1
|
Li M, Hu Y, Wu X, Tong J, Tao J, Tang A, Ji Y, Yao Y, Tao F, Liang C. Placental Ferroptosis May Be Involved in Prenatal Arsenic Exposure Induced Cognitive Impairment in Offspring. Biol Trace Elem Res 2025:10.1007/s12011-025-04525-0. [PMID: 39912999 DOI: 10.1007/s12011-025-04525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
The association between prenatal arsenic (As) exposure and offspring's cognition is still unclear, and the underlying etiology has also not been elucidated. Based on the Ma'anshan Birth Cohort (MABC) study in China, 1814 mother-child pairs were included in this study, and the association of As levels in cord serum with preschoolers' intelligence scores was explored. To validate the results from population study, in vivo models were adopted to observe the association between prenatal As exposure and spatial learning and memory abilities of mice offsprings. The As-exposure induced ferroptosis in the placenta of human beings as well as C57BL/6 J mice and HTR-8/SVneo cells was explored in order to clarify the potential cause of impairment of offspring's cognition related to As exposure, respectively. In the population study, we observed a significant inverse association between natural logarithm transformed (ln) As levels and preschoolers' intelligence scores, especially for the fluid reasoning index (FRI) [(β (95%CI): - 1.07 (- 1.98, - 0.16)] and working memory index (WMI) [β (95%CI): - 1.51 (- 2.76, - 0.25)]. Meanwhile, the data from in vivo models revealed that the learning and memory abilities of offspring mice decreased after prenatal As exposure. The occurrence of ferroptosis-like characteristics in the placenta and HTR-8/SVneo cells after As exposure was observed, accompanying with evident oxidative stress, iron accumulation, mitochondrial damage, and decreased protein levels of GPX4, xCT, and FTH1 (or FPN1). Notably, the ferroptosis-like alterations induced by NaAsO2 can be effectively alleviated by N-acetylcysteine (NAC) and ferrostatin-1 (Fer-1) treatment in HTR-8/SVneo cells, respectively. In conclusion, prenatal As exposure associates with impairment of offspring's cognition, and placental ferroptosis may be involved in the association. Further studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Mengzhu Li
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuan Hu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400039, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiajing Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Anni Tang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yanli Ji
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
2
|
Ommati MM, Jin Y, Zamiri MJ, Retana-Marquez S, Nategh Ahmadi H, Sabouri S, Song SZ, Heidari R, Wang HW. Sex-Specific Mechanisms of Fluoride-Induced Gonadal Injury: A Multi-Omics Investigation into Reproductive Toxicity and Gut Microbiota Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2527-2550. [PMID: 39818830 DOI: 10.1021/acs.jafc.4c10190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Fluoride, a common agricultural additive used to enhance plant resilience and pest control, poses toxicity risks when exposure surpasses safe thresholds, affecting ecosystems and human health. While its reproductive toxicity is recognized, the sex-specific and cross-generational effects remain underexplored. To address this gap, we employed an integrative approach combining transcriptomics (next-generation sequencing (NGS)), bioinformatic network analysis, gut microbiota sequencing, and in vivo functional assays. ICR mice (F0 generation), both male and female, were exposed to fluoride (100 mg/L in drinking water) for 35 days, continuing through gestation and offspring weaning. Our transcriptomic analysis revealed significant upregulation of autophagy (via the PI3K-AKT-mTOR pathway) and oxidative stress-induced mitochondrial