1
|
Alarcan J, Braeuning A. Effects of okadaic acid, azaspiracid-1, yessotoxin and their binary mixtures on human intestinal Caco-2 cells. EXCLI JOURNAL 2024; 23:509-522. [PMID: 38741723 PMCID: PMC11089091 DOI: 10.17179/excli2023-6884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Phycotoxins are responsible for foodborne intoxications. Symptoms depend on the ingested toxins but mostly imply gastro-intestinal and neurological disorders. Importantly, humans are exposed to combinations of several phycotoxins, resulting in possible mixture effects. Most previous studies, however, have been focused on single toxin effects. Thus, the aim of this study was to examine the effects of binary mixtures of three main phycotoxins, okadaic acid (OA), azaspiracid-1 (AZA1) and yessotoxin (YTX), on human intestinal Caco-2 cells. The focus was placed on cell viability studies and inflammation responses using a multi-parametric approach to assess cell population (nuclei staining), cell metabolism/viability (reductase activity and lysosomal integrity), and release of inflammation markers (e.g., interleukins). Mixture effects were evaluated using the concentration addition (CA) and independent action (IA) models. Our assays show that none of the toxins had an impact on the cell population in the tested concentration range. Only OA modulated reductase activity, while all three toxins had strong effects on lysosomal integrity. Furthermore, all toxins triggered the release of interleukin 8 (IL-8), with OA being most potent. Mixture effect analysis showed additivity in most cases. However, supra-additivity was observed in regards to IL-6 and IL-8 release for combinations implying high concentrations of OA. This study extends the knowledge on mixture effects of phycotoxins in human cells.
Collapse
Affiliation(s)
- Jimmy Alarcan
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Lee MJ, Henderson SB, Clermont H, Turna NS, McIntyre L. The health risks of marine biotoxins associated with high seafood consumption: Looking beyond the single dose, single outcome paradigm with a view towards addressing the needs of coastal Indigenous populations in British Columbia. Heliyon 2024; 10:e27146. [PMID: 38463841 PMCID: PMC10923677 DOI: 10.1016/j.heliyon.2024.e27146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
People who consume high quantities of seafood are at a heightened risk for marine biotoxin exposure. Coastal Indigenous peoples may experience higher levels of risk than the general population due to their reliance on traditional marine foods. Most evidence on the health risks associated with biotoxins focus on a single exposure at one point in time. There is limited research on other types of exposures that may occur among those who regularly consume large quantities of seafood. The objective of this review is to assess what is known about the unique biotoxin exposure risks associated with the consumption patterns of many coastal Indigenous populations. These risks include [1]: repeated exposure to low doses of a single or multiple biotoxins [2]; repeated exposures to high doses of a single or multiple biotoxins; and [3] exposure to multiple biotoxins at a single point in time. We performed a literature search and collected 23 recent review articles on the human health effects of different biotoxins. Using a narrative framework synthesis approach, we collated what is known about the health effects of the exposure risks associated with the putative consumption patterns of coastal Indigenous populations. We found that the health effects of repeated low- or high-dose exposures and the chronic health effects of marine biotoxins are rarely studied or documented. There are gaps in our understanding of how risks differ by seafood species and preparation, cooking, and consumption practices. Together, these gaps contribute to a relatively poor understanding of how biotoxins impact the health of those who regularly consume large quantities of seafood. In the context of this uncertainty, we explore how known and potential risks associated with biotoxins can be mitigated, with special attention to coastal Indigenous populations routinely consuming seafood. Overall, we conclude that there is a need to move beyond the single-dose single-outcome model of exposure to better serve Indigenous communities and others who consume high quantities of seafood.
Collapse
Affiliation(s)
- Michael Joseph Lee
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Sarah B. Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Holly Clermont
- Environmental Public Health Services, First Nations Health Authority, Snaw-naw-as Territory, Nanoose Bay, Canada
| | - Nikita Saha Turna
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Lorraine McIntyre
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| |
Collapse
|
3
|
Xu R, Wang L, He P, Jia R. Transcriptomics Analysis of the Immune Effects of Okadaic Acid on Caco-2 Cells. Chem Biodivers 2024; 21:e202300926. [PMID: 38230763 DOI: 10.1002/cbdv.202300926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
Okadaic Acid, a type of diarrhetic shellfish poison, is widely distributed and harmful, causing symptoms such as diarrhea, vomiting, and more in humans. Recent studies have demonstrated that OA can lead to various toxicities such as cytotoxicity, neurotoxicity, embryotoxicity, and hepatotoxicity. In order to investigate the immunotoxicity of OA on intestinal cells, a transcriptome analysis was conducted to compare the differences in the Caco-2 cell transcriptional group before and after administration. The CCK-8 experiment demonstrated that OA had a detrimental effect on the activity of Caco-2 cells, with an IC50 value of 33.98 nM. Transcriptome data revealed changes in immune-related genes between the experimental and control groups, including inflammatory factors, heat shock proteins, and zinc finger proteins. The analysis of the results suggests that OA can induce the production of inflammatory factors and apoptosis in cells, and may also affect cell ferroptosis. These findings indicate that OA has a significant impact on intestinal immunity, providing valuable insights for the study of immune toxicity associated with OA.
