1
|
Fan Y, Gao Z, Liang X, Liu C, Zhang W, Dai Y, Geng S, Chen M, Yang Q, Li X, Xie J. Impacts of O 2:CH 4 ratios and CH 4 concentrations on the denitrification and CH 4 oxidations of a novel AME-AD system. ENVIRONMENTAL RESEARCH 2024; 262:119866. [PMID: 39208973 DOI: 10.1016/j.envres.2024.119866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aerobic methane (CH4) oxidation coupled to denitrification (AME-D) is a promising process for the denitrification of low C/N wastewater. Compared with anaerobic denitrifying bacteria, aerobic denitrifying bacteria may enable AME-D have high denitrification ability under aerobic conditions. This study constructed a novel aerobic methane oxidation coupled to aerobic denitrification (AME-AD) system using the typical aerobic denitrifying bacteria Paracoccus pantotrophus ATCC35512 and the typical aerobic methane oxidizing bacteria Methylosinus trichosporium OB3b. The denitrification and CH4 oxidations of AME-AD with different O2:CH4 ratios (0:1, 0.25:1, 0.5:1, 0.75:1, 1:1 and 1.25:1) and CH4 concentrations (0, 14000, 28000, 42000, 56000 and 70000 mg m-3) were investigated in batch experiments. Higher O2:CH4 ratios can significantly improve the denitrification and CH4 oxidations of the AME-AD (P < 0.05). The treatment with an O2:CH4 ratio of 1.25:1 had the highest denitrification rate (0.036 mg h-1) and highest CH4 oxidation rate (0.20 mg h-1). The CH4 concentration in the headspace was positively correlated with the AME-AD denitrification rate. The calculated CH4/NO3-(mol/mol) in most treatments ranged from 5.76 to 6.84. In addition, excessively high O2 and CH4 concentrations can lead to increased nitrous oxide (N2O) production in AME-AD. The N2O production rate was up to 1.00 μg h-1 when the O2:CH4 was 1.25:1. These results can provide data support for the application of AME-AD for low-C/N wastewater treatment and greenhouse gas emission reduction.
Collapse
Affiliation(s)
- Yujing Fan
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Zhiling Gao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Xueyou Liang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Chunjing Liu
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China.
| | - Weitao Zhang
- General Husbandry Station of Hebei Province, Shijiazhuang, 050000, PR China
| | - Yufei Dai
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Shicheng Geng
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Miaomiao Chen
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Qing Yang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Xiang Li
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Jianzhi Xie
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| |
Collapse
|
2
|
Shekarriz E, Chen J, Xu Z, Liu H. Disentangling the Functional Role of Fungi in Cold Seep Sediment. Microbiol Spectr 2023; 11:e0197822. [PMID: 36912690 PMCID: PMC10100914 DOI: 10.1128/spectrum.01978-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/22/2022] [Indexed: 03/14/2023] Open
Abstract
Cold seeps are biological oases of the deep sea fueled by methane, sulfates, nitrates, and other inorganic sources of energy. Chemolithoautotrophic bacteria and archaea dominate seep sediment, and their diversity and biogeochemical functions are well established. Fungi are likewise diverse, metabolically versatile, and known for their ability to capture and oxidize methane. Still, no study has ever explored the functional role of the mycobiota in the cold seep biome. To assess the complex role of fungi and fill in the gaps, we performed network analysis on 147 samples to disentangle fungal-prokaryotic interactions (fungal 18S and prokaryotic 16S) in the Haima cold seep region. We demonstrated that fungi are central species with high connectivity at the epicenter of prokaryotic networks, reduce their random-attack vulnerability by 60%, and enhance information transfer efficiency by 15%. We then scavenged a global metagenomic and metatranscriptomic data set from 10 cold seep regions for fungal genes of interest (hydrophobins, cytochrome P450s, and ligninolytic family of enzymes); this is the first study to report active transcription of 2,500+ fungal genes in the cold seep sediment. The genera Fusarium and Moniliella were of notable importance and directly correlated with high methane abundance in the sulfate-methane transition zone (SMTZ), likely due to their ability to degrade and solubilize methane and oils. Overall, our results highlight the essential yet overlooked contribution of fungi to cold seep biological networks and the role of fungi in regulating cold seep biogeochemistry. IMPORTANCE The challenges we face when analyzing eukaryotic metagenomic and metatranscriptomic data sets have hindered our understanding of cold seep fungi and microbial eukaryotes. This fact does not make the mycobiota any less critical in mediating cold seep biogeochemistry. On the contrary, many fungal genera can oxidize and solubilize methane, produce methane, and play a unique role in nutrient recycling via saprotrophic enzymatic activity. In this study, we used network analysis to uncover key fungal-prokaryotic interactions that can mediate methane biogeochemistry and metagenomics and metatranscriptomics to report that fungi are transcriptionally active in the cold seep sediment. With concerns over rising methane levels and cold seeps being a pivotal source of global methane input, our holistic understanding of methane biogeochemistry with all domains of life is essential. We ultimately encourage scientists to utilize state-of-the-art tools and multifaceted approaches to uncover the role of microeukaryotic organisms in understudied systems.
