1
|
Fahim F, Imran M, Ramzan M, Nazeer Z, Ali A, Iqbal HMN. Catalytic-assisted remediation and phytotoxicity evaluations of organic pollutants in the presence of metal-doped Bi 2O 3-based NPs catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123968. [PMID: 39765059 DOI: 10.1016/j.jenvman.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
The chemical co-precipitation method was used to synthesize a variety of pure Bi2O3 and substituted Bi2-2xCoxCdxO3 NPs (x = 0.0-0.8) and doping influences were evaluated based on the optical, photocatalytic, morphological, and structural characteristics. Powder X-ray diffraction (PXRD), scanning electron microscope (SEM), Energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), and UV-visible techniques were used to explore the characteristics of the synthesized Bi2O3-based NPs. XRD measurements confirmed the monoclinic structure and a P21/c space group, whereas the particle size was between 22 and 41 nm. The SEM analysis gives the morphology of the synthesized NPs that were diverse and agglomerated platelets, whereas the EDX measurements provide the presence of Co and Cd in Bi2-2xCoxCdxO3 NPs. Additionally, FTIR investigations confirmed the existence of functional groups in Bi2-2xCoxCdxO3 NPs. The ultraviolet-visible absorbance region displaying a considerable red shift allowed for tuning of the band gap from 2.64 to 2.37eV. By analyzing the degradation of Reactive Black 5 (RB-5) dye in the presence of sunlight, pure Bi2O3 NPs showed 65.04% whereas the substituted Bi2-2xCoxCdxO3 NPs demonstrated enhanced photodegradation (86.40%) in 105 min. For the degradation of RB-5 dye, the effects of catalyst dosage, dye concentration, and pH variations were studied as well. The phytotoxicity experiment was also performed by comparing the germination of Triticum aestivum seeds in treated and untreated RB-5 dye. In the untreated dye solution, seed germination was 50% inhibited, and in the treated dye solution, germination was observed to be 80%. Additionally, recycling investigations were used to confirm the stability of these fabricated nanoparticles, and the results showed that nanomaterials exhibited significant stability and reusability. Co and Cd-doped Bi2O3 NPs are promising solar-active photocatalysts for dye removal from wastewater applications because of their improved photocatalytic activity and narrow bandgap.
Collapse
Affiliation(s)
- Farah Fahim
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Ramzan
- Institute of Physics, Baghdad Ul Jadeed Campus, The Islamia University of Bahawlpur, 63100, Pakistan
| | - Zarish Nazeer
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Awais Ali
- Department of Physics, COMSATS University, Park Road, Islamabad, 45550, Pakistan
| | - Hafiz M N Iqbal
- Universidad Autónoma de Nuevo León, Facultad de Agronomía, Laboratorio de Ciencias Naturales, General Escobedo, 66050, Nuevo Leon, Mexico.
| |
Collapse
|
2
|
Hube S, Zaqout T, Ögmundarson Ó, Andradóttir HÓ, Wu B. Constructed wetlands with recycled concrete for wastewater treatment in cold climate: Performance and life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166778. [PMID: 37660828 DOI: 10.1016/j.scitotenv.2023.166778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
This study investigated the technical, environmental, and economic feasibility of using recycled construction material (concrete) as substrate in constructed wetlands for cold climate decentralized domestic wastewater treatment. The wastewater treatment efficiency was examined, and life cycle assessment (LCA) and cost benefit analysis were performed. The technical feasibility was assessed in lab-scale two-stage wetland systems with recycled concrete or lava stone as substrates, which were operated at 22 °C and 5 °C with local wild plants and vegetables. The wetlands removed ∼85 % and ∼51 % of organics and ∼67 % and ∼34 % TN at 22 °C and 5 °C, respectively; no significant difference was found between concrete and lava stone. The heavy metal contents in the cultivated vegetables met WHO standards for human consumption, showing the feasibility of nutrient recovery from the treated wastewater. A comparative LCA of septic tank standalone, septic tank + constructed wetland (with recycled concrete), and gravity-driven ceramic membrane (GDCM) system was performed. This aims to illustrate the benefits of intensifying the existing treatment process (i.e., septic tank) with the constructed wetland, with an alternative membrane-based treatment technique as benchmark. The LCA results revealed that using waste materials as the substrate in constructed wetlands could reduce the environmental impact of wetlands. Installation of the wetland as posttreatment of the septic tank (1) could reduce ∼50 % of eutrophication potential without increasing global warming impact compared to the septic tank alone; (2) had ∼90 % higher global warming impact and ∼40 % lower eutrophication impact compared to GDCM. Economic analysis revealed that the total cost of septic tank + constructed wetland (0.143 €/m3) was comparable to the septic tank alone (merely 3.5 % difference), and 49 % lower than that of GDCM (with recycled membranes). Therefore, the septic tank + constructed wetland scenario could be favorable for sensitive areas with eutrophication potential regarding its technical, economical, and environmental feasibility.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavík, Iceland.
