1
|
Chowdhury AA, Basak N, Mondal M, Islam E. Methylobacterium sp. EIKU22 as a strategic bioinoculant for uranium and arsenic mitigation in agricultural soil: a microbial solution for sustainable agriculture. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:132. [PMID: 40131474 DOI: 10.1007/s10653-025-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Mitigation of potentially toxic elements (PTEs) such as uranium (U) and arsenic (As), and fulfilment of global food demand requires a sustainable approach. Therefore, a multiple PTE-tolerant Methylobacterium sp. EIKU22 was explored for its bioremediation and biofertilization potential. This multi-metal tolerant isolate removed 29.88% U (initial dose: 100 mg L-1, pH 4.0, biosorption 3.74 mg g-1) after 14 days, following pseudo-second-order (PSO) kinetics. The isolate also showed 54% As(III) [pseudo-first-order kinetic; 3.72 mg g-1]; and ~ 37% As(V) (PSO; 2.4 mg g-1) removal within 60 min with the same initial dosing of either As(III) or As(V). Moreover, the strain precipitated > 96.5% and ~ 97% of U using released phosphate from inorganic and organic sources, respectively. Further analysis with inorganic phosphate showed > 31%, > 41% and > 98% of U precipitation from initial doses of 1000, 500 and 100 mg L-1 within 5 min. Methylobacterium sp. EIKU22 expresses the potential to solubilize ~ 178% phosphate, 169.8% potassium, 156-213% zinc within 6 days, and was able to withstand a pH range of 4.0-8.0, temperature range of 20-35 °C, and exhibited resilience to up to 10% NaCl exposure despite being affected by UV exposure. Further, the isolate showed to grow in nitrogen-free media and produce IAA, ammonia, siderophore, ACC deaminase, cellulase and catalase, suggesting potential application in plant growth promotion. The isolate harbours amoA, and nifH genes and imparts better survivability and vegetative growth in the rice seedling. These findings showcase the strain's dual applicability. However, further investigation is needed to generalize the findings.
Collapse
Affiliation(s)
- Atif Aziz Chowdhury
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100, Bolzano, Italy
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Monojit Mondal
- Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
2
|
Borker SS, Sharma P, Thakur A, Kumar A, Kumar A, Kumar R. Physiological and genomic insights into a psychrotrophic drought-tolerant bacterial consortium for crop improvement in cold, semiarid regions. Microbiol Res 2024; 286:127818. [PMID: 38970906 DOI: 10.1016/j.micres.2024.127818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
The agricultural land in the Indian Himalayan region (IHR) is susceptible to various spells of snowfall, which can cause nutrient leaching, low temperatures, and drought conditions. The current study, therefore, sought an indigenous psychrotrophic plant growth-promoting (PGP) bacterial inoculant with the potential to alleviate crop productivity under cold and drought stress. Psychrotrophic bacteria preisolated from the night-soil compost of the Lahaul Valley of northwestern Himalaya were screened for phosphate (P) and potash (K) solubilization, nitrogen fixation, indole acetic acid (IAA) production, siderophore and HCN production) in addition to their tolerance to drought conditions for consortia development. Furthermore, the effects of the selected consortium on the growth and development of wheat (Triticum aestivum L.) and maize (Zea mays L.) were assessed in pot experiments under cold semiarid conditions (50 % field capacity). Among 57 bacteria with P and K solubilization, nitrogen fixation, IAA production, siderophore and HCN production, Pseudomonas protegens LPH60, Pseudomonas atacamensis LSH24, Psychrobacter faecalis LUR13, Serratia proteamaculans LUR44, Pseudomonas mucidolens LUR70, and Glutamicibacter bergerei LUR77 exhibited tolerance to drought stress (-0.73 MPa). The colonization of wheat and maize seeds with these drought-tolerant PGP strains resulted in a germination index >150, indicating no phytotoxicity under drought stress. Remarkably, a particular strain, Pseudomonas sp. LPH60 demonstrated antagonistic activity against three phytopathogens Ustilago maydis, Fusarium oxysporum, and Fusarium graminearum. Treatment with the consortium significantly increased the foliage (100 % and 160 %) and root (200 % and 133 %) biomasses of the wheat and maize plants, respectively. Furthermore, whole-genome sequence comparisons of LPH60 and LUR13 with closely related strains revealed genes associated with plant nutrient uptake, phytohormone synthesis, siderophore production, hydrogen cyanide (HCN) synthesis, volatile organic compound production, trehalose and glycine betaine transport, cold shock response, superoxide dismutase activity, and gene clusters for nonribosomal peptide synthases and polyketide synthetases. With their PGP qualities, biocontrol activity, and ability to withstand environmental challenges, the developed consortium represents a promising cold- and drought-active PGP bioinoculant for cereal crops grown in cold semiarid regions.