dysfunction in gonadal tissue, with more pronounced effects observed in males. Further integrated analyses of transcriptomic and metabolomic data, supported by in vivo experiments, highlighted oxidative stress, mitochondrial dysfunction, and PI3K-AKT-mTOR pathway activation with stronger effects in males. The principal component analysis confirmed sex-specific transcriptome alterations, with males showing more substantial disruption. Additionally, 16S rRNA sequencing identified significant gut dysbiosis, particularly in males, with an increased Firmicutes/Bacteroidetes ratio and higher abundances of Oscillospirales and Anaerovoracaceae. Moreover, our study identified significant correlations between specific gut microbiota (e.g., Firmicutes, Proteobacteria) and autophagy, oxidative stress, and mitochondrial dysfunction pathways, with notable sex-dependent differences. These findings suggest that gut microbiota may play a critical role in modulating fluoride-induced reproductive toxicity, particularly through their effects on oxidative stress and cellular homeostasis. The breakdown of the gut barrier and elevated serum/gonadal lipopolysaccharide (LPS) levels in fluoride-treated mice further established a link between gut dysbiosis and fluoride-induced reproductive toxicity. These findings underscore the importance of considering sex differences in xenobiotic-induced reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mohammad Javad Zamiri
- Department of Animal Science, Shiraz Agricultural University, Shiraz 71946-84471, Iran
| | - Socorro Retana-Marquez
- Department of Biology of Reproduction, Autonomous Metropolitan University, Iztapalapa, Mexico City 09340, Mexico
| | - Hassan Nategh Ahmadi
- College of Animal Science and Veterinary Medicine, Shiraz University, Shiraz 71946-84471, Iran
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Samira Sabouri
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shu Zhe Song
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
3
|
Lu X, Wu S, Ai H, Wu R, Cheng Y, Yun S, Chang M, Liu J, Meng J, Cheng F, Feng C, Cao J. Sparassis latifolia polysaccharide alleviated lipid metabolism abnormalities in kidney of lead-exposed mice by regulating oxidative stress-mediated inflammation and autophagy based on multi-omics. Int J Biol Macromol 2024; 278:134662. [PMID: 39128732 DOI: 10.1016/j.ijbiomac.2024.134662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Lead is a common environmental pollutant which can accumulate in the kidney and cause renal injury. However, regulatory effects and mechanisms of Sparassis latifolia polysaccharide (SLP) on lipid metabolism abnormality in kidney exposed to lead are not clarified. In this study, mice were used to construct an animal model to observe the histopathological changes in kidney, measure lead content, damage indicators, differentially expressed metabolites (DEMs) and genes (DEGs) in key signaling pathways that cause lipid metabolism abnormalities based on lipidomics and transcriptomics, which were later validated using qPCR and western blotting. Co-treatment of Pb and N-acetylcysteine (NAC) were used to verify the link between SLP and oxidative stress. Our results indicated that treatment with SLP identified 276 DEMs (including metabolism of glycerophospholipid, sphingolipid, glycerolipid and fatty acid) and 177 DEGs (including genes related to oxidative stress, inflammation, autophagy and lipid metabolism). Notably, regulatory effects of SLP on abnormal lipid metabolism in kidney were mainly associated with oxidative stress, inflammation and autophagy; SLP could regulate abnormal lipid metabolism in kidney by reducing oxidative stress and affecting its downstream-regulated autophagy and inflammatory to alleviate renal injury caused by lead exposure. This study provides a theoretical basis for SLP intervention in lead injury.