Collapse
Affiliation(s)
- Erfan Shekarriz
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhimeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
3
|
Goraj W, Szafranek-Nakonieczna A, Grządziel J, Polakowski C, Słowakiewicz M, Zheng Y, Gałązka A, Stępniewska Z, Pytlak A. Microbial Involvement in Carbon Transformation via CH 4 and CO 2 in Saline Sedimentary Pool. BIOLOGY 2021; 10:biology10080792. [PMID: 34440022 PMCID: PMC8389658 DOI: 10.3390/biology10080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Methane and carbon dioxide are commonly found in the environment and are considered the most important greenhouse gases. Transformation of these gases is in large carried by microorganisms, which occur even in extreme environments. This study presents methane-related biological processes in saline sediments of the Miocene Wieliczka Formation, Poland. Biological activity (carbon dioxide and methane production or methane oxidation), confirmed by stable isotope indices, occurred in all of the studied Wieliczka rocks. CH4-utilizing microbes constituted 0.7–3.6% while methanogens (represented by Methanobacterium) only 0.01–0.5% of taxa present in the Wieliczka Salt Mine rocks. Water activity was the key factor regulating microbial activity in saline subsurface sediments. Generally, CO2 respiration was higher in anaerobic conditions while methanogenic and methanotrophic activities were dependent on the type of rock. Abstract Methane and carbon dioxide are one of the most important greenhouse gases and significant components of the carbon cycle. Biogeochemical methane transformation may occur even in the extreme conditions of deep subsurface ecosystems. This study presents methane-related biological processes in saline sediments of the Miocene Wieliczka Formation, Poland. Rock samples (W2, W3, and W4) differed in lithology (clayey salt with veins of fibrous salt and lenses of gypsum and anhydrite; siltstone and sandstone; siltstone with veins of fibrous salt and lenses of anhydrite) and the accompanying salt type (spiza salts or green salt). Microbial communities present in the Miocene strata were studied using activity measurements and high throughput sequencing. Biological activity (i.e., carbon dioxide and methane production or methane oxidation) occurred in all of the studied clayey salt and siltstone samples but mainly under water-saturated conditions. Microcosm studies performed at elevated moisture created more convenient conditions for the activity of both methanogenic and methanotrophic microorganisms than the intact sediments. This points to the fact that water activity is an important factor regulating microbial activity in saline subsurface sediments. Generally, respiration was higher in anaerobic conditions and ranged from 36 ± 2 (W2200%t.w.c) to 48 ± 4 (W3200%t.w.c) nmol CO2 gdw−1 day−1. Methanogenic activity was the highest in siltstone and sandstone (W3, 0.025 ± 0.018 nmol CH4 gdw−1 day−1), while aerobic methanotrophic activity was the highest in siltstone with salt and anhydrite (W4, 220 ± 66 nmol CH4 gdw−1 day−1). The relative abundance of CH4-utilizing microorganisms (Methylomicrobium, Methylomonas, Methylocystis) constituted 0.7–3.6% of all taxa. Methanogens were represented by Methanobacterium (0.01–0.5%). The methane-related microbes were accompanied by a significant number of unclassified microorganisms (3–64%) and those of the Bacillus genus (4.5–91%). The stable isotope composition of the CO2 and CH4 trapped in the sediments suggests that methane oxidation could have influenced δ13CCH4, especially in W3 and W4.
Collapse
Affiliation(s)
- Weronika Goraj
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland;
- Correspondence: e-mail: ; Tel.: +48-81-454-54-61
| | - Anna Szafranek-Nakonieczna
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland;
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland; (J.G.); (A.G.)
| | - Cezary Polakowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (C.P.); (A.P.)
| | - Mirosław Słowakiewicz
- Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland;
- Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlovskaya 18, 420008 Kazan, Russia
| | - Yanhong Zheng
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China;
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland; (J.G.); (A.G.)
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland;
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (C.P.); (A.P.)
| |
Collapse
|
4
|
Soil Redox Controls CO 2, CH 4 and N 2O Efflux from White-Rot Fungi in Temperate Forest Ecosystems. J Fungi (Basel) 2021; 7:jof7080621. [PMID: 34436159 PMCID: PMC8398011 DOI: 10.3390/jof7080621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Microaerophilic white-rot fungi (WRF) are impacted by oxygen depletion because of fluctuating redox occurrence in southern temperate forest soils of Chile (1500-5000 mm year-1). How these conditions influence WRF survival has been scarcely examined. We explored the contributions of WRF to greenhouse gas (GHG) emissions of N2O and CH4 and soil organic C oxidation (CO2) in five sterilized and inoculated forest soils derived from various parent materials and climates. The soil was incubated for 20 days following (i) oxic, (ii) anoxic, and (iii) fluctuating redox conditions. Fungi contributed to 45% of the total GHG under redox fluctuating conditions, including the contribution of bacteria, while the opposite (26%) was valid for oxic treatment. On average, the highest gas emission (62%) was N2O for WRF under redox treatment, followed by anoxic (22%) and oxic (16%) treatments, while CO2 and CH4 emissions followed oxic > redox > anoxic. These data suggest that indigenous microbial WRF communities are well adapted to fluctuating redox milieu with a significant release of GHG emissions in humid temperate forests of the southern cone.