| | - Tarek Zaqout
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavík, Iceland
| | - Ólafur Ögmundarson
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102 Reykjavík, Iceland
| | - Hrund Ólöf Andradóttir
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavík, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavík, Iceland
| |
Collapse
|
3
|
Yang C, Lin L, Shang S, Ma S, Sun F, Shih K, Li XY. Packed O V-SnO 2-Sb bead-electrodes for enhanced electrocatalytic oxidation of micropollutants in water. WATER RESEARCH 2023; 245:120628. [PMID: 37716294 DOI: 10.1016/j.watres.2023.120628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Electrocatalytic oxidation is an appealing treatment option for emerging micropollutants in wastewater, however, the limited reactive surface area and short service lifetime of planar electrodes hinder their industrial applications. This study introduces an innovative electrochemical wastewater treatment technology that employs packed bead-electrodes (PBE) as a dynamic electrocatalytic filter on a dimensionally stable anode (DSA) acting as a current collector. By using PBE, the electroactive volume is expanded beyond the vicinity of the common planar anode to the thick porous media of PBE with a vast electrocatalytic surface area. This greatly enhances the efficiency of electrochemical degradation of micropollutants. The OV-SnO2-Sb PBE filter achieved a nearly 100 % degradation of moxifloxacin (MOX) in under 2 min of single-pass filtration, with a degradation rate over an order of magnitude higher than the conventional electrochemical oxidation processes. The generation of abundant radical species (•OH) and non-radical species (1O2 and O3), along with the enhanced direct oxidation, led to the outstanding performance of the charged PBE system in MOX degradation. The OV-SnO2-Sb PBE was remarkably stable, and the separation between the electroactive PBE layer and the base Ti anode allows for easy renewal of the bead-electrode materials and scaling up of the system for practical applications. Overall, our study presents a dynamic electroactive PBE that advances the electrocatalytic oxidation technology for effective control of emerging pollutants in the water environment. This technology has the potential to revolutionize electrochemical wastewater treatment and contribute to a more sustainable future environment.