Collapse
Affiliation(s)
- Ruihang Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
4
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
5
|
Effects of Various Marine Toxins on the Mouse Intestine Organoid Model. Toxins (Basel) 2022; 14:toxins14120829. [PMID: 36548726 PMCID: PMC9784231 DOI: 10.3390/toxins14120829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Because of their trace existence, exquisite structure and unique role, highly toxic marine biotoxins have always led to the development of natural product identification, structure and function research, chemistry and biosynthesis, and there are still many deficiencies in the injury and protection of highly toxic organisms, toxin biosynthesis, rapid detection, poisoning and diagnosis and treatment. In this study, a mouse intestine organoid (MIO) model was constructed to explore the effects of the marine toxins okadaic acid (OA) and conotoxin (CgTx) on MIO. The results showed that the cell mortality caused by the two toxins at middle and high concentrations was significantly higher than the cell mortality of the control group, the ATPase activity in each group exposed to OA was significantly lower than the ATPase activity of the control group, all the CgTx groups were significantly higher than that of the control group, and the number of apoptotic cells was not significantly higher than the number of apoptotic cells of the control group. Through RNA-Seq differential genes, Gene Ontology (GO) and pathway analysis, and Gene Set Enrichment Analysis (GSEA) experimental results, it was demonstrated that OA reduced cell metabolism and energy production by affecting cell transcription in MIO. Ultimately, cell death resulted. In contrast, CgTx upregulated the intracellular hormone metabolism pathway by affecting the nuclear receptor pathway of MIO, which resulted in cell death and the generation of energy in large amounts.
Collapse
|
6
|
Wuerger LT, Hammer HS, Hofmann U, Kudiabor F, Sieg H, Braeuning A. Okadaic acid influences xenobiotic metabolism in HepaRG cells. EXCLI JOURNAL 2022; 21:1053-1065. [PMID: 36172076 PMCID: PMC9489895 DOI: 10.17179/excli2022-5033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Okadaic acid (OA) is an algae-produced lipophilic marine biotoxin that accumulates in the fatty tissue of filter-feeding shellfish. Ingestion of contaminated shellfish leads to the diarrheic shellfish poisoning syndrome. Furthermore, several other effects of OA like genotoxicity, liver toxicity and tumor-promoting properties have been observed, probably linked to the phosphatase-inhibiting properties of the toxin. It has been shown that at high doses OA can disrupt the physical barrier of the intestinal epithelium. As the intestine and the liver do not only constitute a physical, but also a metabolic barrier against xenobiotic exposure, we here investigated the impact of OA on the expression of cytochrome P450 (CYP) enzymes and transporter proteins in human HepaRG cells liver cells in vitro at non-cytotoxic concentrations. The interplay of OA with known CYP inducers was also studied. Data show that the expression of various xenobiotic-metabolizing CYPs was downregulated after exposure to OA. Moreover, OA was able to counteract the activation of CYPs by their inducers. A number of transporters were also mainly downregulated. Overall, we demonstrate that OA has a significant effect on xenobiotic metabolism barrier in liver cells, highlighting the possibility for interactions of OA exposure with the metabolism of drugs and xenobiotics.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany
| | - Felicia Kudiabor
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany,*To whom correspondence should be addressed: Holger Sieg, German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany, E-mail:
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
7
|
Reale O, Bodi D, Huguet A, Fessard V. Role of enteric glial cells in the toxicity of phycotoxins: Investigation with a tri-culture intestinal cell model. Toxicol Lett 2021; 351:89-98. [PMID: 34461197 DOI: 10.1016/j.toxlet.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplankton. They can accumulate in edible filtering-shellfish and cause human intoxications, particularly gastrointestinal symptoms. Up to now, the in vitro intestinal effects of these toxins have been mainly investigated on simple monolayers of intestinal cells such as the enterocyte-like Caco-2 cell line. Recently, the combination of Caco-2 cells with mucus secreting HT29-MTX cell line has been also used to mimic the complexity of the human intestinal epithelium. Besides, enteric glial cells (EGC) from the enteric nervous system identified in the gut mucosa have been largely shown to be involved in gut functions. Therefore, using a novel model integrating Caco-2 and HT29-MTX cells co-cultured on inserts with EGC seeded in the basolateral compartment, we examined the toxicological effects of two phycotoxins, pectenotoxin-2 (PTX2) and okadaic acid (OA). Cell viability, morphology, barrier integrity, inflammation, barrier crossing, and the response of some specific glial markers were evaluated using a broad set of methodologies. The toxicity of PTX2 was depicted by a slight decrease of viability and integrity as well as a slight increase of inflammation of the Caco-2/HT29-MTX co-cultures. PTX2 induced some modifications of EGC morphology. OA induced IL-8 release and decreased viability and integrity of Caco-2/HT29-MTX cell monolayers. EGC viability was slightly affected by OA. The presence of EGC reinforced barrier integrity and reduced the inflammatory response of the epithelial barrier following OA exposure. The release of GDNF and BDNF gliomediators by EGC could be implicated in the protection observed.
