1
|
Liu M, Wang C, Qi XE, Du S, Ni H. Reducing residual chlortetracycline in wastewater using a whole-cell biocatalyst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116717. [PMID: 39002381 DOI: 10.1016/j.ecoenv.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Antibiotic contamination has become an increasingly important environmental problem as a potentially hazardous emergent and recalcitrant pollutant that poses threats to human health. In this study, manganese peroxidase displayed on the outer membrane of Escherichia coli as a whole-cell biocatalyst (E. coli MnP) was expected to degrade antibiotics. The manganese peroxidase activity of the whole-cell biocatalyst was 13.88 ± 0.25 U/L. The typical tetracycline antibiotic chlortetracycline was used to analyze the degradation process. Chlortetracycline at 50 mg/L was effectively transformed via the whole-cell biocatalyst within 18 h. After six repeated batch reactions, the whole-cell biocatalyst retained 87.2 % of the initial activity and retained over 87.46 % of the initial enzyme activity after storage at 25°C for 40 days. Chlortetracycline could be effectively removed from pharmaceutical and livestock wastewater by the whole-cell biocatalyst. Thus, efficient whole-cell biocatalysts are effective alternatives for degrading recalcitrant antibiotics and have potential applications in treating environmental antibiotic contamination.
Collapse
Affiliation(s)
- Minrui Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China.
| | - Chuangxin Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xing-E Qi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China
| | - Shaobo Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
2
|
de Fátima NG, Barriga A, Cáceres JC, Pinto E, Cabrera R. Oxidation of chlortetracycline and its isomers by Botrytis aclada laccase in the absence of mediators: pH dependence and identification of transformation products by LC-MS. Biodegradation 2024; 35:155-171. [PMID: 37428416 DOI: 10.1007/s10532-023-10046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Tetracyclines are antibiotics considered emerging pollutants and currently, wastewater treatment plants are not able to remove them efficiently. Laccases are promising enzymes for bioremediation because they can oxidize a wide variety of substrates. The aim of this study was to evaluate the Botrytis aclada laccase for the oxidation of chlortetracycline and its isomers in the absence of a mediator molecule, at a pH range between 3.0 to 7.0, and to characterize the transformation products by LC-MS. Chlortetracycline and three isomers were detected in both, controls and reaction mixtures at 0 h and in controls after 48 h of incubation but in different proportions depending on pH. An additional isomer was also detected, but only in the presence of BaLac. Based on the transformation products identified in the enzymatic reactions and information from literature, we assembled a network of transformation pathways starting from chlortetracycline and its isomers. The spectrometric analysis of the products indicated the probable occurrence of oxygen insertion, dehydrogenation, demethylation and deamination reactions. Four new products were identified, and we also described a novel transformation product without the chloro group. We observed that increasing pH led to higher diversity of main products. This is the first study using the laccase from fungi Botrytis aclada to oxidate chlortetracycline and its isomers and it can be considered as an ecological alternative to be used in bioremediation processes such as wastewater.
Collapse
Affiliation(s)
- Nadia Gavilán de Fátima
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Unidad de Espectrometría de Masas-CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Andrés Barriga
- Unidad de Espectrometría de Masas-CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Juan Carlos Cáceres
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Ernani Pinto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, SP, Brasil
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
3
|
Wang C, Liang S, Bai L, Gu X, Jin X, Ok YS, Gu C. Photoaging of Typical Microplastics as Affected by Air Humidity: Mechanistic Insights into the Important Role of Water Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5967-5977. [PMID: 36991324 DOI: 10.1021/acs.est.2c08571] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recent studies showed that land is the most important sink for microplastics (MPs); however, limited information is available on the photoaging processes of land surface MPs that are exposed to the air. Herein, this study developed two in situ spectroscopic methods to systematically explore the effect of air humidity on MP photoaging using a microscope of Fourier transform infrared spectroscopy and a laser Raman microscope, which were equipped with a humidity control system. Polyethylene microplastics, polystyrene microplastics, and poly(vinyl chloride) microplastics (PVC-MPs) were used as model MPs. Our results showed that relative humidity (RH) could significantly influence the MP surface oxygen-containing moieties generated from photo-oxidation, especially for PVC-MPs. As the RH level varied from 10 to 90%, a decrease in the photogenerated carbonyl group and an increase in the hydroxyl group were observed. This could be attributed to the involvement of water molecules in the production of hydroxyl groups, which subsequently inhibited carbonyl generation. Moreover, the adsorption of coexisting contaminants (i.e., tetracycline) on photoaged MPs exhibited strong RH dependence, which could be assigned to the varied hydrogen bonding between tetracycline carbonyls and aged MP surface hydroxyls. This study reveals a ubiquitous but previously overlooked MP aging route, which may account for the changed MP surface physiochemical properties under solar irradiation.