1
|
Liu J, Xu S, Yang X, Huang J, Pan D, Zhang Z, Dong F, Wu X. Biodegradation of the Fungicide Picoxystrobin by Hyphomicrobium sp. H-9 and Detoxification Mechanism as Indicated by the Microalgae Tetradesmus obliquus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9221-9233. [PMID: 40196889 DOI: 10.1021/acs.jafc.5c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Picoxystrobin is widely used in agriculture, causing residual contamination of habitats and ecotoxicity. In this study, a picoxystrobin-degrading strain H-9 was isolated and identified as Hyphomicrobium sp. It can rapidly degrade four strobilurin fungicides (picoxystrobin, trifloxystrobin, azoxystrobin, and kresoxim-methyl) to produce the corresponding SF acids and methanol via the hydrolysis of ester bonds. Picoxystrobin can significantly inhibit the growth of algal cells and the synthesis of chlorophyll in Tetradesmus obliquus. The detoxification capacity of strain H-9 was evident as it mitigated picoxystrobin-induced growth inhibition and oxidative stress in T. obliquus. Strain H-9 modulated the expression of genes involved in photosynthesis, the Calvin cycle, the tricarboxylic acid cycle, glycolysis, oxidative stress, and chlorophyll synthesis, thereby alleviating picoxystrobin toxicity to T. obliquus. This study enhances our understanding of the detoxification mechanism of microorganisms on microalgae exposed to SF stress and provides a novel insight into the microbial remediation of SFs-contaminated environments.
Collapse
Affiliation(s)
- Junwei Liu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Shiwei Xu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiaofeng Yang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jinjin Huang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Pan
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhaoxian Zhang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Sivakumar M, Dhinakarasamy I, Chakraborty S, Clements C, Thirumurugan NK, Chandrasekar A, Vinayagam J, Kumar C, Thirugnanasambandam R, Kumar V R, Chandrasekaran VN. Effects of titanium oxide nanoparticles on growth, biochemical composition, and photosystem mechanism of marine microalgae Isochrysis galbana COR-A3. Nanotoxicology 2025; 19:156-179. [PMID: 39885705 DOI: 10.1080/17435390.2025.2454267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
The widespread utilization of titanium oxide nanoparticles (TiONPs) in various industrial applications has raised concerns about their potential ecological risks in marine environment. Assessing the toxicity of TiONPs on primary producers is essential to understand their impact on marine ecosystem. This study investigates the acute toxicity effect of TiONPs on Isochrysis galbana COR-A3 cells, focusing on structural and physiological changes that can compromise algal viability and ecological function. Cells were exposed to TiONPs concentration of 10-50 mg/L and assessments were conducted over 96 h to evaluate cell viability, biochemical composition, photo-physiology, oxidative stress and morphological deformations. At 50 mg/L concentration, cell viability was significantly reduced by 73.42 ± 3.46% and subsequent decrease of 42.8%, 29.2%, 44.2% in carbohydrate, protein and lipid content were observed. TiONPs exposure elevates the reactive oxygen species production and thereby impairing the photosystem II efficiency and disrupting the cellular metabolism. Morphological analysis revealed significant cell membrane disruption and plasmolysis. These cascading effects reveal TiONPs ability to interfere with algal physiological process, potentially affecting the primary productivity in marine ecosystem. Our findings highlight the ecological risk associated with the TiONPs, emphasizing the need for regulatory measures to mitigate the nanoparticle pollution in aquatic environment. This study provides more insights on the TiONPs induced toxicity in marine microalgae by altering the photosynthetic performance and biochemical integrity.
