1
|
Busuulwa A, Riley SS, Revynthi AM, Liburd OE, Lahiri S. Residual effect of commonly used insecticides on key predatory mites released for biocontrol in strawberry. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2461-2474. [PMID: 39418124 PMCID: PMC11682952 DOI: 10.1093/jee/toae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Florida is the second largest producer of strawberries in the United States. However, the production system faces numerous challenges, especially Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) infestations. Management of this pest involves applying insecticides and use of predatory mites, particularly Amblyseius swirskii Athias-Henriot, Neoseiulus cucumeris Oudemans, and Neoseiulus californicus McGregor (Mesostigmata: Phytoseiidae). Strawberry growers in Florida are concerned about the compatibility of the commercial formulations of insecticides used in strawberry pest management with predatory mites. This study assessed the residual effect of commercial insecticides used in strawberry production on the survival, feeding, and oviposition of the 3 predators. Using Munger cells, predators were exposed to commercial formulations of spinetoram, cyantraniliprole, azadirachtin + pyrethrin, Beauveria bassiana, Cordyceps javanica, capsicum, garlic, and canola oil extracts, and water control. There was a gradual decline in the survival and feeding of predatory mites when exposed to all insecticides. Spinetoram had the highest impact on the survival and feeding of all predators compared to other insecticides, while C. javanica had the lowest impact. Cyantraniliprole and azadirachtin + pyrethrin significantly reduced predator survival after 72 h of exposure, whereas capsicum, garlic, and canola oil extracts caused a similar reduction after 96 h. All predators consumed low proportions of S. dorsalis across all treatments. Oviposition was low in all treatments, with no discernable variation among treatments. These results highlight the potential of using entomopathogenic fungi in conjunction with A. swirskii, N. cucumeris, and N. californicus for the management of S. dorsalis and T. urticae in strawberries.
Collapse
Affiliation(s)
- Allan Busuulwa
- Entomology and Nematology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Simon S Riley
- Statistical Consulting Unit, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Alexandra M Revynthi
- Entomology and Nematology Department, Tropical Research and Education Center, University of Florida, Homestead, FL, USA
| | - Oscar E Liburd
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Sriyanka Lahiri
- Entomology and Nematology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| |
Collapse
|
2
|
Zhang J, Zhang H, Lin R, Hou Y, Wang M, Zhang N, Yu C. Derivation of ecological safety thresholds and risk assessment of new SDHI fungicides in farmland system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176773. [PMID: 39378940 DOI: 10.1016/j.scitotenv.2024.176773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides have become some of the top-selling fungicides in recent years. As the utilization of these fungicides intensifies, the corresponding potential risks to the environment proportionately increase. However, there is still limited knowledge about their toxic effects on ecosystems. In this study, acute toxicity data from laboratory assessments of the springtail Folsomia candida, alongside collected data from terrestrial and aquatic non-target species, were utilized to construct a species sensitivity distribution (SSD) model for both terrestrial and aquatic non-target organisms. Subsequently, we derived ecological baseline values for diverse scenarios within ecosystems. The results indicated that benzovindiflupyr exhibited the highest 7-day median lethal concentration (7d-LC50) to Folsomia candida at 2.0 μg cm-2, while the toxicity levels of other SDHI fungicides varied, ranging from 99 to 304 μg cm-2. In agricultural environments, the Hazard Concentration for 5 % of species (HC5) values for fluxapyroxad, boscalid, sedaxane, and isopyrazam were determined to be 8.0, 1240, 12.97, and 25.37 g ha-1, respectively. In aquatic environments, the HC5 values for benzovindiflupyr, fluxapyroxad, boscalid, sedaxane, isopyrazam, and carboxin were 0.0013, 0.022, 1.76, 0.372, 0.013, and 0.161 mg L-1, respectively. In an evaluation of typical agricultural scenarios within China, SDHI fungicides were found to exert substantial ecological risks to terrestrial non-target fauna and aquatic ecosystems around agricultural fields. Specifically, isopyrazam and fluxapyroxad were identified as posing heightened ecological risks to Typhlodromus pyri and Aphidius rhopalosiphi. Moreover, the application of benzovindiflupyr, carboxin, isopyrazam, and fluxapyroxad in paddy field environments is associated with unacceptable risks to groundwater. The findings of this study contribute significantly to the environmental risk evaluation of SDHI fungicides within farmland system, thereby informing the development of policy frameworks for their scientifically grounded application.