Collapse
Affiliation(s)
- Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallavi Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aman Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
3
|
Sher S, Tahir Ishaq M, Abbas Bukhari D, Rehman A. Brevibacterium sp. strain CS2: A potential candidate for arsenic bioremediation from industrial wastewater. Saudi J Biol Sci 2023; 30:103781. [PMID: 37680980 PMCID: PMC10480674 DOI: 10.1016/j.sjbs.2023.103781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
A multiple metal-resistant Brevibacterium sp. strain CS2, isolated from an industrial wastewater, resisted arsenate and arsenate upto 280 and 40 mM. The order of resistance against multiple metals was Arsenate > Arsenite > Selenium = Cobalt > Lead = Nickel > Cadmium = Chromium = Mercury. The bacterium was characterized as per morphological and biochemical characteristics at optimum conditions (37 ℃ and 7 pH). The appearance of brownish color precipitation was due to the interaction of silver nitrate confirming its oxidizing ability against arsenic. The strain showed arsenic processing ability at different temperatures, pH, and initial arsenic concentration which was 37% after 72 h and 48% after 96 h of incubation at optimum conditions with arsenite 250 mM/L (initial arsenic concentration). The maximum arsenic removal ability of strain CS2 was determined for 8 days, which was 32 and 46% in wastewater and distilled water, respectively. The heat-inactivated cells of the isolated strain showed a bioremediation efficiency (E) of 96% after 10 h. Genes cluster (9.6 kb) related to arsenite oxidation was found in Brevibacterium sp. strain CS2 after the genome analysis of isolated bacteria through illumine and nanopore sequencing technology. The arsenite oxidizing gene smaller subunit (aioB) on chromosomal DNA locus (Prokka_01508) was identified which plays a role in arsenite oxidation for energy metabolism. The presence of arsenic oxidizing genes and an efficient arsenic oxidizing potential of Brevibacterium sp. strain CS2 make it a potential candidate for green chemistry to eradicate arsenic from arsenic-contaminated wastewater.
Collapse
Affiliation(s)
- Shahid Sher
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
- Florida A&M University, School of Environment, Tallahassee, FL, USA
| | - Muhammad Tahir Ishaq
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | | | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
4
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
5
|
Mondal M, Kumar V, Bhatnagar A, Vithanage M, Selvasembian R, Ambade B, Meers E, Chaudhuri P, Biswas JK. Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: Exploiting environmental co-benefits. ENVIRONMENTAL RESEARCH 2022; 214:113937. [PMID: 35931193 DOI: 10.1016/j.envres.2022.113937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In this study the multiple metal(loid) (As, Cd, Cu and Ni) resistant bacterium Serratia sp. KUJM3 was able to grow in both single and multiple metal(loid) contaminated wastewater and removed them by 34.93-48.80% and 22.93-32%, respectively. It reduced As(v) to As(III) by 68.44-85.06% in a concentration dependent manner. The strain's IAA production potential increased significantly under both metal(loid)s regime. The lentil (Lens culinaris) seed germination and seed production were enhanced with the exogenous bacterial inoculation by 20.39 and 16.43%, respectively. Under both multi-metal(loid) regimes the bacterial inoculation promoted shoot length (22.65-51.34%), shoot dry weight (33.89-66.11%) and seed production (13.46-35%). Under bacterial manipulation the metal(loid)s immobilization increased with concomitant curtailment of translocation in lentil plant by 61.89-75.14% and 59.19-71.14% in shoot and seed, respectively. The strain biomineralized struvite (MgNH4 PO4 ·6H2O) from human urine @ 403 ± 6.24 mg L-1. The fertilizer potential of struvite was confirmed with the promotion of cowpea (Vigna unguiculata) growth traits e.g. leaf number (37.04%), pod number (234%), plant wet weight (65.47%) and seed number (134.52%). Thus Serratia sp. KUJM3 offers multiple benefits of metal(loid)s bioremediation, As(V) reduction, plant growth promotion, and struvite biomineralization garnering a suite of appealing environmental applications.