Collapse
Affiliation(s)
- Manikandan Sivakumar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Inbakandan Dhinakarasamy
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subham Chakraborty
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Clarita Clements
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Naren Kumar Thirumurugan
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anu Chandrasekar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jeevitha Vinayagam
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Chandrasekar Kumar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajendar Thirugnanasambandam
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ramesh Kumar V
- Department of Biotechnology, Sathyabama Institute of Science and technology, Chennai, Tamil Nadu, India
| | | |
Collapse
|
3
|
Guo H, Wang X, Li C, Mohamed HF, Li D, Wang L, Chen H, Lin K, Huang S, Pang J, Zhang Y, Krock B, Luo Z. Ignited competition: Impact of bioactive extracellular compounds on organelle functions and photosynthetic systems in harmful algal blooms. PLANT, CELL & ENVIRONMENT 2024; 47:4615-4629. [PMID: 39047015 DOI: 10.1111/pce.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Prevalent interactions among marine phytoplankton triggered by long-range climatic stressors are well-known environmental disturbers of community structure. Dynamic response of phytoplankton physiology is likely to come from interspecies interactions rather than direct climatic effect on single species. However, studies on enigmatic interactions among interspecies, which are induced by bioactive extracellular compounds (BECs), especially between related harmful algae sharing similar shellfish toxins, are scarce. Here, we investigated how BECs provoke the interactions between two notorious algae, Alexandrium minutum and Gymnodinium catenatum, which have similar paralytic shellfish toxin (PST) profiles. Using techniques including electron microscopy and transcriptome analysis, marked disruptions in G. catenatum intracellular microenvironment were observed under BECs pressure, encompassing thylakoid membrane deformations, pyrenoid matrix shrinkage and starch sheaths disappearance. In addition, the upregulation of gene clusters responsible for photosystem-I Lhca1/4 and Rubisco were determined, leading to weaken photon captures and CO2 assimilation. The redistribution of lipids and proteins occurred at the subcellular level based on in situ focal plane array FTIR imaging approved the damages. Our findings illuminated an intense but underestimated interspecies interaction triggered by BECs, which is responsible for dysregulating photosynthesis and organelle function in inferior algae and may potentially account for fitness alteration in phytoplankton community.
Collapse
Affiliation(s)
- Huige Guo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiaochen Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Changlin Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Hala F Mohamed
- Department of Botany & Microbiology, (Girls Branch), Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Dawei Li
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lianghui Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Hongzhe Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Kunning Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jinling Pang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Bernd Krock
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
4
|
Li Q, Ma Q, Zhou Y, Jiang X, Parales RE, Zhao S, Zhuang Y, Ruan Z. Isolation, identification, and degradation mechanism by multi-omics of mesotrione-degrading Amycolatopsis nivea La24. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134951. [PMID: 38917628 DOI: 10.1016/j.jhazmat.2024.134951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Mesotrione is a herbicide used in agricultural production; however, its stability and long-term residues pose ecological risks to soil health and subsequent crops. In this research, the strain Amycolatopsis nivea La24 was identified as capable of completely degrading 50 mg∙L-1 mesotrione within 48 h. It exhibited a broad adaptability to various environment and could degrade three sulfonylurea herbicides (nicosulfuron, chlorimuron-methyl, and cinosulfuron). Non-target metabonomic and mass spectrometry demonstrated that La24 strain broke down the mesotrione parent molecule by targeting the β-diketone bond and nitro group, resulting in the production of five possible degradation products. The differentially expressed genes were significantly enriched in fatty acid degradation, amino acid metabolism, and other pathways, and the differentially metabolites in glutathione metabolism, arginine/proline metabolism, cysteine/methionine metabolism, and other pathways. Additionally, it was confirmed by heterologous expression that nitroreductase was directly involved in the mesotrione degradation, and NDMA-dependent methanol dehydrogenase would increase the resistance to mesotrione. Finally, the intracellular response of La24 during mesotrione degradation was proposed. This work provides insight for a comprehensive understanding of the mesotrione biodegradation mechanism, significantly expands the resources for pollutant degradation, and offers the potential for a more sustainable solution to address herbicide pollution in soil.