Collapse
Affiliation(s)
- Xingru Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shanshan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Honghu Ai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Rui Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Liu S, Liu Y, Li J, Wang M, Chen X, Gan F, Wen L, Huang K, Liu D. Arsenic Exposure-Induced Acute Kidney Injury by Regulating SIRT1/PINK1/Mitophagy Axis in Mice and in HK-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15809-15820. [PMID: 37843077 DOI: 10.1021/acs.jafc.3c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Groundwater resources are often contaminated by arsenic, which poses a serious threat to human and animal's health. Some studies have demonstrated that acute arsenic exposure could induce kidney injury because the kidney is a key target organ for toxicity, but the exact mechanism remains unclear. Hence, we investigated the effect of SIRT1-/PINK1-mediated mitophagy on NaAsO2-induced kidney injury in vivo and in vitro. In our study, NaAsO2 exposure obviously induced renal tubule injury and mitochondrial dysfunction. Meanwhile, NaAsO2 exposure could inhibit the mRNA/protein level of SIRT1 and activate the mitophagy-related mRNA/protein levels in the kidney of mice. In HK-2 cells, we also confirmed that NaAsO2-induced nephrotoxicity depended on the activation of mitophagy. Moreover, the activation of SIRT1 by resveratrol alleviated NaAsO2-induced acute kidney injury via the activation of mitophagy in vivo and in vitro. Interestingly, the inhibition of mitophagy by cyclosporin A (CsA) further exacerbated NaAsO2-induced nephrotoxicity and inflammation in HK-2 cells. Taken together, our study found that SIRT1-regulated PINK1-/Parkin-dependent mitophagy was implicated in NaAsO2-induced acute kidney injury. In addition, we confirmed that PINK1-/Parkin-dependent mitophagy played a protective role against NaAsO2-induced acute kidney injury. Therefore, activation of SIRT1 and mitophagy may represent a novel therapeutic target for the prevention and treatment of NaAsO2-induced acute renal injury.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
5
|
Joseph A, Parveen N, Ranjan VP, Goel S. Drinking hot beverages from paper cups: Lifetime intake of microplastics. CHEMOSPHERE 2023; 317:137844. [PMID: 36640991 DOI: 10.1016/j.chemosphere.2023.137844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have been found in many packaged food products such as salt, tea bags, milk, and fish. In a previous study by this group, MPs were found to leach into hot water from the plastic lining of disposable paper cups. No studies were found in the literature quantifying health risks or lifetime intake of MPs. At present, it is not possible to quantify health risks due to MPs because dose-response and toxicity assessments are not available. Therefore, the objective of the current study was to assess the intake of MPs and associated contaminants like fluoride that are released into these hot beverages. MPs in the previous study were quantified in terms of particle counts only and a simple method was adopted in the present study to convert the microplastics count into its respective mass. Chronic daily intake (CDI) and lifetime intake (LTI) of MPs through the ingestion pathway were calculated. CDI and Hazard Quotient (HQ) due to fluoride ingestion were also estimated following USEPA guidelines. Monte Carlo (MC) simulations were used to account for the variability in input variables such as concentration of MPs, body weight, averaging time, exposure duration, exposure frequency and ingestion rate to evaluate the impact on CDI and LTI values. The CDI was used to estimate the LTI of MPs and HQ for fluoride ingestion. MC simulations with 100,000 iterations resulted in an average CDI of 0.03 ± 0.025 mg of microplastic per kg of body weight per day and 7.04 ± 8.8 μg fluoride per kg body weight per day. This study takes us one step closer to estimating the human health risk due to the ingestion of microplastics and other contaminants through food items.
Collapse
Affiliation(s)
- Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
6
|
Das A, Chowdhury O, Gupta P, Das N, Mitra A, Ghosh S, Ghosh S, Sarkar S, Bandyopadhyay D, Chattopadhyay S. Arsenic-induced differential inflammatory responses in mouse thymus involves NF-κB/STAT-3 disruption, Treg bias and autophagy activation. Life Sci 2023; 314:121290. [PMID: 36549349 DOI: 10.1016/j.lfs.2022.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIM Arsenic contamination in drinking water is a world-wide public health concern. Sustained arsenic ingestion leads to immune alterations and subsequent development of inflammatory and autoimmune diseases; however, the underlying cellular and molecular intricacies of immunotoxicity remains uncharacterized. We aim to understand how exposure to arsenic at different concentrations affects the immune system differentially and whether arsenic-induced differential inflammation dictates altered T-regulatory cell bias and emphasize the role of autophagy in the pathway. MAIN METHODS Swiss albino mice were exposed to environmentally relevant concentrations of arsenic in drinking water for 28 days. Examination of thymic cyto-architecture was done to evaluate thymic damage. ELISA was performed for key cytokines. Flow cytometry, western blotting, and immunostaining were performed for cell surface and intracellular proteins. Co-immunoprecipitation and transfection with siRNA were performed to examine the direct physical interactions between proteins. KEY FINDINGS Our study distinctly demonstrates that arsenic-induced oxidative stress instigates NF-κB activation, which not only provokes pro-inflammatory responses, but also exhibits immune-suppressive activity depending on the dose of arsenic. Co-immunoprecipitation of NF-κBp65 and pSTAT-3 reveals that arsenic alters their physical interaction, thereby suppressing IL-6/STAT-3/IL-17A feedback loop. Flow cytometry and silencing studies demonstrate that NF-κB-driven Treg cell differentiation induces immune-suppression through FoxP3 up-regulation at the highest dose of arsenic and such immune-suppression is actively supported by NF-κB-driven autophagy activation. SIGNIFICANCE Collectively, our findings reveal that exposure to arsenic differentially impacts the immune system and understanding the molecular cascade might provide direction for prevention/treatment of arsenic-induced inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Olivia Chowdhury
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Nirmal Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sourav Ghosh
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sayan Ghosh
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Swaimanti Sarkar
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata 700098, India.
