1
|
Vokřál I, Podlipná R, Matoušková P, Skálová L. Anthelmintics in the environment: Their occurrence, fate, and toxicity to non-target organisms. CHEMOSPHERE 2023; 345:140446. [PMID: 37852376 DOI: 10.1016/j.chemosphere.2023.140446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Anthelmintics are drugs used for the treatment and prevention of diseases caused by parasitic worms (helminths). While the importance of anthelmintics in human as well as in veterinary medicine is evident, they represent emerging contaminants of the environment. Human anthelmintics are mainly used in tropical and sub-tropical regions, while veterinary anthelmintics have become frequently-occurring environmental pollutants worldwide due to intensive agri- and aquaculture production. In the environment, anthelmintics are distributed in water and soil in relation to their structure and physicochemical properties. Consequently, they enter various organisms directly (e.g. plants, soil invertebrates, water animals) or indirectly through food-chain. Several anthelmintics elicit toxic effects in non-target species. Although new information has been made available, anthelmintics in ecosystems should be more thoroughly investigated to obtain complex knowledge on their impact in various environments. This review summarizes available information about the occurrence, behavior, and toxic effect of anthelmintics in environment. Several reasons why anthelmintics are dangerous contaminants are highlighted along with options to reduce contamination. Negative effects are also outlined.
Collapse
Affiliation(s)
- Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Praha 6, CZ-165 02, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| |
Collapse
|
2
|
Dimunová D, Matoušková P, Navrátilová M, Nguyen LT, Ambrož M, Vokřál I, Szotáková B, Skálová L. Environmental circulation of the anthelmintic drug albendazole affects expression and activity of resistance-related genes in the parasitic nematode Haemonchus contortus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153527. [PMID: 35101480 DOI: 10.1016/j.scitotenv.2022.153527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Veterinary anthelmintics excreted from treated animals pass to soil, subsequently to plants and then to their consumers. This circulation might have various consequences, including drug-resistance promotion in helminths. The present study was designed to follow the effect of the environmental circulation of the common anthelmintic drug albendazole (ABZ) in real farm conditions on the parasitic nematode Haemonchus contortus in vivo. Two fields with fodder plants (clover and alfalfa) were fertilized, the first with dung from ABZ-treated sheep (at the recommended dosage), the second with dung from non-treated sheep (controls). After a 10-week growth period, the fresh fodder from both fields was used to feed two groups of sheep, which were infected with H. contortus. Eggs and adult nematodes from the animals of both groups were isolated, and various parameters were compared. No significant changes in the eggs' sensitivity to ABZ and thiabendazole were observed. However, significantly increased expression of several cytochromes P450 and UDP-glycosyl transferases as well as increased oxidation and glycosylation of ABZ and ABZ-sulfoxide (ABZ-SO) was found in the exposed nematodes. These results show that ABZ environmental circulation improves the ability of the helminths to deactivate ABZ.
Collapse
Affiliation(s)
- Diana Dimunová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Luo Q, Li Y, Wu Z, Wang X, Wang C, Shan Y, Sun L. Phytotoxicity of tris-(1-chloro-2-propyl) phosphate in soil and its uptake and accumulation by pakchoi (Brassica chinensis L. cv. SuZhou). CHEMOSPHERE 2021; 277:130347. [PMID: 33780681 DOI: 10.1016/j.chemosphere.2021.130347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
This study investigated physiological and biochemical changes in pakchoi at different growth stages (25 and 50 d) under different tris-(1-chloro-2-propyl) phosphate (TCIPP) treatments (10, 100, 500, and 1000 μg kg-1). The uptake and accumulation of TCIPP by pakchoi and variation of TCIPP speciation in soil were also determined. TCIPP decreased the length and fresh weight of pakchoi root compared with those in blank controls, and this effect was significant when the concentration of TCIPP was higher than 100 μg kg-1. The fresh weight of pakchoi stems and leaves, the chlorophyll content, and the activities of superoxide dismutase, peroxidase, and catalase in the leaves first increased and then decreased with increasing TCIPP concentration. The inflection point of the variation in these indices was 100 μg kg-1 TCIPP in soil. The contents of proline and malondialdehyde increased continuously with increasing TCIPP concentration. The uptake of TCIPP by pakchoi increased linearly with increasing TCIPP concentration, and the highest TCIPP concentrations in the roots, stems, and leaves were 275.9, 80.0, and 2126.3 μg kg-1, respectively. TCIPP was easily transferred from the roots to leaves of pakchoi, with translocation factor of up to 12.6. The content of bioavailable TCIPP in soil was high, accounting for 46.5%. Planting pakchoi could significantly reduce the content of bioavailable TCIPP, with removal rate of 39.9%-54.1%. After 50 d of planting pakchoi, the removal rate of TCIPP in soil (10.4%-18.6%) was significantly higher than that in the control without plant, but the contribution of phytoextraction was small, accounting for 2.62%-26.6%.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China.
| | - Yujie Li
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Zhongping Wu
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Xiaoxu Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Congcong Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Yue Shan
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Lina Sun
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
4
|
Snow DD, Cassada DA, Biswas S, Malakar A, D'Alessio M, Marshall AHL, Sallach JB. Detection, occurrence, and fate of emerging contaminants in agricultural environments (2020). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1741-1750. [PMID: 32762100 DOI: 10.1002/wer.1429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
A review of 79 papers published in 2019 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, antibiotics, anthelmintics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Antibiotics in Agroecosystems, Pharmaceutical Fate and Occurrence, Anthelmintics and Engineered Nanomaterials. PRACTITIONER POINTS: New research describes innovative new techniques for emerging contaminant detection in agricultural settings Newer classes of contaminants include human and veterinary pharmaceuticals Research in nanomaterials show that these also occur in agricultural environments and will likely be topics of future work.