Collapse
Affiliation(s)
- Qingqing Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyun Ma
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiqing Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Jiang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhuang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyong Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Ndikuryayo F, Gong XY, Yang WC. Advances in Understanding the Toxicity of 4-Hydroxyphenylpyruvate Dioxygenase-Inhibiting Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17762-17770. [PMID: 39093601 DOI: 10.1021/acs.jafc.4c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase inhibiting herbicides (HIHs) represent a recent class (HRAC group 27) of herbicides that offer many advantages, such as broad-spectrum activity, crop selectivity, and low resistance rates. However, emerging studies have highlighted the potential toxicity of HIHs in the environment. This review aims to provide a comprehensive summary of the toxicity of HIHs toward nontarget organisms, including plants, microorganisms, animals, and humans. Furthermore, the present work discusses the ecological roles of these organisms in the environment and their significance in agriculture. By shedding light on the toxicity of HIHs, this study seeks to raise awareness among end users, including environmentalists, researchers, and farmers, regarding the potential ecological implications of these herbicides. Hopefully, this knowledge can contribute to informed decision-making and sustainable practices in green agriculture and environmental management.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
- Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Laboratoire de Nutrition-Phytochimie, d'Ecologie et Environnement Appliqués, Institut de Pédagogie Appliquée, Université du Burundi, BP 2700 Bujumbura, Burundi
| | - Xue-Yan Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
6
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. What can reactive oxygen species (ROS) tell us about the action mechanism of herbicides and other phytotoxins? Free Radic Biol Med 2024; 220:92-110. [PMID: 38663829 DOI: 10.1016/j.freeradbiomed.2024.04.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins. The commercial value of many synthetic herbicides is based on weed death as result of oxidative stress, and for a number of them, the site and the mechanism of ROS production have been characterized. This review summarizes the current knowledge on ROS production in plants subjected to different groups of synthetic herbicides and natural phytotoxins. We suggest that the use of ROS-specific fluorescent probes and of ROS-specific marker genes can provide important information on the mechanism of action of these toxins. Furthermore, we propose that, apart from oxidative damage, elicitation of ROS-induced PCD is emerging as one of the important processes underlying the action of herbicides and phytotoxins.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia; Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Saint Petersburg, 196608, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia.
| |
Collapse
|
7
|
Liu H, Li R, Hu W, Jian L, Huang B, Fan Y, Zhao Y, Zhang H, Khan KS. Multi-medium residues and ecological risk of herbicides in a typical agricultural watershed of the Mollisols region, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173507. [PMID: 38797413 DOI: 10.1016/j.scitotenv.2024.173507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The widespread use of herbicides impacts non-target organisms, promotes weed resistance, posing a serious threat to the global goal of green production in agriculture. Although the herbicide residues have been widely reported in individual environmental medium, their presence across different media has received scant attention, particularly in Mollisols regions with intensive agricultural application of herbicides. A systematic investigation was conducted in this study to clarify the occurrence of herbicide residues in soil, surface water, sediments, and grains from a typical agricultural watershed in the Mollisols region of Northeast China. Concentrations of studied herbicides ranged from 0.30 to 463.49 μg/kg in soil, 0.31-29.73 μg/kg in sediments, 0.006-1.157 μg/L in water, and 0.32-2.83 μg/kg in grains. Among these, Clomazone was the most priority herbicide detected in soil, sediments, and water, and Pendimethalin in grains. Crop types significantly affected the residue levels of herbicides in grains. Clomazone posed high ecological risks in soil and water, with 86.4 % of water samples showing high risks from herbicide mixtures (RQ > 1). These findings aid in enhancing our comprehension of the pervasive occurrence and potential ecological risks of herbicides in different media within typical agricultural watersheds, providing detailed data to inform the development of targeted mitigation strategies.
Collapse
Affiliation(s)
- Hanqiang Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyou Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Le Jian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Biao Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ya'nan Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongcun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Khalid Saifullah Khan
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|
8
|
Wu C, Li Y, Wu X, Bao E, Ye L, Cao K. Slightly acidic electrolyzed water significantly restrains the accumulation of the microalgae Pseudokirchneriella subcapitata in hydroponic systems. J Appl Microbiol 2024; 135:lxae082. [PMID: 38533661 DOI: 10.1093/jambio/lxae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
AIMS This study explored the effects of slightly acidic electrolyzed water (SAEW) on algae to exploit technologies that effectively suppress algal growth in hydroponic systems and improve crop yield. METHODS AND RESULTS The effects of SAEW on algal growth and the response mechanisms of algae to SAEW were investigated. Moreover, we studied whether the application of SAEW adversely affected tomato seedling growth. The results showed that SAEW significantly inhibited algal growth and destroyed the integrity of the algal cells. In addition, the intracellular oxidation-reduction system of algae was greatly influenced by SAEW. The H2O2, O2-, malondialdehyde (MDA), and reactive oxygen species (ROS) fluorescence signals were significantly induced by SAEW, and superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GR) activities were greatly enhanced by a low SAEW concentration but significantly inhibited by SAEW with a high available chlorine concentration, which may contribute to heavy oxidative stress on algal growth and cell structure break down, eventually causing the death of algae and cell number decrease. We also found that regardless of the concentration of SAEW (from 10 to 40 mg L-1), there was no significant change in the germination index, length, or fresh weight of the hydroponic tomato seedlings. CONCLUSIONS Our findings demonstrate that SAEW can be used in hydroponic systems to restrain algae with no negative impact on tomato plants.