| |
Collapse
|
7
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I. Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours-A Research Hypothesis. Int J Mol Sci 2023; 24:1558. [PMID: 36675073 PMCID: PMC9866357 DOI: 10.3390/ijms24021558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Centre, Institute of Biology, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| |
Collapse
|
8
|
Zhao Q, Pan W, Li J, Yu S, Liu Y, Zhang X, Qu R, Zhang Q, Li B, Yan X, Ren X, Qiu Y. Effects of neuron autophagy induced by arsenic and fluoride on spatial learning and memory in offspring rats. CHEMOSPHERE 2022; 308:136341. [PMID: 36087721 DOI: 10.1016/j.chemosphere.2022.136341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
There are numerous studies showing that exposure to arsenic (As) or fluoride (F) damages the nervous system, but there is no literature investigating the effects of combined As and F exposure to induce autophagy on neurotoxicity in the offspring. In this study, we developed a rat model of As and/or F exposure through drinking water from before pregnancy to 90 days postnatal. The offspring rats were randomly divided into nine groups. Sodium arsenite (NaAsO2) (0, 35, 70 mg/L) and Sodium fluoride (NaF) (0, 50, 100 mg/L) were designed according to 3 × 3 factorial design. Our results suggested that the presence of F might antagonize the excretion of total As in urine, and As-F co-exposure led to severe pathological damage in brain tissue and reduced spatial learning and memory ability. At the same time, the experiments showed that As and F increased Beclin1 expression and LC3B ratio to activate autophagy; both P62 and Lamp2 expression were increased, suggesting that autophagy lysosomal degradation was blocked; SYN and JIP1 expression were significantly decreased, disrupting synaptic structure and function. Axonal autophagosome reverse transport regulation might be affected by combined As-F exposure, exacerbating neuronal synaptic damage and inducing neurotoxicity. Further analysis showed that there was an interaction between As and F exposure-induced changes in autolysosome-related proteins in the hippocampus, which showed antagonism, and the antagonism of the high As combined exposure groups were stronger than that of the low As combined exposure groups. In conclusion, our study showed that combined As and F exposure might induce reverse transport impairment of autophagy on axons, leading to autophagy defects, which in turn led to disruption of synaptic morphology and function, induced neurotoxicity, and there was an interaction between As and F, the type of its combined effect was antagonism.
Collapse
Affiliation(s)
- Qiuyi Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Weizhe Pan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Jia Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Shengnan Yu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Yan Liu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xiaoli Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, China.
| | - Ruodi Qu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Qian Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Ben Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Redox and biometal status in Wistar rats after subacute exposure to fluoride and selenium counter-effects. Arh Hig Rada Toksikol 2022; 73:207-222. [PMID: 36226821 PMCID: PMC9837529 DOI: 10.2478/aiht-2022-73-3650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
This study aimed to investigate the effect of 150 mg/L sodium fluoride (NaF) on redox status parameters and essential metals [copper (Cu), iron (Fe), and zinc (Zn)] in the blood, liver, kidney, brain, and spleen of Wistar rats and to determine the protective potential of selenium (Se) against fluoride (F-) toxicity. Male Wistar rats were randomly distributed in groups of five (n=5) receiving tap water (control) or water with NaF 150 mg/L, NaF 150 mg/L + Se 1.5 mg/L, and Se 1.5 mg/L solutions ad libitum for 28 days. Fluorides caused an imbalance in the redox and biometal (Cu, Fe, and Zn) status, leading to high superoxide anion (O2 .-) and malondialdehyde (MDA) levels in the blood and brain and a drop in superoxide dismutase (SOD1) activity in the liver and its increase in the brain and kidneys. Se given with NaF improved MDA, SOD1, and O2 .- in the blood, brain, and kidneys, while alone it decreased SH group levels in the liver and kidney. Biometals both reduced and increased F- toxicity. Further research is needed before Se should be considered as a promising strategy for mitigating F- toxicity.