Collapse
Affiliation(s)
- Daniel D Snow
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - David A Cassada
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Saptashati Biswas
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Arindam Malakar
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Matteo D'Alessio
- Department of Civil Engineering, University of Mississippi, Oxford, MS, USA
| | | | | |
Collapse
|
5
|
Navrátilová M, Raisová Stuchlíková L, Skálová L, Szotáková B, Langhansová L, Podlipná R. Pharmaceuticals in environment: the effect of ivermectin on ribwort plantain (Plantago lanceolata L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31202-31210. [PMID: 32483720 DOI: 10.1007/s11356-020-09442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The anthelmintic drug ivermectin (IVM), used frequently especially in veterinary medicine, enters the environment mainly via excrements in pastures and could negatively affect non-target organisms including plants. The present study was designed to follow up on our previous investigations into IVM metabolism and its effects in the common meadow plant ribwort plantain (Plantago lanceolata L.) during long-term exposure of both cell suspensions and whole plant regenerants. IVM uptake, distribution, and biotransformation pathways were studied using UHPLC-MS analysis. In addition, the IVM effect on antioxidant enzymes activities, proline concentration, the content of all polyphenols, and the level of the main bioactive secondary metabolites was also tested with the goal of learning more about IVM-induced stress in the plant organism. Our results showed that the ribwort plantain was able to uptake IVM and transform it via demethylation and hydroxylation. Seven and six metabolites respectively were detected in cell suspensions and in the roots of regenerants. However, only the parent drug IVM was detected in the leaves of the regenerants. IVM accumulated in the roots and leaves of plants might negatively affect ecosystems due to its toxicity to herbivorous invertebrates. As IVM exposition increased the activity of catalase, the concentration of proline and polyphenols, as well as decreased the activity of ascorbate peroxidase and the concentration of the bioactive compounds acteoside and aucubin, long-term exposition of the ribwort plantain to IVM caused abiotic stress and might decrease the medicinal value of this herb.
Collapse
Affiliation(s)
- Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lenka Langhansová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| |
Collapse
|
6
|
The Identification of Metabolites and Effects of Albendazole in Alfalfa ( Medicago sativa). Int J Mol Sci 2020; 21:ijms21165943. [PMID: 32824876 PMCID: PMC7460629 DOI: 10.3390/ijms21165943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 11/18/2022] Open
Abstract
Albendazole (ABZ), a widely used anthelmintic drug, enters the environment mainly via livestock excrements. To evaluate the environmental impact of ABZ, the knowledge of its uptake, effects and metabolism in all non-target organisms, including plants, is essential. The present study was designed to identify the metabolic pathway of ABZ and to test potential ABZ phytotoxicity in fodder plant alfalfa, with seeds and in vitro regenerants used for these purposes. Alfalfa was chosen, as it may meet manure from ABZ-treated animals in pastures and fields. Alfalfa is often used as a feed of livestock, which might already be infected with helminths. The obtained results showed that ABZ did not inhibit alfalfa seed germination and germ growth, but evoked stress and a toxic effect in alfalfa regenerants. Alfalfa regenerants were able to uptake ABZ and transform it into 21 metabolites. UHPLC-MS/MS analysis revealed three new ABZ metabolites that have not been described yet. The discovery of the parent compound ABZ together with the anthelmintically active and instable metabolites in alfalfa leaves shows that the contact of fodder plants with ABZ-containing manure might represent not only a danger for herbivorous invertebrates, but also may cause the development of ABZ resistance in helminths.
Collapse
|
7
|
Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW. A new analytical workflow using HPLC with drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry for the detection of drug-related metabolites in plants. Anal Bioanal Chem 2020; 412:1817-1824. [PMID: 31965248 PMCID: PMC7048865 DOI: 10.1007/s00216-020-02429-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
Investigations into the interaction of xenobiotics with plants (and in particular edible plants) have gained substantial interest, as water scarcity due to climate-change-related droughts requires the more frequent use of reclaimed wastewaters for irrigation in agriculture. Non-steroidal anti-inflammatory drugs are common contaminants found in wastewater treatment plant effluents. For this reason, the interaction of nine edible plants with diclofenac (DCF), a widely used representative of this group of drugs, was investigated. For this purpose, plants were hydroponically grown in a medium containing DCF. For the detection of unknown DCF-related metabolites formed in the plant upon uptake of the parent drug‚ a new workflow based on the use of HPLC coupled to drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry (DTIM QTOF-MS) was developed. Thereby‚ for chromatographic peaks eluting from the HPLC, drift times were recorded, and analytes were subsequently fragmented in the DTIM QTOF-MS to provide significant fragments. All information available (retention times, drift times, fragment spectra, accurate mass) was finally combined‚ allowing the suggestion of molecular formulas for 30 DCF-related metabolites formed in the plant, whereby 23 of them were not yet known from the literature.
Collapse
Affiliation(s)
- Franz Mlynek
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Markus Himmelsbach
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Wolfgang Buchberger
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Christian W Klampfl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| |
Collapse
|