Collapse
Affiliation(s)
- Chao Yang
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Shanshan Shang
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China; School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shengshou Ma
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Kaimin Shih
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
4
|
Men Y, Li Z, Zhu L, Wang X, Cheng S, Lyu Y. New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161775. [PMID: 36706998 DOI: 10.1016/j.scitotenv.2023.161775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Direct membrane filtration (DMF) technology achieves energy self-sufficiency through carbon recovery and utilization from municipal wastewater. To control its severe membrane fouling and improve DMF technology, targeted research on fouling behaviour and mechanisms is essential. In this study, a DMF reactor equipped with a flat-sheet ceramic membrane was conducted under three scenarios: without control, with intermittent aeration, and with periodic backwash. This system achieved efficient carbon concentration with chemical oxygen demand below 50 mg/L in permeate. Membrane fouling was dominated by intermediate blocking and cake filtration. And reversible external resistance accounted for over 85 % of total resistance. Predominant membrane foulants were free proteins, whose deposition underlies the attachment of cells and biopolymers. Backwash decreased the fouling rate and increased fouling layer porosity by indiscriminately detaching foulants from the membrane surface. While aeration enhanced the back transport of large particles and microbial activity, causing a relatively thin and dense fouling layer containing more microorganisms and β-d-glucopyranose polysaccharides, which implies a higher biofouling potential during long-term operation. In addition, aeration combined with backwash enhanced fouling control fivefold over either one alone. Therefore, simultaneous operation of backwash and other mechanical methods that can provide shear without stimulating aerobic microbial activity is a preferred strategy for minimizing membrane fouling during DMF of municipal wastewater.
Collapse
Affiliation(s)
- Yu Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; Nanjing Yanjiang Academy of Resources and Ecology Science, Nanjing 210047, PR China.
| | - Lixin Zhu
- Nanjing Yanjiang Academy of Resources and Ecology Science, Nanjing 210047, PR China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yaping Lyu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
5
|
Sanchis-Perucho P, Aguado D, Ferrer J, Seco A, Robles Á. Direct Membrane Filtration of Municipal Wastewater: Studying the Most Suitable Conditions for Minimizing Fouling Rate in Commercial Porous Membranes at Demonstration Scale. MEMBRANES 2023; 13:membranes13010099. [PMID: 36676906 PMCID: PMC9866899 DOI: 10.3390/membranes13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 05/12/2023]
Abstract
This study aimed to evaluate the feasibility of applying a commercial porous membrane to direct filtration of municipal wastewater. The effects of membrane pore size (MF and UF), treated influent (raw wastewater and the primary settler effluent of a municipal wastewater treatment plant) and operating solids concentration (about 1 and 2.6 g L-1) were evaluated on a demonstration plant. Filtration periods of 2-8 h were achieved when using the MF membrane, while these increased to 34-69 days with the UF membrane. This wide difference was due to severe fouling when operating the MF membrane, which was dramatically reduced by the UF membrane. Use of raw wastewater and higher solids concentration showed a significant benefit in the filtration performance when using the UF module. The physical fouling control strategies tested (air sparging and backwashing) proved to be ineffective in controlling UF membrane fouling, although these strategies had a significant impact on MF membrane fouling, extending the operating period from some hours to 5-6 days. The fouling evaluation showed that a cake layer seemed to be the predominant reversible fouling mechanism during each independent filtration cycle. However, as continuous filtration advanced, a large accumulation of irreversible fouling appeared, which could have been related to intermediate/complete pore blocking in the case of the MF membrane, while it could have been produced by standard pore blocking in the case of the UF membrane. Organic matter represented more than 70% of this irreversible fouling in all the experimental conditions evaluated.