Collapse
Affiliation(s)
- Cuinan Wu
- Agriculture College, Ningxia University, Yinchuan 750021, China
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuanyuan Li
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Xue Wu
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Encai Bao
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lin Ye
- Agriculture College, Ningxia University, Yinchuan 750021, China
| | - Kai Cao
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
9
|
Peng Y, Xiao X, Ren B, Zhang Z, Luo J, Yang X, Zhu G. Biological activity and molecular mechanism of inactivation of Microcystis aeruginosa by ultrasound irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133742. [PMID: 38367436 DOI: 10.1016/j.jhazmat.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Harmful algal blooms (HABs) significantly impact on water quality and ecological balance. Ultrasound irradiation has proven to be an effective method for algal control. Nevertheless, the molecular mechanisms underlying the inactivation of M. aeruginosa by ultrasound are still unknown. In this study, the physiological activity and molecular mechanism of algal cells exposed to different frequencies of ultrasound were studied. The results indicated a pronounced inhibition of algal cell growth by high-frequency, high-dose ultrasound. Moreover, with increasing ultrasound dosage, there was a higher percentage of algal cell membrane ruptures. SEM and TEM observed obvious disruptions in membrane structure and internal matrix. Hydroxyl radicals generated by high-frequency ultrasound inflicted substantial cell membrane damage, while increased antioxidant enzyme activities fortified cells against oxidative stress. Following 2 min of ultrasound irradiation at 740 kHz, significant differential gene expression occurred in various aspects, including energy metabolism, carbohydrate metabolism, and environmental information processing pathways. Moreover, ultrasound irradiation influenced DNA repair and cellular apoptosis, suggesting that the algal cells underwent biological stress to counteract the damage caused by ultrasound. These findings reveal that ultrasound irradiation inactivates algae by destroying their cell structures and metabolic pathways, thereby achieving the purpose of algal suppression.
Collapse
Affiliation(s)
- Yazhou Peng
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiang Xiao
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bozhi Ren
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jun Luo
- Changsha Economic and Technical Development Zone Water Purification Engineering Co., Ltd, Changsha 410100, China
| | - Xiuzhen Yang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guocheng Zhu
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
10
|
Liang C, Lv H, Liu W, Wang Q, Yao X, Li X, Hu Z, Wang J, Zhu L, Wang J. Mechanism of the adverse outcome of Chlorella vulgaris exposure to diethyl phthalate: Water environmental health reflected by primary producer toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168876. [PMID: 38013100 DOI: 10.1016/j.scitotenv.2023.168876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
As a ubiquitous contaminant in aquatic environments, diethyl phthalate (DEP) is a major threat to ecosystems because of its increasing utilization. However, the ecological responses to and toxicity mechanisms of DEP in aquatic organisms remain poorly understood. To address this environmental concern, we selected Chlorella vulgaris (C. vulgaris) as a model organism and investigated the toxicological effects of environmentally relevant DEP concentrations at the individual, physiological, biochemical, and molecular levels. Results showed that the incorporation of DEP significantly inhibited the growth of C. vulgaris, with inhibition rates ranging from 10.3 % to 83.47 %, and disrupted intracellular chloroplast structure at the individual level, while the decrease in photosynthetic pigments, with inhibition rates ranging from 8.95 % to 73.27 %, and the imbalance of redox homeostasis implied an adverse effect of DEP at the physio-biochemical level. Furthermore, DEP significantly reduced the metabolic activity of algal cells and negatively altered the cell membrane integrity and mitochondrial membrane potential. In addition, the apoptosis rate of algal cells presented a significant dose-effect relationship, which was mainly attributed to the fact that DEP pollutants regulated Ca2+ homeostasis and further increased the expression of Caspase-8, Caspase-9, and Caspase-3, which are associated with internal and external pathways. The gene transcriptional expression profile further revealed that DEP-mediated toxicity in C. vulgaris was mainly related to the destruction of the photosynthetic system, terpenoid backbone biosynthesis, and DNA replication. Overall, this study offers constructive understandings for a comprehensive assessment of the toxicity risks posed by DEP to C. vulgaris.