Collapse
Affiliation(s)
- Jiale Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Herui Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Ronghua Lin
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yanhua Hou
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Menglun Wang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Nan Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China.
| |
Collapse
|
3
|
Kenko DBN, Ngameni NT, Awo ME, Njikam NA, Dzemo WD. Does pesticide use in agriculture present a risk to the terrestrial biota? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160715. [PMID: 36495778 DOI: 10.1016/j.scitotenv.2022.160715] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Inadequate pesticide application practices have many implications on human and environmental health. This research aimed at assessing pesticide risks on bees, non-target arthropods (NTAs) and earthworms, using PRIMET (Pesticide Risks in the Tropics to Man, Environment and Trade), a pesticide risk model, in the western highlands agro-ecological zone of Cameroon. For this purpose, information on pesticide usage stratagem (dosage, application interval and number of applications) and ecotoxicological properties (median lethal doses, persistence and no observable effect concentration) were gathered and entered into PRIMET to acquire the Predicted Exposure Concentration (PEC), No Effect Concentration (NEC) and Exposure Toxicity Ratio, ETR = PEC / NEC). The risk assessment revealed that the riskiest pesticides for earthworms were acetamiprid, glyphosate and imidacloprid with ETR values of 2963, 1667 and 419 respectively. For bees, acetamiprid, cypermethrin, emamectin benzoate, imidacloprid, and lambda-cyhalothrin were highly risky, with respective ETR values of 3252, 487, 278, 1383 and 295. The model predicted NTAs to be predominantly defenceless against cypermethrin and imidacloprid, as these compounds exhibited the topmost values of ETR of, 4.3 × 108 and 4.4 × 107, respectively. Other pesticides that were modelled to be highly risky to NTAs comprised chlorothalonil (ETR = 2076), cymoxanil (ETR = 1133), emamectin benzoate (ETR = 1700), lambda-cyhalothrin (ETR = 4900) and metalaxyl (ETR = 2303). Some compounds gave evidence of multi-level risks: imidacloprid exhibited high risk to all the organisms (earthworms, bees and NTAs); acetamiprid was risky to earthworms and bees, while cypermethrin, emamectin benzoate and lambda-cyhalothrin, were modelled to pose a risk to bees and NTAs. Regulating the use of these perilous pesticides should be encouraged in agroecosystems to protect environmental and human health.
Collapse
Affiliation(s)
- Daniel Brice Nkontcheu Kenko
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Cameroon; Biology and Applied Ecology Research Unit, Dschang School of Science and Technology, University of Dschang, Cameroon.
| | - Norbert Tchamadeu Ngameni
- Biology and Applied Ecology Research Unit, Dschang School of Science and Technology, University of Dschang, Cameroon
| | - Miranda Egbe Awo
- Department of Plant Science, Faculty of Science, University of Buea, Cameroon
| | - Nacaire Ahmed Njikam
- Biology and Applied Ecology Research Unit, Dschang School of Science and Technology, University of Dschang, Cameroon
| | - William Diymba Dzemo
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, South Africa
| |
Collapse
|
4
|
Cheng S, Yu C, Xue M, Wang X, Chen L, Nie D, Zhang N, Zhang J, Hou Y, Lin R. Toxicity and risk assessment of nine pesticides on nontarget natural predator Harmonia axyridis (Coleoptera: Coccinellidae). PEST MANAGEMENT SCIENCE 2022; 78:5124-5132. [PMID: 36054691 DOI: 10.1002/ps.7130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Harmonia axyridis (Coleoptera: Coccinellidae) is a beneficial predatory arthropod in the agricultural ecosystem. For the success and development of integrated pest management strategies, it is essential to assess the toxicity risks of commonly used pesticides to nontarget arthropods. RESULTS The glass tube residue method was used to determine the risk of nine pesticides to H. axyridis after second-instar exposure. To assess the potential risk of the selected pesticides, the pre-adult LR50 values were calculated by the hazard quotient (HQ) method. The LR50 (application rate causing 50% mortality) values of imidacloprid, dinotefuran, thiamethoxam, acetamiprid, bifenthrin, and dimethoate were 0.44, 0.82, 0.10, 0.05, 0.04, and 0.21 g a.i. ha-1 , respectively, showing unacceptable risk to H. axyridis after exposure to in and off field. However, emamectin benzoate and two fungicides, tebuconazole and myclobutanil, posed a low risk to H. axyridis and their HQ values were less than the trigger value of 5. CONCLUSIONS The four neonicotinoid insecticides (imidacloprid, dinotefuran, thiamethoxam, and acetamiprid), pyrethroid bifenthrin, and organophosphorus dimethoate showed a high risk to H. axyridis. Emamectin benzoate, tebuconazole, and myclobutanil showed a low risk to H. axyridis under both exposure scenarios. The results provide critical scientific evidence to guide future regulation of pesticide management practices and protection of nontarget arthropods like H. axyridis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shenhang Cheng
- College of Chemistry and Environment Engineering, China University of Mining & Technology, Beijing, China
- Department of Entomoloy, China Agricultural University, Beijing, China
| | - Caihong Yu