Collapse
Affiliation(s)
- Pau Sanchis-Perucho
- CALAGUA–Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
- Correspondence:
| | - Daniel Aguado
- CALAGUA–Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient–IIAMA, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - José Ferrer
- CALAGUA–Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient–IIAMA, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Aurora Seco
- CALAGUA–Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
| | - Ángel Robles
- CALAGUA–Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
6
|
Ultrasonication-assisted Fouling Control during Ceramic Membrane Filtration of Primary Wastewater under Gravity-driven and Constant Flux Conditions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Wang Y, Ma B, Ulbricht M, Dong Y, Zhao X. Progress in alumina ceramic membranes for water purification: Status and prospects. WATER RESEARCH 2022; 226:119173. [PMID: 36252299 DOI: 10.1016/j.watres.2022.119173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Ceramic membranes have gained increasing attention in recent years for the removal of various contaminants from water. Alumina membrane is considered as one of the most important ceramic membranes, which plays important roles not only in separation processes such as microfiltration, ultrafiltration, and nanofiltration, but also in catalysis- and adsorption- enhanced separation applications in water purification and wastewater treatment. However, there is currently still lack of a comprehensive critical review about alumina membranes for water purification. In this review, we first discuss recent developments of alumina membranes, and then critically introduce the state-of-the-art strategies for lowering fabrication cost, improving membrane performances and mitigating membrane fouling. Especially, aiming to improve membrane performance, some emerging methods are summarized such as tailoring membrane structure, developing flexible membranes, designing nano-pores for precise separation, and enhancing multi-functionalities. In addition, engineering applications of alumina membranes for water purification are also briefly introduced. Finally, the prospects for future research on alumina membranes are proposed, such as economic preparation/application, challenging precise separation, enriching multi-functionalities, and clarifying separation mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Duisburg-Essen Department of Technical Chemistry II, Essen 45117, Germany
| | - Mathias Ulbricht
- University of Duisburg-Essen Department of Technical Chemistry II, Essen 45117, Germany
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Sanchis-Perucho P, Aguado D, Ferrer J, Seco A, Robles Á. Evaluating the Feasibility of Employing Dynamic Membranes for the Direct Filtration of Municipal Wastewater. MEMBRANES 2022; 12:1013. [PMID: 36295772 PMCID: PMC9611946 DOI: 10.3390/membranes12101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to assess the feasibility of using dynamic membranes for direct filtration of municipal wastewater. The influence of different alternative supporting materials (one or two layers of flat open monofilament woven polyamide meshes with 1 or 5 µm of pore size) was studied. A stable short-term self-forming DM was achieved (from some hours to 3 days) regardless of the supporting material used, producing relatively similar permeate qualities (total suspended solids, chemical oxygen demand, total nitrogen, total phosphorous and turbidity of 67-88 mg L-1, 155-186 mg L-1, 48.7-50.4 mg L-1, 4.7-4.9 mg L-1, and 167-174 NTU, respectively). A DM permeability loss rate of from 5.21 to 10.03 LMH bar-1 day-1 was obtained, which depended on the supporting material used. Unfortunately, the preliminary energy, carbon footprint, and economic evaluations performed showed that although DMs obtain higher pollutant captures than conventional treatments (primary settler), the benefits are not enough to justify their use for treating average municipal wastewater. However, this alternative scheme could be suitable for treating higher-loaded MWW with a higher fraction of organic matter in the non-settleable solids.
Collapse
Affiliation(s)
- Pau Sanchis-Perucho
- CALAGUA—Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
| | - Daniel Aguado
- CALAGUA—Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient–IIAMA, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - José Ferrer
- CALAGUA—Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient–IIAMA, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Aurora Seco
- CALAGUA—Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
| | - Ángel Robles
- CALAGUA—Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
9
|
Zulkifli M, Abu Hasan H, Sheikh Abdullah SR, Muhamad MH. A review of ammonia removal using a biofilm-based reactor and its challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115162. [PMID: 35561462 DOI: 10.1016/j.jenvman.2022.115162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Extensive growth of industries leads to uncontrolled ammonia releases to environment. This can result in significant degradation of the aquatic ecology as well as significant health concerns for humans. Knowing the mechanism of ammonia elimination is the simplest approach to comprehending it. Ammonia has been commonly converted to less hazardous substances either in the form of nitrate or nitrogen gas. Ammonia has been converted into nitrite by ammonia-oxidizing bacteria and further reduced to nitrate by nitrite-oxidizing bacteria in aerobic conditions. Denitrification takes place in an anoxic phase and nitrate is converted into nitrogen gas. It is challenging to remove ammonia by employing technologies that do not incur particularly high costs. Thus, this review paper is focused on biofilm reactors that utilize the nitrification process. Many research publications and patents on biofilm wastewater treatment have been published. However, only a tiny percentage of these projects are for full-scale applications, and the majority of the work was completed within the last few decades. The physicochemical approaches such as ammonia adsorption, coagulation-flocculation, and membrane separation, as well as conventional biological treatments including activated sludge, microalgae, and bacteria biofilm, are briefly addressed in this review paper. The effectiveness of biofilm reactors in removing ammonia was compared, and the microbes that effectively remove ammonia were thoroughly discussed. Overall, biofilm reactors can remove up to 99.7% ammonia from streams with a concentration in range of 16-900 mg/L. As many challenges were identified for ammonia removal using biofilm at a commercial scale, this study offers future perspectives on how to address the most pressing biofilm issues. This review may also improve our understanding of biofilm technologies for the removal of ammonia as well as polishing unit in wastewater treatment plants for the water reuse and recycling, supporting the circular economy concept.