Collapse
Affiliation(s)
- Océane Reale
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Dorina Bodi
- Unit Contaminants, German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Antoine Huguet
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France.
| |
Collapse
|
8
|
Lichtenstein D, Lasch A, Alarcan J, Mentz A, Kalinowski J, Schmidt FF, Pötz O, Marx-Stoelting P, Braeuning A. An eight-compound mixture but not corresponding concentrations of individual chemicals induces triglyceride accumulation in human liver cells. Toxicology 2021; 459:152857. [PMID: 34273450 DOI: 10.1016/j.tox.2021.152857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
In real life, organisms are exposed to complex mixtures of chemicals at low concentration levels, whereas research on toxicological effects is mostly focused on single compounds at comparably high doses. Mixture effects deviating from the assumption of additivity, especially synergistic effects, are of concern. In an adverse outcome pathway (AOP)-guided manner, we analyzed the accumulation of triglycerides in human HepaRG liver cells by a mixture of eight steatotic chemicals (amiodarone, benzoic acid, cyproconazole, flusilazole, imazalil, prochloraz, propiconazole and tebuconazole), each present below its individual effect concentration at 1-3 μM. Pronounced and significantly enhanced triglyceride accumulation was observed with the mixture, and similar effects were seen at the level of pregnane-X-receptor activation, a molecular initiating event leading to hepatic steatosis. Transcript pattern analysis indicated subtle pro-steatotic changes at low compound concentrations, which did not exert measurable effects on cellular triglycerides. Mathematical modeling of mixture effects indicated potentially more than additive behavior using a model for compounds with similar modes of action. The present data underline the usefulness of AOP-guided in vitro testing for the identification of mixture effects and highlight the need for further research on chemical mixtures and harmonization of data interpretation of mixture effects.
Collapse
Affiliation(s)
- Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Alexandra Lasch
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jimmy Alarcan
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Almut Mentz
- University of Bielefeld, CeBiTec, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- University of Bielefeld, CeBiTec, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Felix F Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, 72770, Reutlingen, Germany; Signatope GmbH, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, 72770, Reutlingen, Germany; Signatope GmbH, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
9
|
Reale O, Huguet A, Fessard V. Co-culture model of Caco-2/HT29-MTX cells: A promising tool for investigation of phycotoxins toxicity on the intestinal barrier. CHEMOSPHERE 2020; 273:128497. [PMID: 34756374 DOI: 10.1016/j.chemosphere.2020.128497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 06/13/2023]
Abstract
Most lipophilic phycotoxins have been involved in human intoxications but some of these toxins have never been proven to induce human gastro-intestinal symptoms, although intestinal damage in rodents has been documented. For investigating the in vitro toxicological profile of lipophilic phycotoxins on intestine, the epithelial Caco-2 cell line has been the most commonly used model. Nevertheless, considering the complexity of the intestinal epithelium, in vitro co-cultures integrating enterocyte-like and mucus-secreting cell types are expected to provide more relevant data. In this study, the toxic effects (viability, inflammation, cellular monolayer integrity, modulation of cell type proportion and production of mucus) of four lipophilic phycotoxins (PTX2, YTX, AZA1 and OA) were evaluated in Caco-2/HT29-MTX co-cultured cells. The four toxins induced a reduction of viability from 20% to 50% and affected the monolayer integrity. Our results showed that the HT29-MTX cells population were more sensitive to OA and PTX2 than Caco-2 cells. Among the four phycotoxins, OA induced inflammation (28-fold increase of IL-8 release) and also a slight increase of both mucus production (up-regulation of mucins mRNA expression) and mucus secretion (mucus area and density). For PTX2 we observed an increase of IL-8 release but weaker than OA. Intestinal cell models integrating several cell types can contribute to improve hazard characterization and to describe more accurately the modes of action of phycotoxins.