Collapse
|
10
|
Babu S, Manoharan S, Ottappilakkil H, Perumal E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis. Chem Biol Interact 2022; 365:110106. [PMID: 35985521 DOI: 10.1016/j.cbi.2022.110106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Free radicals and other oxidants have enticed the interest of researchers in the fields of biology and medicine, owing to their role in several pathophysiological conditions, including fluorosis (Fluoride toxicity). Radical species affect cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress. Reactive oxygen species-mediated oxidative stress is a common denominator in fluoride toxicity. Fluorosis is a global health concern caused by excessive fluoride consumption over time. Fluoride alters the cellular redox homeostasis, and its toxicity leads to the activation of cell death mechanisms like apoptosis, autophagy, and necroptosis. Even though a surfeit of signaling pathways is involved in fluorosis, their toxicity mechanisms are not fully understood. Thus, this review aims to understand the role of reactive species in fluoride toxicity with an outlook on the effects of fluoride in vitro and in vivo models. Also, we emphasized the signal transduction pathways and the mechanism of cell death implicated in fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
11
|
Korkmaz R, Yüksek V, Dede S. The Effects of Sodium Fluoride (NaF) Treatment on the PI3K/Akt Signal Pathway in NRK-52E Cells. Biol Trace Elem Res 2022; 200:3294-3302. [PMID: 34569011 DOI: 10.1007/s12011-021-02927-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
The effects of the element fluorine on the phosphoinositide-3-kinase-protein kinase B/Akt (PI3K/Akt) pathway has a significant role in regulation of intracellular molecular mechanisms. NRK-52E rat kidney epithelial cell line was selected as the material of the study. NaF was used as the fluorine source in the study. The NaF dose was determined with the MTT assay. The NaF concentrations were determined as the proliferation concentration of 10 μM and IC25 (2250 μM) and IC50 (4250 μM) for 24 h. In the study, the erb-b2 receptor tyrosine kinase 2 (ERBB2), phosphoinositide-3-kinase (PI3K), Protein kinase B (PKB,Akt), Mammalian target of rapamycin (mTOR), and the Tumor protein 53 (TP53) genes were considered as the target genes. NaF concentration was administered on the cells. Total mRNA was isolated. mRNAs were turned into cDNA. The expression levels of the target genes were determined by RT-qPCR method. According to the results obtained in the study, the low NaF concentration increased the expression levels of the ERBB2, PI3K, and Akt genes, while the higher concentrations did not significantly affect these levels. The expression of mTOR decreased at all given concentrations. The expression of the TP53 gene did not change at the low concentration, while it increased at the high concentrations. Based on the results, it may be stated that fluorine may inhibit the kinase enzymes in the PI3K/Akt pathway. In summary, in the pathogenesis of the cell damage caused by fluorine in the NRK-52E cell line, the PI3K/Akt/mTOR pathway is an important signal pathway.