Collapse
Affiliation(s)
- Maryam Zulkifli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Mohd Hafizuddin Muhamad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
10
|
Sanchis-Perucho P, Aguado D, Ferrer J, Seco A, Robles Á. Dynamic Membranes for Enhancing Resources Recovery from Municipal Wastewater. MEMBRANES 2022; 12:membranes12020214. [PMID: 35207135 PMCID: PMC8877044 DOI: 10.3390/membranes12020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022]
Abstract
This paper studied the feasibility of using dynamic membranes (DMs) to treat municipal wastewater (MWW). Effluent from the primary settler of a full-scale wastewater treatment plant was treated using a flat 1 µm pore size open monofilament polyamide woven mesh as supporting material. Two supporting material layers were required to self-form a DM in the short-term (17 days of operation). Different strategies (increasing the filtration flux, increasing the concentration of operating solids and coagulant dosing) were used to enhance the required forming time and pollutant capture efficiency. Higher permeate flux and increased solids were shown to be ineffective while coagulant dosing showed improvements in both the required DM forming time and permeate quality. When coagulant was dosed (10 mg L−1) a DM forming time of 7 days and a permeate quality of total suspended solids, chemical oxygen demand, total nitrogen, total phosphorous and turbidity of 24 mg L−1, 58 mg L−1, 38.1 mg L−1, 1.2 mg L−1 and 22 NTU, respectively, was achieved. Preliminary energy and economic balances determined that energy recoveries from 0.032 to 0.121 kWh per m3 of treated water at a cost between €0.002 to €0.003 per m3 of treated water can be obtained from the particulate material recovered in the DM.
Collapse
Affiliation(s)
- Pau Sanchis-Perucho
- CALAGUA—Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain; (A.S.); (Á.R.)
- Correspondence:
| | - Daniel Aguado
- CALAGUA—Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient—IIAMA, Universitat Politècnica de Valencia, 46100 Burjassot, Spain; (D.A.); (J.F.)
| | - José Ferrer
- CALAGUA—Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient—IIAMA, Universitat Politècnica de Valencia, 46100 Burjassot, Spain; (D.A.); (J.F.)
| | - Aurora Seco
- CALAGUA—Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain; (A.S.); (Á.R.)
| | - Ángel Robles
- CALAGUA—Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain; (A.S.); (Á.R.)
| |
Collapse
|
11
|
Li P, Yang C, Sun F, Li XY. Fabrication of conductive ceramic membranes for electrically assisted fouling control during membrane filtration for wastewater treatment. CHEMOSPHERE 2021; 280:130794. [PMID: 34162118 DOI: 10.1016/j.chemosphere.2021.130794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane technology is widely used in water and wastewater treatment. However, membrane fouling remains one of the biggest challenges for membrane applications. In this study, an electrically assisted technique was developed for the control of fouling on flat-sheet ceramic membranes. The novel conductive membrane was fabricated by coating dopamine and carbon nanotubes (CNTs) onto the surface of an α-alumina membrane support to form a conductive CNT coating. The resulting flat-sheet conductive ceramic membrane (FSCCM) exhibited excellent electric conductivity and stability, which performed well in filtration of the synthetic wastewater containing inorganic matter (kaolin solution) or organic pollutants (oil emulsion). By applying a negative charge on the FSCCM with a DC voltage of 2.0 V, the membrane fouling rate was reduced by approximately 50%. The energy consumption rate for the electrically assisted membrane fouling control was only 22.2 × 10-3 kWh/m3 in paused-charge mode, with a pause duration of 15 s. A fouling-layer analysis indicted that the imposed electric field greatly reduced the amount of strongly attached foulants on the membrane surface and in the membrane pores. It is believed that the electric field exerted an electrostatic force on the negatively charged pollutants, such as particles and oil droplets, which prevented the foulants from attaching to the membrane surface. This FSCCM-based method provides a clean, effective, and energy-efficient technique for membrane fouling control, thereby enabling high-rate membrane filtration.