Collapse
Affiliation(s)
- Chunliu Liang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wenrong Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhuran Hu
- Shandong Green and Blue Bio-technology Co. Ltd, Tai'an, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
11
|
Yang M, Du D, Zhu F, Wang X. Metabolomic analysis reveals the toxicity mechanisms of bisphenol A on the Microcystis aeruginosa under different phosphorus levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123022. [PMID: 38008252 DOI: 10.1016/j.envpol.2023.123022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Harmful cyanobacterial blooms have been a global environmental problem. Discharge of anthropogenic pollutants and excess nutrient import into the freshwater bodies may be the biggest drivers of bloom. Bisphenol A (BPA), a typical endocrine-disrupting compound, is frequently detected in different natural waters, which was a threat to the balance of aquatic ecosystem. Yet mechanistic understanding of the bloom and microcystin generation under combined pollution conditions is still a mystery. Herein, the cellular and metabolomic responses to BPA exposure and phosphorus (P) levels in Microcystis aeruginosa were investigated throughout its growth period. The results showed that the stress response of M. aeruginosa to BPA was characterized by a decrease in growth density, an increase in P utilization, an increase in ATPase activity, a disruption of the photosynthetic system, and an increase in the production and release of microcystins (MCs). However, these effects are highly dependent on the growth stage of the cyanobacterial cell and the magnitude of the added P concentration. In addition, exposure to a high concentration (10 μM) of BPA significantly stimulated the production of 20.7% more and the release of 29.2% more MCs from M. aeruginosa cells at a low P level. The responses of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) suggested that exposure to BPA exposure at a low P level can lead to oxidative stress in M. aeruginosa. In addition, the differentially expressed 63 metabolites showed that cell growth, energy generation and photosynthesis were mainly regulated by the metabolic network of 3-phosphoglyceric acid (3-PGA), D-glucose 6-phosphate, UDP-α-D-galactose and UDP-N-acetyl-D-galactosamine (UDP-GalNAc) metabolism. Amino acids and lipid metabolism collectively mediated MCs production and release. These findings will provide important references for the control of harmful cyanobacterial blooms under combined pollution.
Collapse
Affiliation(s)
- Meng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Fang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiangrong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
12
|
Zhang X, Wang Q, Fan G, Tang L, Shao Y, Mao B, Lv Q, Zhao B. Utilizing differences in bTH tolerance between the parents of two-line hybrid rice to improve the purity of hybrid rice seed. FRONTIERS IN PLANT SCIENCE 2023; 14:1217893. [PMID: 37600184 PMCID: PMC10435883 DOI: 10.3389/fpls.2023.1217893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023]
Abstract
Introduction Two-line hybrid rice based on Photoperiod/thermo-sensitive genic male sterile (P/TGMS) lines has been developed and applied widely in agriculture due to the freedom in making hybrid combinations, less difficulty in breeding sterile lines, and simpler procedures for breeding and producing hybrid seed. However, there are certain risks associated with hybrid seed production; if the temperature during the P/TGMS fertility-sensitive period is lower than the critical temperature, seed production will fail due to self-pollination. In a previous study, we found that the issue of insufficient purity of two-line hybrid rice seed could be initially addressed by using the difference in tolerance to β-triketone herbicides (bTHs) between the female parent and the hybrid seeds. Methods In this study, we further investigated the types of applicable herbicides, application methods, application time, and the effects on physiological and biochemical indexes and yield in rice. Results The results showed that this method could be used for hybrid purification by soaking seeds and spraying plants with the bTH benzobicylon (BBC) at safe concentrations in the range of 37.5-112.5 mg/L, and the seeds could be soaked in BBC at a treatment rate of 75.0 mg/L for 36-55 h without significant negative effects. The safe concentration for spraying in the field is 50.0-400.0 mg/L BBC at the three-leaf stage. Unlike BBC, Mesotrione (MST) can only be sprayed to achieve hybrid purification at concentrations between 10.0 and 70.0 mg/L without affecting yield. The three methods of hybrid seed purification can reach 100% efficiency without compromising the nutritional growth and yield of hybrid rice. Moreover, transcriptome sequencing revealed that 299 up-regulated significant differentially expressed genes (DEGs) in the resistant material (Huazhan) poisoned by BBC, were mainly enriched in phenylalanine metabolism and phenylpropanoid biosynthesis pathway, it may eliminate the toxic effects of herbicides through this way. Discussion Our study establishes a foundation for the application of the bTH seed purification strategy and the three methods provide an effective mechanism for improving the purity of two-line hybrid rice seeds.
