1
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
2
|
Zhang C, Zhao G, Jiao Y, Quan B, Lu W, Su P, Tang Y, Wang J, Wu M, Xiao N, Zhang Y, Tong J. Critical analysis on the transformation and upgrading strategy of Chinese municipal wastewater treatment plants: Towards sustainable water remediation and zero carbon emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165201. [PMID: 37406711 DOI: 10.1016/j.scitotenv.2023.165201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
In the light of circular economy aspects, processing of large-scale municipal wastewater treatment plants (WWTPs) needs reconsideration to limit the overuse of energy, implement of non-green technologies and emit abundant greenhouse gas. Along with the huge increase in the worldwide population and agro-industrial activities, global environmental organizations have issued several recent roles to boost scientific and industrial communities towards sustainable development. Over recent years, China has imposed national and regional standards to control and manage the discharged liquid and solid waste, as well as to achieve carbon peaking and carbon neutrality. The aim of this report is to analyze the current state of Chinese WWTPs routing and related issues such as climate change and air pollution. The used strategies in Chinese WWTPs and upgrading trends were critically discussed. Several points were addressed including the performance, environmental impact, and energy demand of bio-enhanced technologies, including hydrolytic acidification pretreatment, efficient (toxic) strain treatment, and anaerobic ammonia oxidation denitrification technology, as well as advanced treatment technologies composed of physical and chemical treatment technologies, biological treatment technology and combined treatment technology. Discussion and critical analysis based on the current data and national policies were provided and employed to develop the future development trend of municipal WWTPs in China from the construction of sustainable and "Zero carbon" WWTPs.
Collapse
Affiliation(s)
- Chunhui Zhang
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
| | - Guifeng Zhao
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Yanan Jiao
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Bingxu Quan
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Wenjing Lu
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Peidong Su
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
| | - Yuanhui Tang
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jianbing Wang
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Mengmeng Wu
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing 100081, China
| | - Nan Xiao
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing 100081, China
| | - Yizhen Zhang
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing 100081, China
| | - Jinghua Tong
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing 100081, China
| |
Collapse
|
3
|
The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess Biosyst Eng 2022; 45:1865-1878. [PMID: 36173483 DOI: 10.1007/s00449-022-02793-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Wastewater treatment plants (WWTPs) play the role of intercepting microplastics in the environment and provide a platform for bioremediation to remove microplastics. Despite, this opportunity has not been adequately studied. This paper shows the potential ways microplastics-targeted bioremediation could be incorporated into wastewater treatment through the review of relevant literature on bioaugmentation of water treatment processes for pollutants removal. Having reviewed more than 90 papers in this area, it highlights that bioremediation in WWTPs can be employed through bioaugmentation of secondary biological treatment systems, particularly the aerobic conventional activated sludge, sequencing batch reactor, membrane bioreactor and rotating biological contactor. The efficiency of microplastics removal, however, is influenced by the types and forms of microorganisms used, the polymer types and the incubation time (100% for polycaprolactone with Streptomyces thermoviolaceus and 0.76% for low-density polyethylene with Acinetobacter iwoffii). Bioaugmentation of anaerobic system, though possible, is constrained by comparatively less anaerobic microplastics-degrading microorganisms identified. In tertiary system, bioremediation through biological activated carbon and biological aerated filter can be accomplished and enzymatic membrane reactor can be added to the system for deployment of biocatalysts. During sludge treatment, bioaugmentation and addition of enzymes to composting and anaerobic digestion are potential ways to enhance microplastics breakdown. Limitations of bioremediation in wastewater treatment include longer degradation time of microplastics, incomplete biodegradation, variable efficiency, specific microbial activities and uncertainty in colonization. This paper provides important insight into the practical applications of bioremediation in wastewater treatment for microplastics removal.