Collapse
Affiliation(s)
- Pu Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Feiyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiao-Yan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; State Key Laboratory of Marine Pollution (City University of Hong Kong), Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
He C, Wang K, Fang K, Gong H, Jin Z, He Q, Wang Q. Up-concentration processes of organics for municipal wastewater treatment: New trends in separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147690. [PMID: 34004540 DOI: 10.1016/j.scitotenv.2021.147690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Carbon neutrality is a pressing goal for the whole society. Over 20% of municipality electrical energy on public utilities was consumed by the operation of wastewater treatment plants (WWTPs). Up-concentration of organic matters and maximum energy recovery is essential for a more sophisticated municipal wastewater management. Chemical coagulation and biological adsorption have been used to achieve efficient carbon capture, while separation is an overlooked step. It may lead to poor effluent quality, as well as consume most of the time and volume. The introduction of new driving forces, such as pressure and magnetism, significantly improved the retention rate and speed, respectively. In this paper, recent works were comprehensively reviewed and a horizontal comparison was conducted from aspects of separation speed, retention rate, concentrate characteristics and economic costs. This review also discussed the selection of technologies under different conditions. Finally, the practical application, fouling mitigation with considering the value of the concentrate, identification of unique concentrate characteristics, and the establishment of an evaluation system was suggested as core issues for future researches. This review will promote the development of an energy-efficient wastewater treatment system with up-concentration processes.
Collapse
Affiliation(s)
- Conghui He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kuo Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhengyu Jin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qiuhang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
13
|
Kimura K, Yamakawa M, Hafuka A. Direct membrane filtration (DMF) for recovery of organic matter in municipal wastewater using small amounts of chemicals and energy. CHEMOSPHERE 2021; 277:130244. [PMID: 34384173 DOI: 10.1016/j.chemosphere.2021.130244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/13/2023]
Abstract
The recovery and utilization of organic matter in municipal wastewater are essential for the establishment of a sustainable society, such that these factors have drawn significant recent attention. The up-concentration of organic matter via direct membrane filtration (DMF), followed by anaerobic digestion, is advantageous over the treatment of the entire wastewater by an anaerobic process, such as an anaerobic membrane bioreactor (AnMBR). However, the occurrence of severe membrane fouling in the DMF is a problem. In this study, DMF was carried out at an existing wastewater treatment plant to attempt long-term operation. A combination of vibration of membrane modules, short-term aeration, and chemically enhanced backwash (CEB), with multiple chemicals (i.e., the alternative use of citric acid and NaClO), was found to be effective for the mitigation of membrane fouling in DMF. Furthermore, switching the feed from influents to effluents in the primary sedimentation basin significantly mitigated membrane fouling. In this study, in which microfiltration membrane, with a nominal pore size of 0.1 μm, was used, ∼75% of the organic matter in raw wastewater was recovered, with the volumetric concentration of wastewater by 50- or 150-fold. Organic matter recovered by DMF had significantly higher potentials for biogas production than the excess sludge generated from the same wastewater treatment plant. An analysis of the energy balance (i.e., the energy used for DMF and recovered by DMF) suggests that the proposed DMF can produce a net-positive amount of electricity of ∼0.3 kWh from 1 m3 of raw wastewater with a typical strength (chemical oxygen demand of 500 mg/L).