Collapse
Affiliation(s)
- Océane Reale
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| | - Antoine Huguet
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| | - Valérie Fessard
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| |
Collapse
|
10
|
Oyaneder-Terrazas J, Polanco C, Figueroa D, Barriga A, García C. In vitro biotransformation of OA-group and PTX-group toxins in visceral and non-visceral tissues of Mytilus chilensis and Ameghinomya antiqua. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1216-1228. [PMID: 32515303 DOI: 10.1080/19440049.2020.1750710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipophilic marine toxins (LMTs) are made up of multiple groups of toxic analogues, which are characterised by different levels of cellular and toxic action. The most prevalent groups in the southern Pacific zone are: a) okadaic acid group (OA-group) which consists of okadaic acid (OA) and dinophysistoxin-1 (DTX-1); and, b) pectenotoxin-2 (PTX2) group which consists of pectenotoxin-2 (PTX-2). The main objective of our study was to examine in vitro biotransformation of OA-group and PTX-group in the tissues of two endemic species of bivalves from southern Chile; blue mussels (Mytilus chilensis) and clams (Ameghinomya antiqua). The biotransformation processes of both groups were only detected in the digestive glands of both species using LC-MS/MS. The most frequently detected analogues were acyl derivatives (≈2.0 ± 0.1 μg ml-1) for OA-group and PTX-2SA (≈1.4 ± 0.1 μg ml-1) for PTX-group, with a higher percentage of biotransformation for OA-group (p < .001). In addition, simultaneous incubations of the different analogues (OA/PTX-2; DTX-1/PTX-2 and OA/DTX-1/PTX-2) did not show any interaction between the biotransformation processes. These results show that the toxicological variability of endemic species leads to biotransformation of the profile of toxins, so that these new analogues may affect people's health.
Collapse
Affiliation(s)
- Javiera Oyaneder-Terrazas
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile.,Faculty of Technology, Universidad de Santiago , Santiago, Chile
| | - Cassandra Polanco
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile.,Faculty of Technology, Universidad de Santiago , Santiago, Chile
| | - Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile
| | - Andres Barriga
- CEPEDEQ, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile , Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile
| |
Collapse
|
11
|
Lasch A, Lichtenstein D, Marx-Stoelting P, Braeuning A, Alarcan J. Mixture effects of chemicals: The difficulty to choose appropriate mathematical models for appropriate conclusions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113953. [PMID: 31962267 DOI: 10.1016/j.envpol.2020.113953] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Many different approaches have been proposed to evaluate and predict mixture effects. From a regulatory perspective, several guidance documents have been recently published and provide a strategy for mixture risk assessment based on valuable frameworks to investigate potential synergistic effects. However, some methodological aspects, e.g. for considering mathematical models, are not sufficiently defined. Therefore, the aim of this study was to examine the usefulness of five main mathematical models for mixture effect interpretation: theoretical additivity (TA), concentration addition (CA), independent action (IA), Chou-Talalay (CT), and a benchmark dose approach (BMD) were tested using a fictional data set depicting scenarios of additivity, synergism and antagonism. The synergism and antagonism scenarios were split in x-axis and y-axis synergism/antagonism, meaning a shift of the curve on x-axis or y-axis. The BMD approach was the only model which showed a perfect correspondence for dose addition. Regarding synergism and antagonism, all approaches correspond well for the x-axis synergism and antagonism with only few exceptions. In contrast, some limitations were observed in the particular scenarios of y-axis synergism and antagonism. Therefore our results show that each model has advantages and disadvantages, and that therefore no single model appears the best one for all kinds of application. We would recommend instead the parallel use of different models to increase confidence in the result of mixture effect evaluation.
Collapse
Affiliation(s)
- Alexandra Lasch
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Jimmy Alarcan
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|