Collapse
Affiliation(s)
- Xiuli Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Qing Wang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Guojian Fan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Li Tang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Bigang Mao
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Qiming Lv
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Bingran Zhao
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
13
|
Jiao Q, Mu Y, Deng J, Yao X, Zhao X, Liu X, Li X, Jiang X, Zhang F. Direct toxicity of the herbicide florasulam against Chlorella vulgaris: An integrated physiological and metabolomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114135. [PMID: 36201917 DOI: 10.1016/j.ecoenv.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Herbicides are the agents of choice for use in weed control; however, they can enter the aquatic environment, with potentially serious consequences for non-target organisms. Despite the possible deleterious effects, little information is available regarding the ecotoxicity of the herbicide florasulam toward aquatic organisms. Accordingly, in this study, we investigated the toxic effect of florasulam on the freshwater microalga Chlorella vulgaris and sought to identify the underlying mechanisms. For this, we employed a growth inhibition toxicity test, and then assessed the changes in physiological and metabolomic parameters, including photosynthetic pigment content, antioxidant system, intracellular structure and complexity, and metabolite levels. The results showed that treatment with florasulam for 96 h at the concentration of 2 mg/L, 2.84 mg/L, and 6 mg/L in medium significantly inhibited algal growth and photosynthetic pigment content. Moreover, the levels of reactive oxygen species were also increased, resulting in oxidative damage and the upregulation of the activities of several antioxidant enzymes. Transmission electron microscopic and flow cytometric analysis further demonstrated that exposure to florasulam (6 mg/L) for 96 h disrupted the cell structure of C. vulgaris, characterized by the loss of cell membrane integrity and alterations in cell morphology. Changes in amino acid metabolism, carbohydrate metabolism, and the antioxidant system were also observed and contributed to the suppressive effect of florasulam on the growth of this microalga. Our findings regarding the potential risks of florasulam in aquatic ecosystems provide a reference for the safe application of this herbicide in the environment.
Collapse
Affiliation(s)
- Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yuelin Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaoyan Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
14
|
Eco-toxicological effect of a commercial dye Rhodamine B on freshwater microalgae Chlorella vulgaris. Arch Microbiol 2022; 204:658. [PMID: 36183287 DOI: 10.1007/s00203-022-03254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
In this study, the acute toxicity effects of a fluorescent xanthene dye, Rhodamine B (RhB), widely used in textile, paper, and leather industries was investigated on a freshwater microalgae Chlorella vulgaris. The acute toxicity of RhB on C. vulgaris was determined by examining the growth, cell morphology, pigment production, protein content, and the activities of oxidative stress enzymes. Based on the results of the toxicity study of 24-96 h, the median inhibitory concentration (IC50) values ranged from 69.94 to 31.29 mg L-1. The growth of C. vulgaris was conspicuously inhibited by RhB exposure, and the cell surfaces appeared to be seriously shrunk in SEM analysis. The growth of C. vulgaris was hindered after exposure to graded concentrations (10-50 mg L-1) of RhB. A significant reduction in growth rate, pigment synthesis (chlorophyll a, chlorophyll b, and carotenoid), and protein content was recorded in a dose-dependent manner. After 96 h exposure of C. vulgaris to 50 mg L-1 RhB, chlorophyll a, chlorophyll b, carotenoids, and protein contents were reduced by 71.59, 74.90, 65.84, and 74.20%, respectively. The activities of the antioxidant enzymes peroxidase (POD), and catalase (CAT) also increased markedly in the presence of RhB. A notable effect was observed on oxidative enzymes catalase and peroxidase, indicating that oxidative stress may be the primary factor in the inhibition of growth and pigment synthesis. Consequently, the experimental acute toxicity data were compared to the QSAR prediction made by the ECOSAR programme. Results showed that the experimental acute toxicity values were 67.74-fold lower than the ECOSAR predicted values. The study provides convincing evidence for the metabolic disruption in the ubiquitous microalgae C. vulgaris due to the RhB dye toxicity.