Collapse
|
4
|
P S G da Silva VE, de S Rollemberg SL, da S E Santos SG, C V Silva TF, P Vilar VJ, B Dos Santos A. Landfill leachate biological treatment: perspective for the aerobic granular sludge technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45150-45170. [PMID: 35486275 DOI: 10.1007/s11356-022-20451-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Landfill leachates are high-strength complex mixtures containing dissolved organic matter, ammonia, heavy metals, and sulfur species, among others. The problem of leachate treatment has subsisted for some time, but an efficient and cost-effective universal solution capable of ensuring environmental resources protection has not been found. Aerobic granular sludge (AGS) has been considered a promising technology for biological wastewater treatment in recent years. Granules' layered structure, with an aerobic outer layer and an anaerobic/anoxic core, enables the presence of diverse microbial populations without the need for support media, allowing simultaneous removal of different pollutants in a single unit. Besides, its strong and compact arrangement provides higher tolerance to toxic pollutants and the ability to withstand large load fluctuations. Furthermore, its good that settling properties allow high biomass retention and better sludge separation. Nevertheless, AGS-related research has focused on carbon-nitrogen-phosphorus removal, mainly from sanitary sewage. This review aims to summarize and analyze the main findings and problems reported in the literature regarding AGS application to landfill leachate treatment and identify the knowledge gaps for future applications.
Collapse
Affiliation(s)
- Vicente E P S G da Silva
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silvio L de S Rollemberg
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sara G da S E Santos
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Tânia F C V Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - André B Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
5
|
Yanbo J, Jianyi J, Xiandong W, Wei L, Lincheng J. Bioaugmentation Technology for Treatment of Toxic and Refractory Organic Waste Water Based on Artificial Intelligence. Front Bioeng Biotechnol 2021; 9:696166. [PMID: 34277590 PMCID: PMC8283819 DOI: 10.3389/fbioe.2021.696166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
With the development of modern chemical synthesis technology, toxic and harmful compounds increase sharply. In order to improve the removal efficiency of refractory organic matter in waste water, the method of adding powdered activated carbon (PAC) to the system for adsorption was adopted. Through the analysis of organic matter removal rule before and after waste water treatment, it can be found that PAC is easy to adsorb hydrophobic organic matter, while activated sludge is easy to remove hydrophilic and weakly hydrophobic neutral organic matter. Powdered activated carbon-activated sludge SBR system (PAC-AS) system is obviously superior to AS and PAC system in removing organic matter of hydrophilic and hydrophobic components, that is, biodegradation and PAC adsorption are additive. Compared with the control system, the Chemical Oxygen Demand (COD) removal rate of refractory substances increased by 8.36%, and PAC had a good adsorption effect on small molecular weight organic compounds, but with the increase of molecular weight of organic compounds, the adsorption effect of PAC gradually weakened, and it had no adsorption effect on macromolecular organic compounds. Based on the research of fuzzy control theory, an Agent control system for ozone oxidation process of industrial waste water based on Mobile Agent Server (MAS) theory was established, which was realized by fuzzy control method. The simulation results showed strong stability and verified the feasibility and adaptability of the distributed intelligent waste water treatment system based on MAS theory in the actual control process.
Collapse
Affiliation(s)
- Jiang Yanbo
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China.,Institute of Ecological Engineering, Guangxi University, Nanning, China
| | - Jiang Jianyi
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | - Wei Xiandong
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | - Ling Wei
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | | |
Collapse
|
6
|
Duyar A, Ciftcioglu V, Cirik K, Civelekoglu G, Uruş S. Treatment of landfill leachate using single-stage anoxic moving bed biofilm reactor and aerobic membrane reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145919. [PMID: 33640548 DOI: 10.1016/j.scitotenv.2021.145919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate (LFL) is one of the most serious environmental problems due to the high concentrations of toxic and hazardous matters. Although several physical, chemical, methods have been tested, biological processes and single or multiple-stage combinations of them have been receiving more attention due to their cost-effective and environmentally-friendly manner. The present work recommended coupling of conventional single-stage A/O with moving bed biofilm reactor and membrane bioreactor (AnoxMBBR/AeMBR) for LFL treatment. The system performance was evaluated for 233 d under varying nitrate concentrations (100-1000 mgNO3--N/L), sludge retention time (SRT) (30-90 d), and HRT (24-48 h) in AnoxMBBR, and constant SRT (infinite) and HRT (48 h) in the AeMBR. The best system performances were observed at 1000 mgNO3--N/L concentration, SRT of 90 d and HRT of 48 h, and the average removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and nitrate‑nitrogen (NO3-N) were 74.2%, 99.7%, and 89.1%, respectively. Besides, the AeMBR was achieved above 99% NH4+-N removal and not adversely affected by varying operation conditions of AnoxMBBR. A slight increase in selected phthalic acid ester (PAE) concentrations (diethyl phthalate (DEP), di (2-Ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP)) was detected in the AnoxMBR, and complete PAEs removal was attained in the AeMBR. Mg, Al, Si, Na, Fe was detected by SEM-EDX analyses in both biofilm of AnoxMBBR and the cake layers of AeMBR. Nitrobacter and Nitratireductor which showed a relatively high abundance played an important role in the removal of NH4+-N and COD in LFL. The results confirmed that the proposed sequence is efficient for COD removal, nitrogen removal, and PAEs being an acceptable treatment for landfill leachates.