Collapse
Affiliation(s)
- Monojit Mondal
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta, 700019, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
6
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
7
|
Huang Q, Liu H, Zhang J, Wang S, Liu F, Li C, Wang G. Production of extracellular amylase contributes to the colonization of Bacillus cereus 0-9 in wheat roots. BMC Microbiol 2022; 22:205. [PMID: 35996113 PMCID: PMC9394064 DOI: 10.1186/s12866-022-02618-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background Bacteria usually secrete a variety of extracellular enzymes to degrade extracellular macromolecules to meet their nutritional needs and enhance their environmental adaptability. Bacillus cereus 0–9, a biocontrol bacterial strain isolated from wheat roots, has three genes annotated as encoding amylases in the genome, but their functions are unknown, and whether they are involved in the colonization process of the bacterium remains to be further studied. Methods Mutant gene strains and fluorescently tagged strains were constructed by homologous recombination, and amylase protein was expressed in the prokaryotic Escherichia coli BL21(DE3) expression system. The iodine staining method was used to measure the activity of amylase proteins. We further observed the colonization abilities of the test strains in wheat roots through frozen section technology. Results The results showed that there were three amylase-encoding genes, amyC, amyP and amyS, in the B. cereus 0–9 genome. Among the three amylase encoding genes, only amyS produced extracellular amylase whose secretion was related to signal peptide at position 1–27. The AmyS protein encoded by the amyS gene is an α-amylase. The growth of Rhizoctonia cerealis was inhibited 84.7% by B. cereus 0–9, but the biocontrol ability of the ΔamyS strain decreased to 43.8% and that of ΔamyS/amyS was restored when the amyS gene was complemented. Furthermore, the biocontrol ability of the ΔamySec strain was decreased to 46.8%, almost the same as that of the ΔamyS mutant. Due to the deletion of the amyS gene, the colonization capacities of ΔamyS (RFP) and ΔamySec (RFP) in wheat roots decreased, while that of ΔamyS/amyS (RFP) was restored after the amyS gene was complemented, indicating that the amyS gene influences the colonization of B. cereus 0–9 in wheat roots. In addition, the colonization and biocontrol abilities of the mutant were restored after the addition of sugars, such as glucose and maltose. Conclusions B. cereus 0–9 encodes three genes annotated as amylases, amyC, amyP and amyS. Only the deletion of the amyS gene with a signal peptide did not produce extracellular amylase. The AmyS protein encoded by the amyS gene is an α-amylase. Our results indicated that the amyS gene is closely related to the colonization abilities of B. cereus 0–9 in wheat roots and the biocontrol abilities of B. cereus 0–9 to fight against R. cerealis. The extracellular amylase produced by B. cereus 0–9 can hydrolyze starch and use glucose, maltose and other nutrients to meet the needs of bacterial growth. Therefore, it is very possible that the secretion and hydrolytic activities of extracellular amylase can promote the colonization of B. cereus 0–9 in wheat roots and play important roles in the prevention and control of plant diseases. Our results contribute to exploring the mechanisms of microbial colonization in plant roots. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02618-7.
Collapse
Affiliation(s)
- Qiubin Huang
- Institute of Microbial Engineering, Henan University, Kaifeng, Henan, 475004, People's Republic of China.,School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Huiping Liu
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Juanmei Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, Henan, 475004, People's Republic of China.,Pharmaceutical College, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Shaowei Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, Henan, 475004, People's Republic of China.,School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Fengying Liu
- Institute of Microbial Engineering, Henan University, Kaifeng, Henan, 475004, People's Republic of China.,School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Chengdie Li
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Gang Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, Henan, 475004, People's Republic of China. .,School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| |
Collapse
|
8
|
Younas H, Nazir A, Bareen FE. Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57669-57687. [PMID: 35355176 DOI: 10.1007/s11356-022-19913-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Synergistic effect of biochar and microbes in soil enhances performance of plants. Hazardous tannery solid waste can be reduced by one-third in volume by conversion to biochar. A greenhouse trial was set up with soil having different doses of metal resistant microbe-impregnated biochar (MIBC) prepared from tannery solid waste. Consortia of autochthonous strains of Trichoderma and Bacillus were inoculated on BC and the behavior and fate of metals were evaluated for their bioavailability to sunflower. Sunflower was grown in pots for 80 days having six different amendments of tannery solid waste biochar (0-10% w/w) with and without Trichoderma and Bacillus consortia and its morphological and biochemical attributes as well as metal uptake were observed. The results illustrated that application of BC at 2% rate without inoculation increased the shoot length and dry biomass by 19.8% and 77.4%, respectively, while plant growth and performance were reduced at higher amendments of BC. However, application of MIBC with Trichoderma or/and Bacillus consortium significantly improved the plant attributes at all levels of amendment. The results indicated that MIBC having Trichoderma and Bacillus consortia at 10% rate increased shoot length and dry biomass by 65.3% and 516% compared to control without BC. Application of BC without inoculation reduced the uptake of Cu, Fe, and Ni and increased the mobilization of all other metals for uptake in sunflower. Mobilization and uptake of Cd, Cr, Cu, Ni, Pb, and Zn decreased with MIBC having Trichoderma and Bacillus consortia whereas that of Fe and Mg were noted. A considerable decrease in proline and total phenolic content was demonstrated by MIBC-grown sunflower. The data of metal fractionation in BC also supported the above findings. Therefore, MIBC can be used as a promising option for enhancing growth performance and ensuring the physiological safety of sunflower as an energy crop.