Collapse
|
5
|
Mycoremediation Through Redox Mechanisms of Organic Pollutants. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Ruiz-Gil T, Acuña JJ, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Airborne bacterial communities of outdoor environments and their associated influencing factors. ENVIRONMENT INTERNATIONAL 2020; 145:106156. [PMID: 33039877 DOI: 10.1016/j.envint.2020.106156] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/16/2023]
Abstract
Microbial entities (such bacteria, fungi, archaea and viruses) within outdoor aerosols have been scarcely studied compared with indoor aerosols and nonbiological components, and only during the last few decades have their studies increased. Bacteria represent an important part of the microbial abundance and diversity in a wide variety of rural and urban outdoor bioaerosols. Currently, airborne bacterial communities are mainly sampled in two aerosol size fractions (2.5 and 10 µm) and characterized by culture-dependent (plate-counting) and culture-independent (DNA sequencing) approaches. Studies have revealed a large diversity of bacteria in bioaerosols, highlighting Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as ubiquitous phyla. Seasonal variations in and dispersion of bacterial communities have also been observed between geographical locations as has their correlation with specific atmospheric factors. Several investigations have also suggested the relevance of airborne bacteria in the public health and agriculture sectors as well as remediation and atmospheric processes. However, although factors influencing airborne bacterial communities and standardized procedures for their assessment have recently been proposed, the use of bacterial taxa as microbial indicators of specific bioaerosol sources and seasonality have not been broadly explored. Thus, in this review, we summarize and discuss recent advances in the study of airborne bacterial communities in outdoor environments and the possible factors influencing their abundance, diversity, and seasonal variation. Furthermore, airborne bacterial activity and bioprospecting in different fields (e.g., the textile industry, the food industry, medicine, and bioremediation) are discussed. We expect that this review will reveal the relevance and influencing factors of airborne bacteria in outdoor environments as well as stimulate new investigations on the atmospheric microbiome, particularly in areas where air quality is a public concern.
Collapse
Affiliation(s)
- Tay Ruiz-Gil
- Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - So Fujiyoshi
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Microbial Genomics and Ecology, Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Jun Noda
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Graduate School of Veterinary Science, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Microbial Genomics and Ecology, Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan.
| |
Collapse
|
7
|
Bruneel J, Huepe Follert JL, Laforce B, Vincze L, Van Langenhove H, Walgraeve C. Dynamic performance of a fungal biofilter packed with perlite for the abatement of hexane polluted gas streams using SIFT-MS and packing characterization with advanced X-ray spectroscopy. CHEMOSPHERE 2020; 253:126684. [PMID: 32464772 DOI: 10.1016/j.chemosphere.2020.126684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The use of Fusarium solani fungi in an expanded perlite packed biofilter was investigated for the treatment of a hexane polluted waste gas stream using selected ion flow tube mass spectrometry (SIFT-MS). The latter analytical technique proved to be of utmost importance to evaluate the performance of the biofilter at high time resolution (seconds) under various transient conditions, analogous to industrial situations. The biofilter was operational for 277 days with inlet loads varying between 1 and 14 g m-3 h-1 and applying an empty bed residence time of 116 s. The results showed a positive behaviour of the biofilter against different types of disruptions such as: (i) changes in the relative humidity of the inlet gas, (ii) stopping the carbon supply for 1, 5 and 10 days, (iii) varying the inlet hexane concentration (step increases and intermittent pulses) and (iv) limiting the availability of nutrients. X-ray imaging (both conventional 2D μCT and X-ray fluorescence, XRF) was applied for the first time on biofilter media in order to get insight in the internal structure of expanded perlite and to visualise the biomass growth. The latter in combination with online porosity measurements using SIFT-MS provides fundamental information regarding the biofiltration process.
Collapse
Affiliation(s)
- Joren Bruneel
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - José Luis Huepe Follert
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht Laforce
- X-ray Microspectroscopy & Imaging Group XMI, Faculty of Sciences, Ghent University, Krijgslaan 281 S12, 9000, Ghent, Belgium
| | - Laszlo Vincze
- X-ray Microspectroscopy & Imaging Group XMI, Faculty of Sciences, Ghent University, Krijgslaan 281 S12, 9000, Ghent, Belgium
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|