Collapse
Affiliation(s)
- Ahmet Duyar
- Department of Environmental Engineering, Suleyman Demirel University, 32260 Isparta, Turkey; University-Industry-Public Collaboration, Research-Development-Application Centre, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Vildan Ciftcioglu
- Department of Bioengineering and Sciences, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras Turkey
| | - Kevser Cirik
- Department of Environmental Engineering, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey; Research and Application Center for Environmental Concerns, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Gokhan Civelekoglu
- Department of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey.
| | - Serhan Uruş
- Department of Chemistry, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| |
Collapse
|
7
|
Cheng SY, Show PL, Juan JC, Ling TC, Lau BF, Lai SH, Ng EP. Sustainable landfill leachate treatment: Optimize use of guar gum as natural coagulant and floc characterization. ENVIRONMENTAL RESEARCH 2020; 188:109737. [PMID: 32554270 DOI: 10.1016/j.envres.2020.109737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Sustainable wastewater treatment necessitates the application of natural and green material in the approach. Thus, selecting a natural coagulant in leachate treatment is a crucial step in landfill operation to prevent secondary environmental pollution due to residual inorganic coagulant in treated effluent. Current study investigated the application of guar gum in landfill leachate treatment. Central composite design in response surface methodology was used to optimize the performance of Chemical Oxygen Demand (COD) removal. Quadratic model developed indicated the optimum COD removal 22.57% at guar gum dosage of 44.39 mg/L, pH 8.56 (natural pH of leachate) and mixing speed 79.27 rpm. Scanning electron microscopy showed that floc was compact and energy-dispersive-x-ray analysis showed that guar gum was capable to adsorb multiple ions from the leachate. Structural characterization using Fourier Transform Infrared analysis demonstrated that hydrogen bonding between guar and pollutant particles was involved in coagulation and flocculation process. Therefore, guar gum coagulant present potential to be an alternative in leachate treatment where pH requirement is not required during treatment. Simultaneously, adsorption by guar gum offers added pollutant removal advantage.
Collapse
Affiliation(s)
- Sze Yin Cheng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre, Deputy Vice Chancellor (Research & Innovation) Office, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Beng Fye Lau
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sai Hin Lai
- Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Eng Poh Ng
- School of Chemical Sciences, University of Science, Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Ling Y, Sun LP, Wang SY, Lin CSK, Sun Z, Zhou ZG. Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Miao L, Yang G, Tao T, Peng Y. Recent advances in nitrogen removal from landfill leachate using biological treatments - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:178-185. [PMID: 30682670 DOI: 10.1016/j.jenvman.2019.01.057] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 05/21/2023]
Abstract
Landfill leachate, generated from the wastes in a landfill, is a type of wastewater with high concentrations of ammonia and organics, causing a serious environmental pollution. Because of its complex and changing characteristics, it is difficult to remove nitrogen from landfill leachate economically and effectively. Hence, nitrogen removal is a significant research priority of landfill leachate treatment in recent years. Biological processes are known to be effective in nitrogen removal. In this work, the biological nitrogen removal treatments were divided into the following processes: conventional nitrification-denitrification process, nitritation-denitritation process, endogenous denitritation process, and anaerobic ammonium oxidation (Anammox) process. This manuscript summarized the theories and applications of these approaches in detail, and concluded that appropriate processes should be selected in accordance with different characteristics of landfill leachate, in order to effectively remove nitrogen from all stages of landfill leachate and reduce disposal costs. Finally, perspective on the challenges and opportunities of biological nitrogen removal from landfill leachate was also presented.
Collapse
Affiliation(s)
- Lei Miao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gangqing Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tao Tao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China.
| |
Collapse
|