Collapse
Affiliation(s)
- Hajira Younas
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Firdaus-E Bareen
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54000, Pakistan.
| |
Collapse
|
9
|
Mahapatra S, Yadav R, Ramakrishna W. Bacillus subtilis Impact on Plant Growth, Soil Health and Environment: Dr. Jekyll and Mr. Hyde. J Appl Microbiol 2022; 132:3543-3562. [PMID: 35137494 DOI: 10.1111/jam.15480] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The increased dependence of farmers on chemical fertilizers poses a risk to soil fertility and ecosystem stability. Plant growth-promoting rhizobacteria (PGPR) are at the forefront of sustainable agriculture, providing multiple benefits for the enhancement of crop production and soil health. Bacillus subtilis is a common PGPR in soil that plays a key role in conferring biotic and abiotic stress tolerance to plants by induced systemic resistance (ISR), biofilm formation, and lipopeptide production. As a part of bioremediating technologies, Bacillus spp. can purify metal contaminated soil. It acts as a potent denitrifying agent in agroecosystems while improving the carbon sequestration process when applied in a regulated concentration. Although it harbors several antibiotic resistance genes (ARGs), it can reduce the horizontal transfer of ARGs during manure composting by modifying the genetic makeup of existing microbiota. In some instances, it affects the beneficial microbes of the rhizosphere. External inoculation of B. subtilis has both positive and negative impacts on the endophytic and semi-synthetic microbial community. Soil texture, type, pH, and bacterial concentration play a crucial role in the regulation of all these processes. Soil amendments and microbial consortia of Bacillus produced by microbial engineering could be used to lessen the negative effect on soil microbial diversity. The complex plant-microbe interactions could be decoded using transcriptomics, proteomics, metabolomics, and epigenomics strategies which would be beneficial for both crop productivity and the well-being of soil microbiota. Bacillus subtilis has more positive attributes similar to the character of Dr. Jekyll and some negative attributes on plant growth, soil health, and the environment akin to the character of Mr. Hyde.
Collapse
|
10
|
Borker SS, Thakur A, Kumar S, Kumari S, Kumar R, Kumar S. Comparative genomics and physiological investigation supported safety, cold adaptation, efficient hydrolytic and plant growth-promoting potential of psychrotrophic Glutamicibacter arilaitensis LJH19, isolated from night-soil compost. BMC Genomics 2021; 22:307. [PMID: 33910515 PMCID: PMC8082909 DOI: 10.1186/s12864-021-07632-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Night-soil compost (NSC) has traditionally been conserving water and a source of organic manure in northwestern Himalaya. Lately, this traditional method is declining due to modernization, its unhygienic conditions, and social apprehensions. Reduction in the age-old traditional practice has led to excessive chemical fertilizers and water shortage in the eco-sensitive region. In the current study, a bacterium has been analyzed for its safety, cold-adaptation, efficient degradation, and plant growth-promoting (PGP) attributes for its possible application as a safe bioinoculant in psychrotrophic bacterial consortia for improved night-soil composting. RESULTS Glutamicibacter arilaitensis LJH19, a psychrotrophic bacterium, was isolated from the NSC of Lahaul valley in northwestern Himalaya. The strain exhibited amylase (186.76 ± 19.28 U/mg), cellulase (21.85 ± 0.7 U/mg), and xylanase (11.31 ± 0.51 U/mg) activities at 10 °C. Possessing efficient hydrolytic activities at low-temperature garners the capability of efficient composting to LJH19. Additionally, the strain possessed multiple PGP traits such as indole acetic acid production (166.11 ± 5.7 μg/ml), siderophore production (85.72 ± 1.06% psu), and phosphate solubilization (44.76 ± 1.5 μg/ml). Enhanced germination index and germination rate of pea seeds under the LJH19 inoculation further supported the bacterium's PGP potential. Whole-genome sequencing (3,602,821 bps) and genome mining endorsed the cold adaptation, degradation of polysaccharides, and PGP traits of LJH19. Biosynthetic gene clusters for type III polyketide synthase (PKS), terpene, and siderophore supplemented the endorsement of LJH19 as a potential PGP bacterium. Comparative genomics within the genus revealed 217 unique genes specific to hydrolytic and PGP activity. CONCLUSION The physiological and genomic evidence promotes LJH19 as a potentially safe bio-inoculant to formulate psychrotrophic bacterial consortia for accelerated degradation and improved night-soil compost.
