 75%, and the nitrogen removal rate (NRR) was improved from approximately 0.255 kgN/(m3·d) to approximately 0.278 kgN/(m3•d), while the TNE decreased to 60%, and the NRR decreased to 0.236 kgN/(m3•d) when the COD/N ratio was elevated to 1.0. For the EPS, the amounts of soluble EPS (SEPS) and loosely bound EPS (LB-EPS) were both higher in the CANON stage than in the SNAD stage, while the amount of tightly bound EPS (TB-EPS) in the SNAD stage was significantly higher due to the proliferation of heterotrophic bacteria. The metagenome sequencing technique was used to analyse the microbial community in the SBMBR. The results showed that the addition of COD altered the structure of the bacterial community in the SBMBR. The amounts of Candidatus 'Anammoxoglobus' of anaerobic ammonia oxidation bacteria (AAOB) and Nitrosomonas of ammonia oxidizing bacteria (AOB) both decreased significantly, and Nitrospira of nitrite oxidizing bacteria (NOB) was always in the reactor, although the amount changed slightly. A proliferation of denitrifiers related to the genera of Thauera, Dokdonella and Azospira was found in the SBMBR.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, China E-mail: ; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710064, China
| | - Xincong Liu
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, China E-mail:
| | - Meng Zhang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, China E-mail:
| |
Collapse
|
15
|
Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses. WATER 2019. [DOI: 10.3390/w12010020] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process is well-known as a low-energy consuming and eco-friendly technology for treating nitrogen-rich wastewater. Although the anammox reaction was widely investigated in terms of its application in many wastewater treatment processes, practical anammox application at the pilot and industrial scales is limited because nitrogen removal efficiency and anammox activity are dependent on many operational factors such as temperature, pH, dissolved oxygen concentration, nitrogen loading, and organic matter content. In practical application, anammox bacteria are possibly vulnerable to non-essential compounds such as sulfides, toxic metal elements, alcohols, phenols, and antibiotics that are potential inhibitors owing to the complexity of the wastewater stream. This review systematically summarizes up-to-date studies on the effect of various operational factors on nitrogen removal performance along with reactor type, mode of operation (batch or continuous), and cultured anammox bacterial species. The effect of potential anammox inhibition factors such as high nitrite concentration, high salinity, sulfides, toxic metal elements, and toxic organic compounds is listed with a thorough interpretation of the synergistic and antagonistic toxicity of these inhibitors. Finally, the strategy for optimization of anammox processes for wastewater treatment is suggested, and the importance of future studies on anammox applications is indicated.
Collapse
|
16
|
Li X, Yuan Y, Jin R, Huang Y, Ma J. High efficiency of excess sludge reduction and dewaterability using newly prepared alkaline ferrate pretreatment combined with anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:350-357. [PMID: 31103680 DOI: 10.1016/j.jenvman.2019.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 05/16/2023]
Abstract
The mechanism of newly prepared alkaline ferrate (NPAF) on the process of sludge aggregates disintegration and combined with anaerobic digestion to enhance the efficiency of reduction and dewaterability of excess sludge was investigated. The results showed that under a NPAF dosage of 70 mg/g total suspended solids (TSS), the extracellular polymeric substances (EPS) structure of the sludge aggregates was disintegrated, and the sludge disintegration degree (DDSCOD) reached 22.5%. The microbial cells in the sludge aggregates were not oxidized, and the direct anaerobic digestion of pretreated sludge could realize the rapid release and degraded of organic matter in the sludge and favor enhancement of the sludge settleability and dewaterability. Compared with the original sludge, the MLVSS of the sludge treated with ferrate pretreatment combined with anaerobic digestion decreased by 40.6%. NPAF exhibited oxidation and flocculation functions rather than phosphorus removal during the pretreatment process. Compare with direct anaerobic digestion of pretreated sludge, inoculation of the raw sludge during anaerobic digestion did not accelerate the release of organic matter, but could effectively enhance the sludge dewaterability and ensure the subsequent treatment of the sludge.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China.
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China
| | - Run Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
17
|
Gao Y, Wang G, Zhou A, Yue X, Duan Y, Kong X, Zhang X. Effect of nitrate on indole degradation characteristics and methanogenesis under mixed denitrification and methanogenesis culture. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Su J, Bai Y, Huang T, Gao Y, Wei L, Lu J. Performance and Microbial Community of Simultaneous Denitrification and Biomineralization in Bioreactors. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junfeng Su
- Xi'an University of Architecture and TechnologySchool of Environmental and Municipal Engineering No. 13 Yanta Road 710055 Xi'an China
- Xi'an University of Architecture and TechnologyState Key Laboratory of Green Building in West China No. 13 Yanta Road 710055 Xi'an China
| | - Yihan Bai
- Xi'an University of Architecture and TechnologySchool of Environmental and Municipal Engineering No. 13 Yanta Road 710055 Xi'an China
| | - Tinglin Huang
- Xi'an University of Architecture and TechnologySchool of Environmental and Municipal Engineering No. 13 Yanta Road 710055 Xi'an China
| | - Yichou Gao
- Xi'an University of Architecture and TechnologySchool of Environmental and Municipal Engineering No. 13 Yanta Road 710055 Xi'an China
| | - Li Wei
- Harbin Institute of TechnologyState Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering No.73 Huanghe Road, Nan'gang District 150090 Harbin China
| | - Jinsuo Lu
- Xi'an University of Architecture and TechnologySchool of Environmental and Municipal Engineering No. 13 Yanta Road 710055 Xi'an China
- Xi'an University of Architecture and TechnologyState Key Laboratory of Green Building in West China No. 13 Yanta Road 710055 Xi'an China
| |
Collapse
|