- College of Chemistry and Environment Engineering, China University of Mining & Technology, Beijing, China
| | - Mingming Xue
- Research and Development Center, Shanghai Jinsinan Institute of Finance, Shanghai, China
| | - Xiaojun Wang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Liping Chen
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dongxing Nie
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Nan Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jia Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yanhua Hou
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ronghua Lin
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Su Y, Ren X, Ma X, Wang D, Hu H, Song X, Cui J, Ma Y, Yao Y. Evaluation of the Toxicity and Sublethal Effects of Acetamiprid and Dinotefuran on the Predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). TOXICS 2022; 10:toxics10060309. [PMID: 35736917 PMCID: PMC9228657 DOI: 10.3390/toxics10060309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Neonicotinoid insecticides affect the physiology or behavior of insects, posing risks to non-target organisms. In this study, the effects of sublethal doses of two neonicotinoid insecticides, acetamiprid and dinotefuran, against Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) were determined and compared. The results showed that acetamiprid and dinotefuran at LD10 (8.18 ng a.i. per insect and 9.36 ng a.i. per insect, respectively) and LD30 (16.84 ng a.i. per insect and 15.01 ng a.i. per insect, respectively) significantly prolonged the larval stages and pupal stages (except acetamiprid LD10), compared to control. In addition, acetamiprid and dinotefuran at LD30 significantly prolonged the adult preoviposition period (APOP) and total preoviposition period (TPOP). In contrast, the two insecticides at LD10 and LD30 had no significant effect on the longevity, fecundity, reproductive days, preadult survival rate (%), intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ). These results provide a theoretical basis for the rational use of these two insecticides and the utilization and protection of C. pallens.
Collapse
Affiliation(s)
- Yue Su
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.M.); (Y.Y.)
| | - Yongsheng Yao
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- Correspondence: (Y.M.); (Y.Y.)
| |
Collapse
|
6
|
Schmidt-Jeffris RA, Beers EH, Sater C. Meta-analysis and review of pesticide non-target effects on phytoseiids, key biological control agents. PEST MANAGEMENT SCIENCE 2021; 77:4848-4862. [PMID: 34169634 DOI: 10.1002/ps.6531] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Understanding pesticide non-target effects on natural enemies is a key element of successful conservation biological control. Due to their importance in agroecosystems worldwide, the phytoseiid mites are the most well-studied natural enemies in pesticide selectivity research. The wealth of literature associated with this topic allows for a thorough meta-analysis of pesticide non-target effects and may also indicate general trends relevant to many cropping systems. We conducted a meta-analysis using 2386 observations from 154 published papers examining the impact of pesticides on lethal (adult and juvenile mortality) and sublethal (fecundity, egg hatch) effects. Insecticides and herbicides did not statistically differ in toxicity to phytoseiids, but research on herbicide non-target effects is scarce. Specific insecticides, fungicides, and miticides were sorted into least and most harmful categories. Phytoseiid species also differed in sensitivity, with Galendromus occidentalis (Nesbitt), Neoseiulus californicus (McGregor), and Typhlodromus pyri Scheuten among the least sensitive species. Sensitivity variation may be partly due to pesticide resistance; the greatest differences between species were within older mode of action (MOA) groups, where resistance development has been documented. It has been speculated that specialist phytoseiids, which closely associate with Tetranychus spp. spider mites, have more opportunities for resistance development due to their necessary proximity to a pest that rapidly develops resistance. Effect sizes were higher for generalist phytoseiid species, supporting this hypothesis. This meta-analysis highlights pesticide types (herbicides) and MOA groups where more research is clearly needed. Our analysis also allows for more robust generalizations regarding which pesticides are harmful or selective to phytoseiids. © 2021 Society of Chemical Industry. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | - Elizabeth H Beers
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, USA
| | - Chris Sater
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, USA
| |
Collapse
|
7
|