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Lihua Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyue Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Zhong SF, Yang B, Lei HJ, Xiong Q, Zhang QQ, Liu F, Ying GG. Transformation products of tetracyclines in three typical municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154647. [PMID: 35307430 DOI: 10.1016/j.scitotenv.2022.154647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics in the environment could undergo various processes with formation of transformation products, but little has been known about their occurrence and (eco)toxicological consequences. Here we investigated the occurrence and fate of nine transformation products of four tetracyclines (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in three municipal wastewater treatment plants (WWTPs) in Guangzhou, China. The results showed the detection of all the tetracyclines and their transformation products in the WWTPs, with mean concentrations ranging from 17.8 ng/L (anhydrotetracycline) to 49.1 ng/L (oxytetracycline) in influent, 3.03 ng/L (tetracycline) to 6.94 ng/L (4-epi-chlortetracycline) in effluent, and 19.8 ng/g (isochlortetracycline) to 503 ng/g (4-epi-tertracycline) in sludge, respectively. The transformation products of tetracycline, oxytetracycline, chlortetracycline and doxycycline accounted for 73%-83%, 26%-52%, 70%-73% and 69%-74% of total concentrations, respectively. The aqueous removal rates of tetracyclines and their transformation products in the three WWTPs ranged from 18.4% (demethyl-chlortetracycline) to 93.7% (oxytetracycline). Mass balance analysis based on both aqueous and solid phase showed that their removals were mainly attributed to the sludge adsorption. Residual tetracyclines and their transformation products in the effluents would pose no obvious ecological risks to three aquatic organisms (green algae, daphnia and fish). However, 43.5% of sludge samples had high risks from these tetracyclines and transformation products, especially the compounds with poor biodegradability. The results from this study suggest that transformation products should be included in future environmental monitoring and control.
Collapse
Affiliation(s)
- Shao-Fen Zhong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Fang Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Geography, South China Normal University, Guangzhou 510631, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Mushtaq M, Zeeshan M, Nawaz I, Hassan M. Effect of low levels of oxytetracycline on anaerobic digestion of cattle manure. BIORESOURCE TECHNOLOGY 2022; 349:126894. [PMID: 35217155 DOI: 10.1016/j.biortech.2022.126894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Cattle manure is rich in organic matter and nutrients, but it may also contain harmful substances such as residual antibiotics and other toxic compounds. Oxytetracycline (OTC) is a widely used veterinary antibiotic and its presence in manure can affect the subsequent anaerobic digestion process. This study evaluated the effect of OTC concentrations viz. 0.12, 0.3, 0.6, 1.2, 3, 6 and 12 mg L-1 on batch mesophilic anaerobic digestion of cattle manure. The results showed that cumulative biogas yield decreased by 25, 29 and 55% at 3, 6 and 12 mg OTC L-1 in contrast to control. Volatile solids removal was 39% for control which reduced to 13% in 12 mg L-1 OTC spiked reactor. Effect on stability parameters was significant at OTC concentrations from 1.2 to 12 mg L-1. Two different kinetic models were used for biogas data validation and the modified Gompertz model best fitted to the experimental data.
Collapse
Affiliation(s)
- Moniba Mushtaq
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Zeeshan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ismat Nawaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
| | - Muneeb Hassan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
6
|
Yao R, Li Z, Liu G, Fan C, Pu S. Luminol-Eu-based ratiometric fluorescence probe for highly selective and visual determination of tetracycline. Talanta 2021; 234:122612. [PMID: 34364422 DOI: 10.1016/j.talanta.2021.122612] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022]
Abstract
In this work, a ratiometric fluorometric method based on luminol-Europium complex (luminol-Eu) was constructed for the detection of tetracycline (TC). Luminol-Eu, synthesized by self-assembly reaction, displayed a strongly emission peak at 453 nm under excitation at 360 nm which was derived from the aggregation-induced emission (AIE) of the luminol-Eu. In the present of TC, the fluorescence of luminol-Eu at 453 nm was quenched based on inner filter effect (IFE). Meantime, the characteristic emission peak of Eu3+ at 626 nm can be observed thank to antenna effect (AE). Therefore, we proposed a ratiometric fluorometric method for detection of TC, which allowed detection of TC from 0.5 to 80 μM with the detection limit of 39 nM. In addition, the luminol-Eu-based test paper was prepared for visual semi-quantitative detection of TC in real samples based on the color of luminol-Eu change from blue to red under 365 nm ultraviolet light. All of those results indicated that the ratiometric fluorometric strategy was fast, sensitive, and visual for detection of TC.