Collapse
Affiliation(s)
- Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sanjeet Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| | - Sareeka Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| |
Collapse
|
11
|
Liu P, Yang Y, Li M. Responses of soil and earthworm gut bacterial communities to heavy metal contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114921. [PMID: 32540597 DOI: 10.1016/j.envpol.2020.114921] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 05/24/2023]
Abstract
The large accumulation of heavy metals in the soil surrounding steel factories has become a severe environmental problem. However, few studies have focused on how the earthworm gut microbiota responds to heavy metals in the soil. This study used research sites at a steel factory in Nanjing, China, to investigate how the soil bacterial community and earthworm gut microbiota respond differently to heavy metal contamination using Illumina high-throughput sequencing targeting 16S rRNA genes. The bacterial community of earthworm guts showed a distinct structure compared with that of the soil, featuring a higher relative abundance of Proteobacteria (45.7%) and Bacteroidetes (18.8%). The bacterial community in the earthworm gut appeared more susceptible to heavy metal contamination compared with the soil community. For example, we identified 38 OTUs (Operational taxonomic units) significantly influenced by contamination among 186 abundant OTUs in the soil, whereas 63 out of the 127 abundant OTUs in the earthworm gut were altered significantly under contamination. This susceptibility may be partly explained by the lower alpha diversity and distinct microbial interactions in the gut. In addition, the accumulation of heavy metals also stimulated the growth of potential plant growth promoting bacteria (PGPB) in the earthworm gut, especially those related to indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) production, which may potentially benefit the phyto-remediation of heavy metals. These results contribute to our understanding of the soil biota and its interactions under heavy metal contamination and may provide further insights into the phyto-remediation of metal-contaminated soil.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Combined use of municipal solid waste biochar and bacterial biosorbent synergistically decreases Cd(II) and Pb(II) concentration in edible tissue of forage maize irrigated with heavy metal-spiked water. Heliyon 2020; 6:e04688. [PMID: 32817901 PMCID: PMC7424215 DOI: 10.1016/j.heliyon.2020.e04688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/02/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023] Open
Abstract
A pot experiment was carried out to evaluate the effect of a municipal solid waste (MSW) biochar and a bacterial strain on the forage maize growth and the concentration of lead (Pb) and cadmium (Cd) in the edible tissue of maize irrigated with water contaminated with Cd (5 mg L−1) and Pb (100 mg L−1). Experimental treatments included (i) bacterial strain at two levels: no bacterial strain and Enterobacter cloacae R7; (ii) MSW biochar at three levels: 0, 1, and 3% (w/w); and (iii) irrigation water quality at five levels: plants irrigated with 100% freshwater (FW), plants irrigated with 75%FW + 25% contaminated water (CW), plants irrigated with 50%FW + 50% CW, plants irrigated with 25%FW + 75% CW, and plants irrigated with 100% CW. The effect of various treatments on maize growth indices and concentration of Pb(II) and Cd(II) in the plant was significant at 5% level. The concentration of these metals in the shoot of plants irrigated with 75 and 100% CW was higher than the permissible limits for Cd(II) and Pb(II) in livestock feed. However, the concentration of these metals in the shoot of the plants irrigated with 25 and 50% CW was lower than the permissible limit for this use. In this study, the combined application of 3%biochar and E. cloacae R7 had a significant effect on increased root dry weight (ranging from 29 to 33%), shoot dry weight (ranging from 32 to 43%) and bacterial root colonization (ranging from 33 to 53%) and on reduced concentration of Pb (ranging from 78 to 80%) and Cd (ranging from 72 to 76%) of the shoot of maize plant (edible tissues used by livestock), which was below the permissible limits for livestock feed, compared to corresponding controls. According to the results of this study, to reduce the concentration of the heavy metals in forage maize shoot (below the permissible limits for livestock feed), it is suggested using heavy metal–contaminated water either in combination with freshwater (50 or 75% FW) or in combination with biochar and bacterial biosorbent, averting human/animal health risk.