Collapse
Affiliation(s)
- Rıskiye Korkmaz
- Department of Biochemstry, Faculty of Veterinary Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Veysel Yüksek
- Department of Medical Laboratory, Özalp Vocational High School, Van Yuzuncu Yıl University, Van, Turkey.
| | - Semiha Dede
- Department of Biochemstry, Faculty of Veterinary Medicine, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
12
|
Wu S, Wang Y, Iqbal M, Mehmood K, Li Y, Tang Z, Zhang H. Challenges of fluoride pollution in environment: Mechanisms and pathological significance of toxicity - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119241. [PMID: 35378201 DOI: 10.1016/j.envpol.2022.119241] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is an important trace element in the living body. A suitable amount of fluoride has a beneficial effect on the body, but disproportionate fluoride entering the body will affect various organs and systems, especially the liver, kidneys, nervous system, endocrine system, reproductive system, bone, and intestinal system. In recent years, with the rapid development of agriculture and industry, fluoride pollution has become one of the important factors of environmental pollution, and fluoride pollution in any form is becoming a serious problem. Although countries around the world have made great breakthroughs in controlling fluoride pollution, however fluorosis still exists. A large amount of fluoride accumulated in animals will not only produce the toxic effects, but it also causes cell damage and affect the normal physiological activities of the body. There is no systematic description of the damage mechanism of fluoride. Therefore, the study on the toxicity mechanism of fluoride is still in progress. This review summarizes the existing information of several molecular mechanisms of the fluoride toxicity comprehensively, aiming to clarify the toxic mechanism of fluoride on various body systems. We have also summerized the pathological changes of those organ systems after fluoride poisoning in order to provide some ideas and solutions to the reader for the prevention and control of modern fluoride pollution.
Collapse
Affiliation(s)
- Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Li M, Feng J, Cheng Y, Dong N, Tian X, Liu P, Zhao Y, Qiu Y, Tian F, Lyu Y, Zhao Q, Wei C, Wang M, Yuan J, Ying X, Ren X, Yan X. Arsenic-fluoride co-exposure induced endoplasmic reticulum stress resulting in apoptosis in rat heart and H9c2 cells. CHEMOSPHERE 2022; 288:132518. [PMID: 34637859 DOI: 10.1016/j.chemosphere.2021.132518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Exposure to arsenic (As) or fluoride (F) has been shown to cause cardiovascular disease (CVDs). However, evidence about the effects of co-exposure to As and F on myocardium and their mechanisms remain scarce. Our aim was to fill the gap by establishing rat and H9c2 cell exposure models. We determined the effects of As and/or F exposure on the survival rate, apoptosis rate, morphology and ultrastructure of H9c2 cells; in addition, we tested the related genes and proteins of endoplasmic reticulum stress (ERS) and apoptosis in H9c2 cells and rat heart tissues. The results showed that As and/or F exposure induced early apoptosis of H9c2 cells and caused endoplasmic reticulum expansion. Additionally, the mRNA and protein expression levels of GRP78, PERK and CHOP in H9c2 cells were higher in the exposure groups than in the control group, and could be inhibited by 4-PBA. Furthermore, we found that As and/or F exposure increased the expression level of GRP78 in rat heart tissues, but interestingly, the expression level of CHOP protein was increased in the F and As groups, while significantly decreased in the co-exposure group. Overall, our results suggested that ERS-induced apoptosis was involved in the damage of myocardium by As and/or F exposure. In addition, factorial analysis results showed that As and F mainly play antagonistic roles in inducing myocardial injury, initiating ERS and apoptosis after exposure.
Collapse
Affiliation(s)
- Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Nisha Dong
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiyu Yuan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xuefeng Ren
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
14
|
Yin H, Zuo Z, Yang Z, Guo H, Fang J, Cui H, Ouyang P, Chen X, Chen J, Geng Y, Chen Z, Huang C, Zhu Y. Nickel induces autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112583. [PMID: 34352574 DOI: 10.1016/j.ecoenv.2021.112583] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Nickel (Ni), a widely distributed metal, is an important pollutant in the environment. Although kidney is a crucial target of Ni toxicity, information on autophagy and the potential mechanisms of Ni-induced renal toxicity are still poorly described. As we discovered, NiCl2 could induce renal damage including decrease in renal weight, renal histological alterations, and renal function injury. According to the obtained results, NiCl2 could obviously increase autophagy, which was characterized by increase of LC3 expression and decrease of p62 expression. Meanwhile, the result of ultrastructure observation showed increased autolysosomes numbers in the kidney of NiCl2-treated mice. In addition, NiCl2 increased mRNA and protein levels of autophagy flux proteins including Beclin1, Atg5, Atg12, Atg16L1, Atg7, and Atg3. Furthermore, NiCl2 induced autophagy through AMPK and PI3K/AKT/mTOR pathways which featured down-regulated expression levels of p-PI3K, p-AKT and p-mTOR and up-regulated expression levels of p-AMPK and p-ULK1. In summary, the above results indicate involvement of autophagy in renal injury induced by NiCl2, and NiCl2 induced autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney.