Collapse
Affiliation(s)
- Ruihong Yao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China; Yuzhang Normal University, Nanchang, 330013, PR China.
| |
Collapse
|
7
|
The Effect of Antibiotics on Mesophilic Anaerobic Digestion Process of Cattle Manure. ENERGIES 2021. [DOI: 10.3390/en14041125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study explored the effect of eight antimicrobials on the efficiency of biogas production in the anaerobic digestion (AD) process of cattle manure. The microbiome involved in AD, presence and number of genes mcrA, MSC and MST specific for Archaea, and antibiotic resistance genes (ARGs) concentration in digestate (D) were examined. Supplementation of antibiotics to substrate significantly lowered biogas production. Amoxicillin caused a 75% decrease in CH4 production in comparison with the control samples. Enrofloxacin, tetracycline, oxytetracycline, and chlortetracycline reduced the amount of biogas produced by 36, 39, 45 and 53%, respectively. High-throughput sequencing of 16S rRNA results revealed that bacteria dominated the Archaea microorganisms in all samples. Moreover, antibiotics led to a decrease in the abundance of the genes mcrA, MSC, MST, and induced an increase in the number of tetracyclines resistance genes. Antibiotics decreased the efficiency of the AD process and lowered the quantity of CH4 obtained, while stimulating an increase in the number of ARGs in D. This work reveals how antimicrobials affect the cattle manure AD process and changes in microbial biodiversity, number of functional genes and ARGs in the digestate due to drugs exposure. It also, provides useful, practical information about the AD process.
Collapse
|
8
|
Yin B, Zhang M, Zeng Y, Chen H, Fan T, Wu Z, Cao L, Zhao Q. The changes of antioxidant system and intestinal bacteria in earthworms (Metaphire guillelmi) on the enhanced degradation of tetracycline. CHEMOSPHERE 2021; 265:129097. [PMID: 33279238 DOI: 10.1016/j.chemosphere.2020.129097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Tetracycline (TC) in soil severely imperils food security and ecosystem function. Metaphire guillelmi is a common species in farmland. It could impact the degradation of antibiotics. However, how it affects is rarely unknown. Hence, the present study aimed to investigate the effects of M. guillelmi on the TC degradation in soil and the changes of the antioxidant system and intestinal bacteria in M. guillelmi. The treatments that M. guillelmi was inoculated on soil contaminated with different TC concentrations were contrasted with those without M. guillelmi. After 21 days, the degradation rate of TC significantly increased by 13.70%, 18.14% and 29.01% at 10, 50 and 100 mg kg -1 TC dose, respectively, due to the inoculation of M. guillelmi. The half-life of TC was also shortened nearly by 1/3 to 2/3. Superoxide dismutase (SOD) increased in a dose-dependent manner with the increase of TC concentration on the 7th and 14th day. Catalase (CAT) and glutathione S-transferase (GST) presented an inverted U-shaped dose response on the 7th day, and the peak of enzyme activities occurred at TC concentration of 0.1, 1 mg kg -1 (CAT) and 0.1 mg kg -1 (GST). Malondialdehyde (MDA) contents did not change significantly. At the phylum level, only Verrucomicrobia significantly decreased under 1 mg kg -1 and 100 mg kg -1 TC dose. Genus Paracoccus, Singulisphaera, Acinetobacter and Bacillus significantly increased and became the dominant bacterium during the TC degradation. Overall, the antioxidant system and intestinal bacteria of M. guillelmi were affected by the different concentrations of TC pollution, which provided new ideas for the research of mechanism of TC degradation by earthworms in the future.