Collapse
|
13
|
Azolla filiculoides L. as a source of metal-tolerant microorganisms. PLoS One 2020; 15:e0232699. [PMID: 32374760 PMCID: PMC7202617 DOI: 10.1371/journal.pone.0232699] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The metal hyperaccumulator Azolla filiculoides is accompanied by a microbiome potentially supporting plant during exposition to heavy metals. We hypothesized that the microbiome exposition to selected heavy metals will reveal metal tolerant strains. We used Next Generation Sequencing technique to identify possible metal tolerant strains isolated from the metal-treated plant (Pb, Cd, Cr(VI), Ni, Au, Ag). The main dominants were Cyanobacteria and Proteobacteria constituting together more than 97% of all reads. Metal treatment led to changes in the composition of the microbiome and showed significantly higher richness in the Pb-, Cd- and Cr-treated plant in comparison with other (95–105 versus 36–44). In these treatments the share of subdominant Actinobacteria (0.4–0.8%), Firmicutes (0.5–0.9%) and Bacteroidetes (0.2–0.9%) were higher than in non-treated plant (respectively: 0.02, 0.2 and 0.001%) and Ni-, Au- and Ag-treatments (respectively: <0.4%, <0.2% and up to 0.2%). The exception was Au-treatment displaying the abundance 1.86% of Bacteroidetes. In addition, possible metal tolerant genera, namely: Acinetobacter, Asticcacaulis, Anabaena, Bacillus, Brevundimonas, Burkholderia, Dyella, Methyloversatilis, Rhizobium and Staphylococcus, which form the core microbiome, were recognized by combining their abundance in all samples with literature data. Additionally, the presence of known metal tolerant genera was confirmed: Mucilaginibacter, Pseudomonas, Mycobacterium, Corynebacterium, Stenotrophomonas, Clostridium, Micrococcus, Achromobacter, Geobacter, Flavobacterium, Arthrobacter and Delftia. We have evidenced that A. filiculoides possess a microbiome whose representatives belong to metal-resistant species which makes the fern the source of biotechnologically useful microorganisms for remediation processes.
Collapse
|
14
|
Han F, Zhang Y, Liu Z, Wang C, Luo J, Liu B, Qiu D, He F, Wu Z. Effects of maifanite on growth, physiological and phytochemical process of submerged macrophytes Vallisneria spiralis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109941. [PMID: 31761555 DOI: 10.1016/j.ecoenv.2019.109941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
The restoration of submerged plants is critical for the reconstruction of eutrophic lake ecosystems. The growth of submerged plants is influenced by many factors. For the first time in this study, the effects of silicate-mineral maifanite supplement on the growth, physiological and phytochemical process of Vallisneria spiralis (V. spiralis) were investigated by an outdoor PVC barrel experiment, to provide a technical reference for further applications in aquatic ecological restoration. The results show that the maifanite could significantly promote the growth of V. spiralis. Specifically, the biomass, height, number of leaves, leaf width, root length, and root activity of V. spiralis in the maifanite-supplemented group were better than those of the control (P < 0.05). Moreover, the modified maifanite group performed better than the raw maifanite group (P < 0.05). The photosynthetic pigment, root activity, and the malondialdehyde and peroxidase activity of the maifanite-treated V. spiralis were better than those of the control to some extent. It was found that maifanite contained abundant major and trace elements, which are required for the growth of V. spiralis. It is concluded that maifanite is beneficial to the growth of V. spiralis and can be further applied to the ecological restoration of eutrophic lakes.
Collapse
Affiliation(s)
- Fan Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ji Luo
- Center for Environmental Research and Technology, University of California-Riverside, California, USA
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
15
|
Phenotypic and genomic analysis of multiple heavy metal–resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation. Appl Microbiol Biotechnol 2020; 104:2243-2254. [DOI: 10.1007/s00253-020-10351-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/23/2022]
|