Cheng X, Li F, Chen J, Wang H, Mao T, Li J, Hu J, Li B. Mechanism of trace acetamiprid-caused reproductive disorders in silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2019; 75:2672-2681. [PMID: 30740867 DOI: 10.1002/ps.5373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Neonicotinoid insecticides are widely used in the prevention and control of pests in agriculture and forestry, but they can also affect the development of nontarget economic insects. In order to determine the effects of trace acetamiprid on the development of reproductive system of silkworm, we studied the gonad development and endogenous hormone metabolism in silkworms exposed to trace acetamiprid. RESULT The silkworm showed mild poisoning symptoms after being exposed to trace acetamiprid (0.01 mg L-1 ). After 96 h of acetamiprid exposure, the body weight of silkworm was decreased by 7.67% and the ovary and fallopian tube were abnormally developed. The egg production in adults was decreased by 197 ± 29, and the egg weight was decreased by 0.52 ± 0.01 mg. Quantitative RT-PCR analysis showed that the relative expression levels of ovarian development-related genes Vg, Ovo, Otu, Sxl-S and Sxl-L were downregulated by 0.71, 0.77, 0.47, 0.67 and 0.88-fold, respectively. The transcriptional expression of ecdysone metabolism-related gene (EcR) in the ovary was downregulated by 0.46-fold while the expression of juvenile hormone-related gene (JHBP2) was upregulated by 1.36-fold. In hemolymph of acetamiprid exposed larvae, the content of ecdysone was reduced whereas the content of juvenile hormone was increased. CONCLUSION Trace acetamiprid may cause reproductive dysfunction in silkworms through regulating the metabolism of endogenous hormones. Our study provides a reference for elucidating the mechanism of acetamiprid-induced reproductive disorders in insects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Jinxin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Jiahuan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- School of Basic Medicine and Biological Sciences, Soochow University, Sericulture Institute of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Wang H, Li F, Qu J, Mao T, Chen J, Li M, Lu Z, Fang Y, Shi G, Li B. The mechanism of damage by trace amounts of acetamiprid to the midgut of the silkworm, Bombyx mori. ENVIRONMENTAL TOXICOLOGY 2019; 34:1043-1051. [PMID: 31120183 DOI: 10.1002/tox.22775] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Acetamiprid is widely used for agricultural pest control. However, it remains poorly understood whether the environmental residues of acetamiprid have the potential effects on economic insect. In this study, we evaluated the effects of acetamiprid on silkworm growth and development. The exposure to trace amounts of acetamiprid significantly decreased body weight, viability, and spinning ability. In addition, the activity of trypsin in the midgut was decreased after exposure. DGE and KEGG pathway enrichment analysis revealed that the significantly differentially expressed genes were mainly involved in nutrient metabolism, stress responses, and inflammation pathways. These results, in combination with hematoxylin-eosin staining and transmission electron microscopy, indicated that acetamiprid could cause oxidative damage to midgut, lead to inflammatory responses, and affect the activities of midgut digestive enzymes, thus resulting in abnormal growth and development. Our findings greatly contributed to the evaluation of the effects of acetamiprid residues on other nontarget beneficial insect.
Collapse
Affiliation(s)
- Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Guofang Shi
- Huzhou Academy of Agricultural Sciences, Huzhou, Zhejiang, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Ganjisaffar F, Andreason SA, Perring TM. Lethal and Sub-Lethal Effects of Insecticides on the Pink Hibiscus Mealybug, Maconellicoccus hirsutus (Hemiptera: Pseudococcidae). INSECTS 2019; 10:E31. [PMID: 30654463 PMCID: PMC6359081 DOI: 10.3390/insects10010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022]
Abstract
The pink hibiscus mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae) is a pest of many plants, and a new problem on dates in California. The effects of seven insecticides and water on different life stages of this mealybug were studied to identify the best material for control. Water did not have any significant effect on mealybugs, but the insecticide treatments significantly affected all life stages tested. The egg hatch rate ranged from 28.5% to 17.2% for spirotetramat, bifenthrin, flupyradifurone, fenpropathrin, and buprofezin treatments, and was lower for sulfoxaflor (2.8%) and acetamiprid (0.1%). Despite high survival of neonate crawlers in the non-treated control and water treatments, 53.1% and 34.6% survived in the spirotetramat and buprofezin treatments, respectively; survival was zero in the other treatments. Spirotetramat and buprofezin caused very low mortality of nymphs in the first day post-treatment, but mortality significantly increased over time and reached 42.8% and 50.6% by day 6, respectively. The other treatments were highly toxic to the nymphs (79.4⁻99.4% on day 6). Insecticides also had a significant effect on the feeding ability of nymphs. By day 6 after treatment, 73.9% to 100% of nymphs treated with different insecticides stopped feeding although they were still alive. Insecticides showed no effect on the mortality of adult females, but the percentages of ovipositing females were significantly reduced (51.1% to 10.6%) in all insecticide treatments, except buprofezin, which was not statistically different from water and the non-treated control. In the process of our studies, we identified abnormalities in the appearance of eggs from females treated with various insecticides, and these aberrant eggs are described.
Collapse
Affiliation(s)
- Fatemeh Ganjisaffar
- Department of Entomology, University of California, 900 University Ave., Riverside, CA 92521, USA.
| | - Sharon A Andreason
- Department of Entomology, University of California, 900 University Ave., Riverside, CA 92521, USA.
| | - Thomas M Perring
- Department of Entomology, University of California, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|