Collapse
Affiliation(s)
- Bangyi Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Manrui Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuxiao Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haowen Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianxinzhi Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zexuan Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Linkui Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
9
|
Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141975. [PMID: 33207448 DOI: 10.1016/j.scitotenv.2020.141975] [Citation(s) in RCA: 363] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 05/03/2023]
Abstract
Tetracyclines (TCs), used as human and veterinary medicines, are the most widely used antibiotics. More than 75% of TCs are excreted in an active form and released into the environment through human and animal urine and feces, causing adverse effects on the ecological system and human health. Few articles review the environmental occurrence and behaviors of TCs, as well as their risks and toxicities. Here, we comprehensively summarized the recent advances on the following important issues: (1) Environmental occurrence of TCs. TCs are used globally and their occurrence in the aquatic environment has been documented, including surface water, groundwater, drinking water, wastewater, sediment, and sludge. (2) Environmental behaviors of TCs, particularly the fate of TCs in wastewater treatment plants (WWTPs). Most WWTPs cannot effectively remove TCs from wastewater, so alternative methods for efficient removal of TCs need to be developed. The latest degradation methods of TCs are summarized, including adsorption, photocatalytic, photochemical and electrochemical, and biological degradations. (3) Toxicities and possible risks of TCs. The toxicological data of TCs indicate that several TCs are more toxic to algae than fish and daphnia. Risk assessments based on individual compound exposure indicate that the risks arising from the current concentrations of TCs in the aquatic environment cannot be ignored.
Collapse
Affiliation(s)
- Longyao Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
10
|
Bajkacz S, Felis E, Kycia-Słocka E, Harnisz M, Korzeniewska E. Development of a new SLE-SPE-HPLC-MS/MS method for the determination of selected antibiotics and their transformation products in anthropogenically altered solid environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138071. [PMID: 32335399 DOI: 10.1016/j.scitotenv.2020.138071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The presence of antibiotic residues, their bioactive metabolites and other transformation products in the environment may adversely affect the organisms that live in the environment and may also contribute to increasing the antibiotic resistance of bacteria. It is particularly difficult to determine the types of contaminants in solid samples, in particular, those that are anthropogenically changed, e.g., as a result of controlled biochemical processes. Therefore, the aim of this research was to develop of a new method for the determination of twelve antibiotics belonging to different groups, such as penicillins, sulfonamides, tetracyclines, quinolones, imidazoles and cefalosporins, in digested manure and activated sludge samples, which were used as examples of anthropogenically altered environmental solid samples. The analyses were performed using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The solid-liquid extraction (SLE) method to isolate analytes from digested manure and activated sludge was developed and optimized, the same as clean-up procedure followed by solid phase extraction (SPE). The recovery ranged from 45 to 85%. Finally, the validated method was applied to the determination of the selected antibiotics in manure and activated sludge samples after an anaerobic digestion process.. An additional aim of the study was to verify whether the developed method allows simultaneous detection of transformation products of the studied antibiotics in solid samples. The study showed that by optimizing the analysis conditions, it is possible to simultaneously determine the selected antibiotics and their transformation products (including their epimeric forms), which can significantly improve the ability to control the efficiency of the biological processes used in this area. In practice, this means that the developed methodology may be particularly useful in the context of research and other works related to the anaerobic digestion of activated sludge, manure or other solid substrates of environmental origin.
Collapse
Affiliation(s)
- Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Ewa Felis
- Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Elżbieta Kycia-Słocka
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Monika Harnisz
- University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environmental Microbiology, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environmental Microbiology, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| |
Collapse
|
11
|
Yang S, Liu Y, Shen C, Li F, Yang B, Huang M, Yang M, Wang Z, Sand W. Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter: Mechanism, impacting factors and pathways. CHEMOSPHERE 2020; 244:125525. [PMID: 31812051 DOI: 10.1016/j.chemosphere.2019.125525] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, electrooxidation of the tetracycline hydrolysis products was investigated using a carbon nanotube (CNT) electrochemical filter and 4-epianhydrochlortetracycline (EACTC) as a model compound. Electrochemical filtration of 10 μmol L-1 EACTC at a voltage of 2.5 V and a flow rate of 1.5 mL min-1 (hydraulic residence time <3 s) provided an oxidation flux of 1251 ± 28 μmol h-1 m-2. Replacement of the Ti cathode with a CNT filter cathode increased the EACTC oxidative flux by 1.3 fold at a voltage of 2.5 V. The electrochemical filtration process is effective for the degradation of EACTC and the reduction of the antimicrobial activity based on liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis and luminescent bacteria test. The high oxidation flux within 300 min (1212-1263 μmol h-1 m-2) and affordable cost (0.25 kWh m-3) at a voltage of 2.5 V show the potential application of the electrochemical filtration system as a promising unit for EACTC degradation. These findings provided new insights into the rational design principles of novel continuous-flow filtration system aimed to efficiently remove hydrolysis products of the antibiotic tetracycline.
Collapse
Affiliation(s)
- Shengnan Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Ming Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Instrumental Analysis Center, Donghua University, Shanghai, 201620, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, 09599, Germany
| |
Collapse
|
12
|
Ren Z, Chen F, Wen K, Lu J. Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|