Collapse
Affiliation(s)
- Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
15
|
Liu P, Li R, Tian X, Zhao Y, Li M, Wang M, Ying X, Yuan J, Xie J, Yan X, Lyu Y, Wei C, Qiu Y, Tian F, Zhao Q, Yan X. Co-exposure to fluoride and arsenic disrupts intestinal flora balance and induces testicular autophagy in offspring rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112506. [PMID: 34265531 DOI: 10.1016/j.ecoenv.2021.112506] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
While numerous studies have shown that fluoride or arsenic exposure may damage the reproductive system, there are few reports of co-exposure to fluoride and arsenic. In addition, the literature on autophagy and intestinal flora composition in reproductive toxicity studies of co-exposure to fluoride and arsenic is insufficient. In this study, we developed a rat model of fluoride and arsenic exposure via drinking water from pre-pregnancy to 90 days postnatal. Sprague-Dawley rats were randomly divided into sterile water control group, fluoride group (100 mg/L NaF), arsenic group (50 mg/L NaAsO2) and combined exposure group (100 mg/L NaF+50 mg/L NaAsO2). Our results showed that fluoride and arsenic exposure caused a reduction in testicular weight and significant pathological damage to tissue. We found that the levels of follicle-stimulating hormone, luteinizing hormone, and testosterone were reduced to varying degrees. Meanwhile experiments showed that fluoride and arsenic exposure can modulate autophagic flux, causing increased levels of Beclin1 and LC3 expression and decreased p62 expression. Analogously, by performing 16S sequencing of rat feces, we found 24 enterobacterial genera that differed significantly among the groups. Furthermore, the flora associated with testicular injury were identified by correlation analysis of hormonal indices and autophagy alterations with intestinal flora composition at the genus level, respectively. In summary, our study shows that fluoride and arsenic co-exposure alters autophagic flux in the testis, causes testicular injury, and reveals an association between altered intestinal flora composition and testicular injury.
Collapse
Affiliation(s)
- Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ran Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiyu Yuan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoting Yan
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
16
|
Li Y, Liu Y, Yi J, Li Y, Yang B, Shang P, Mehmood K, Bilal RM, Zhang H, Chang YF, Tang Z, Wang Y, Li Y. The potential risks of chronic fluoride exposure on nephrotoxic via altering glucolipid metabolism and activating autophagy and apoptosis in ducks. Toxicology 2021; 461:152906. [PMID: 34450209 DOI: 10.1016/j.tox.2021.152906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Fluoride is one of the most widely distributed elements in nature, while some fluorine-containing compounds are toxic to several vertebrates at certain levels. The current study was performed to evaluate the nephrotoxic effects of fluoride exposure in ducks. The results showed that the renal index was decreased in NaF group, and fluoride exposure significantly decreased the levels of serum Albumin, Glucose, Total cholesterol, Urea, protein and Triglycerides, confirming that NaF exhibited adverse effects on the kidney. The overall structure of renal cells showed damage with the signs of nuclelytic, vacuolar degeneration, atrophy, renal cystic cavity widening after fluoride induction. Renal vascular growth was impaired as the expression of VEGF and HIF-1α decreased (p > 0.05). More importantly, autophagy and apoptosis levels of CYT C, LC3, p62, Beclin, M-TOR, Bax and Caspase-3 were increased (p < 0.05) in the NaF treated group. Interestingly, our results showed that Phosphatidylethanolamine (PE) and Phosphatidylcholine (PC) activated the M-TOR autophagy pathway. Meanwhile, the PE acted on Atg5/ LC3 autophagy factor, followed by the auto-phagosome generation and activation of cell autophagy. These results indicate that NaF exposure to duck induced nephron-toxicity by activating autophagy, apoptosis and glucolipid metabolism pathways, which suggest that fluorine exposure poses a risk of poisoning.