Collapse
|
15
|
Liu X, Wang X, Zhang F, Yao X, Qiao Z, Deng J, Jiao Q, Gong L, Jiang X. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156069. [PMID: 35605851 DOI: 10.1016/j.scitotenv.2022.156069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Fludioxonil is widely used in the control of crop diseases because of its broad spectrum and high activity, but its presence is now common in waterways proximate to treated areas. This study examined the toxic effects and mechanisms of fludioxonil on the microalgal taxa Chlorella vulgaris. The results showed that fludioxonil limited the growth of C. vulgaris and the median inhibitory concentration at 96 h was 1.87 mg/L. Concentrations of 0.75 and 3 mg/L fludioxonil reduced the content of photosynthetic pigments in algal cells to different degrees. Fludioxonil induced oxidative damage by altering C. vulgaris antioxidant enzyme activities and increasing reactive oxygen species levels. Fludioxonil at 0.75 mg/L significantly increased the activity of antioxidant enzymes. The highest level of activity was 1.60 times that of the control group. Both fludioxonil treatment groups significantly increased ROS levels, with the highest increase being 1.90 times that of the control group. Transmission electron microscope showed that treatment with 3 mg/L fludioxonil for 96 h disrupted cell integrity and changed cell morphology, and flow cytometer analysis showed that fludioxonil induced apoptosis. Changes in endogenous substances indicated that fludioxonil negatively affects C. vulgaris via altered energy metabolism, biosynthesis of amino acids, and unsaturated fatty acids. This study elucidates the effects of fludioxonil on microalgae and the biological mechanisms of its toxicity, providing insights into the importance of the proper management of this fungicide.
Collapse
Affiliation(s)
- Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xueting Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhihua Qiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Luo Gong
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
16
|
Liu Y, Zhao Z, Yang H, Fu L, Zhou D. Trace phenolic acids simultaneously enhance degradation of chlorophenol and biofuel production by Chlorella regularis. WATER RESEARCH 2022; 218:118524. [PMID: 35526356 DOI: 10.1016/j.watres.2022.118524] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Coupling the cultivation of microalgae with wastewater treatment is a promising technology to recover bioresources from wastewater. However, toxic pollutants in wastewater seriously inhibit the growth of microalgae and the removal of pollutants. Phenolic acids are similar to phytohormones, could potentially relieve the toxicity to microalgae and simultaneously promote pollutant degradation and lipid accumulation. Chlorella and 4-chlorophenol (4-CP) were utilized to simulate the toxic wastewater treatment, and the roles of two typical phenolic acids, such as p-hydroxybenzoic acid (p-HBA) and caffeic acid (CA), were explored. The 0.2 μM concentration of p-HBA or CA improved the specific growth rate by 7.6% by enhancing photosynthesis and DNA replication. The oxidative damage caused by 4-CP was reduced by 30.3-49.7% via the synthesis of more antioxidant enzymes and the direct scavenging of free radicals by phenolic acids. Furthermore, the 4-CP removal rate increased by 27.0%, and toxic 4-CP was degraded into non-toxic compounds. The phenolic acids did not change the 4-CP degradation pathway but accelerated its removal and detoxification by enhancing the expression of 4-CP degradation enzymes. Simultaneously, lipid production increased by 20.5-23.1% due to the upregulation of enzymes related to fatty acid and triacylglycerol synthesis. Trace phenolic acids stimulated the mitogen-activated protein kinase signaling cascade and the calcium signaling pathway to regulate the physiology of the microalgae and protect cells from toxic stress. This study provides a promising new strategy for toxic wastewater treatment and bioresource recovery.
Collapse
Affiliation(s)
- Yang Liu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Zhenhao Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Huiwen Yang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China.