Collapse
Affiliation(s)
- Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, 060-8628, Sapporo, Japan.
| | - Mutsumi Yamakawa
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, 060-8628, Sapporo, Japan
| | - Akira Hafuka
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, 060-8628, Sapporo, Japan
| |
Collapse
|
14
|
An H, Lee JC, Park R, Kim HW. Integration of submerged microfiltration and cold plasma for high-strength livestock excreta. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123280. [PMID: 32653781 DOI: 10.1016/j.jhazmat.2020.123280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Numerous biological treatment techniques have been studied for better management of high-strength livestock urine and manure (LUM) but it is still challenging. To gain an advanced option for LUM management, this study proposes a physicochemical process combining microfiltration (MF) and cold plasma (CP). Experimental design applying single CP, single MF, and the integrated system coupling CP and MF (CP + MF) evaluates the performances of the configurations while reducing hydraulic retention time (HRT) from 3 d to 1 d. Results demonstrate that the CP + MF can maximize the removal efficiencies of total nitrogen (72.4 %), total phosphorus (57.8 %), NH4-N (73.3 %), turbidity (99.1 %), dissolved organic carbon (71.3 %), suspended solids (98.7 %) at HRT 3 d. It was verified that CP, even at the lowest HRT (1 d), significantly reduces membrane resistance (0.4 × 1014 m-1) compared to the control (1.5 × 1014 m-1) which leads to lower transmembrane pressure (TMP, 45.6 kPa) and inclined flux (4.4 L/m2/h) than those of the control (45.6 kPa TMP and 2.2 L/m2/h). These results contribute to the advanced treatment of LUM with a cost-effective and environmentally friendly strategy via technical convergence.
Collapse
Affiliation(s)
- Hyeonmin An
- Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| | - Jae-Cheol Lee
- Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| | - Rumi Park
- Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| | - Hyun-Woo Kim
- Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
15
|
Aly SA, Anderson WB, Huck PM. In-line coagulation assessment for ultrafiltration fouling reduction to treat secondary effluent for water reuse. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:284-296. [PMID: 33504694 DOI: 10.2166/wst.2020.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low pressure membranes are attracting attention for their potential to improve secondary effluent quality, but membrane fouling can limit their widespread applicability. In this study, in-line coagulation as pre-treatment to ultrafiltration (UF) was investigated using a bench-scale hollow fiber membrane at a constant flux of 33 L/m2 h. Membrane fouling was monitored by observing change in trans-membrane pressure when the membrane was fed with secondary effluent and in-line coagulated secondary effluent over a 24-h period. The impact of four coagulants at different dosages on reversible and irreversible membrane fouling and permeate quality was studied. It was found that in-line coagulation improved UF performance to varying degrees depending on coagulant type and dosage. Generally, higher reduction of fouling was achieved by increasing coagulant dosage within the 0.5-5.0 mg/L range investigated. Ferric-based coagulants were better than aluminum-based coagulants with respect to improving membrane performance for the secondary effluent investigated, even at low dosages (0.5 mg/L). Further investigations are required to determine how in-line coagulation affects removal of organic compounds through UF membranes.
Collapse
Affiliation(s)
- Samia A Aly
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, ON N2 L 3G1, Canada E-mail: ; Sanitary Engineering Department, Alexandria University, Alexandria, Egypt
| | - William B Anderson
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, ON N2 L 3G1, Canada E-mail:
| | - Peter M Huck
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, ON N2 L 3G1, Canada E-mail:
| |
Collapse
|
16
|
Hafuka A, Takahashi T, Kimura K. Anaerobic digestibility of up-concentrated organic matter obtained from direct membrane filtration of municipal wastewater. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
A fluorescence-based indicator for nanofiltration fouling propensity caused by effluent organic matter (EfOM). Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|