Collapse
Affiliation(s)
- Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, Tibet, China.
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Zhong G, Wan F, Wu S, Jiang X, Tang Z, Zhang X, Huang R, Hu L. Arsenic or/and antimony induced mitophagy and apoptosis associated with metabolic abnormalities and oxidative stress in the liver of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146082. [PMID: 33676223 DOI: 10.1016/j.scitotenv.2021.146082] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Arsenic and antimony are coexisting cumulative environmental pollutants that cause severe and extensive biological toxicity. However, their interactions and toxic mechanisms in the liver remain to be fully elucidated. In this study, a total of sixty 4-week-old mice were divided into four groups and treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony (Sb) for 60 days. The results demonstrated that biochemical indicators of hepatotoxicity (ALT, AST, ALP) were upregulated in all treated groups. Additionally, the oxidative burden of the liver was increased in the cotreated groups compared with the individual toxicant-treated groups. Meanwhile, mitochondrial injury, autophagosomes, hepatic-congestion and karyopyknosis were obviously observed in cotreated groups. Additionally, coupled with serum biochemical index (TG, TC), histopathology examination and metabolomics results, we found that cotreatment with ATO and Sb resulted in lipid metabolism disorder and steatosis of liver tissues. Our further investigation found that the levels of pro-apoptotic (Caspase-3, Caspase-9, Bax, P53, Cytc) and mitophagy (LC3-B, P62, PINK1, Parkin) indexes in the cotreated groups were markedly increased, whereas the levels of anti-apoptosis index (Bcl-2) were decreased. Collectively, these results show that co-exposure to ATO and Sb can cause abnormal liver energy metabolism and oxidative stress. Moreover, mitophagy and apoptosis play important roles in the mechanisms of arsenic/antimony cytotoxicity to mouse livers.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Mondal P, Shaw P, Dey Bhowmik A, Bandyopadhyay A, Sudarshan M, Chakraborty A, Chattopadhyay A. Combined effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Danio rerio) brain: Alterations in stress marker and apoptotic gene expression. CHEMOSPHERE 2021; 269:128678. [PMID: 33127104 DOI: 10.1016/j.chemosphere.2020.128678] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Arsenic and fluoride are two naturally occurring toxicants to which various organisms including a major part of the human populations are co-exposed to. However, interactions between them inside body are quite complicated and needs proper evaluation. Inconclusive reports regarding their combined effects on brain prompted us to conduct this study where we investigated their individual as well as combined effects on female zebrafish brain at environmentally relevant concentrations (50 μgL-1 arsenic trioxide and 15 mgL-1 sodium fluoride) after different time intervals (15, 30 and 60 days). Persistent near-basal level of GSH, least increased MDA content and catalase activity portrayed arsenic and fluoride co-exposure as less toxic which was corroborated with far less damage caused in the histoarchitecture of optic tectum region in midbrain. Stress-responsive genes viz., Nrf2 and Hsp70 were overexpressed after individual as well as combined exposures, indicating a common cellular response to combat the formed oxidative stresses. Biphasic response of AChE upon individual exposure confirmed their neurotoxic effects too. Expression profile of p53 (unaltered), Bax (lower or near-basal) and Bcl2 (comparatively higher), along with absence of DNA fragmentation indicated no induction of apoptosis in the co-exposed group. Tissue accumulation of arsenic and fluoride was significantly less in the brain of co-exposed zebrafish when compared to their individual exposures. This preliminary study indicates an antagonistic effect of these two toxicants in zebrafish brain and needs further studies involving oxidative stress independent markers to understand the detailed molecular mechanism.
Collapse
Affiliation(s)
- Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | | - Muthammal Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | | |
Collapse
|