| |
Collapse
|
17
|
Effects of mesotrione on the control efficiency and chlorophyll fluorescence parameters of Chenopodium album under simulated rainfall conditions. PLoS One 2022; 17:e0267649. [PMID: 35657781 PMCID: PMC9165882 DOI: 10.1371/journal.pone.0267649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
This experiment was conducted to study the effects of mesotrione on the control efficiency and chlorophyll fluorescence parameters of Chenopodium album. Simulating three rainfall intensities of 2 mm/h (light rain), 6 mm/h (moderate rain) and 10 mm/h (heavy rain) at different interval times (0.5 h, 1 h, 2 h, 4 h) to analyze variable regulation of the control effect, the photosynthetic pigment content and chlorophyll fluorescence parameters of C. album after spraying mesotrione. With the extension of rainfall time interval, the inhibition rate of plant height, plant control effect and fresh weight control effect of C. album were gradually increased, the inhibition effect of rainfall on the efficacy was gradually decreased, at the same time, the contents of chlorophyll a, chlorophyll b, carotenoids, the maximum photochemical quantum efficiency (Fv/Fm), the actual photochemical quantum yield (Y (II)) and quantum yield (Y (NO)) production of regular energy consumption of C. album were also increased, while the nonregulatory energy decreased gradually. The results showed that the contents of chlorophyll a and chlorophyll b in leaves of C. album increased significantly by 35.63% and 35.38% compared with the control under the condition of simulating 6 mm/h in interval 1 hour. The study suggested that simulating 10 mm/h rainfall intensity had the greatest effect on C. album, the photosynthetic pigment content, Fv/Fm and Y (II) of leaves were significantly higher than those in the control groups under 0.5 h, 1 h and 2 h interval treatments. The carotenoid content was the lowest and Y (NO) was the largest under the 4 h interval treatment. As is displayed that rainfall reduced the weed control effect in the aspect of controlling C. album on mesotrione, which is partly contributed to increase photosynthetic pigment content and enhance the PS II photochemical activity. In conclusion, the rain intensity of ≤2 mm/h did not affect the control effect of mesotrione on C. album. At 6 mm/h within 1 h after treatment, the control effect of fresh weight was significantly reduced by more than 7.14%, and at 10 mm/h within 2 h, the control effect was significantly reduced by more than 14.78%.
Collapse
|
18
|
Cen C, Zhang K, Fu J, Wu X, Wu J, Zheng Y, Zhang Y. Odor-producing response pattern by four typical freshwater algae under stress: Acute microplastic exposure as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153350. [PMID: 35077797 DOI: 10.1016/j.scitotenv.2022.153350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Algae-induced odor problems in water have been repeatedly occurred concerns for drinking water quality. However, present researches mostly focus on the odor-producing pattern of algae in normal growth, and there is scarce discussion on those under stress. Microplastics (MPs) pollution have been global concern for their negative ecological impacts and frequently co-occurs with odor-producing algal bloom in freshwaters. Thus, this study aimed to elucidate the effects and mechanisms of MPs as an environmental stress on algal odorant production for good illustration of odor-producing response pattern under stress. Variation in MP size (polystyrene microspheres; 100 nm, 1000 nm and 10 μm) had significant effects on odorant formation (β-cycloidal, 2-methylisopropanol, 2,4-heptandienal and 2,4-decadienal) by four freshwater algae (Microcystis aeruginosa, Pseudanabaena sp., Cyclotella meneghiniana and Melosira varians). The size ratio of MPs over cells (SRMC) was proposed to categorize the size-ratio dependent effects on the algal odorant production. Interestingly, when SRMC was in the range of 0.1-1, there were always promoting effects; when SRMC < 0.1 or SRMC > 1, there exhibited inhibiting effects, and the inhibiting effects of SRMC < 0.1 were far more severe than those of SRMC > 1. The promotion on odorant production in the SRMC range of 0.1-1 was mainly attributed to the increase in cellular yield, which was related to the increased odorant precursors derived from the oxidation products of reactive oxygen species (ROS). Alternatively, the inhibition of odorant production caused by MPs with SRMC < 0.1 was the results of simultaneously inhibiting cellular density and cellular yield, which might be attributed to the cellular internalization of MPs, inducing the extensive toxic effects. This study illustrated the possibilities of MPs in impairing the esthetics of the source water and provided guidance for the future algal odor issues under stress.
Collapse
Affiliation(s)
- Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaogang Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yingying Zheng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Effiong K, Hu J, Xu C, Zhang Y, Yu S, Tang T, Huang Y, Lu Y, Li W, Zeng J, Xiao X. 3-Indoleacrylic acid from canola straw as a promising antialgal agent - Inhibition effect and mechanism on bloom-forming Prorocentrum donghaiense. MARINE POLLUTION BULLETIN 2022; 178:113657. [PMID: 35452911 DOI: 10.1016/j.marpolbul.2022.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms (HABs) have induced severe damage worldwide. A novel high-efficient antialgal natural chemical, 3-indoleacrylic acid (3-IDC) with a 5-day half-maximal inhibitory concentration (IC50, 5d), was discovered from canola straw, and its algal inhibition mechanism was investigated. Adverse effects were observed on the growth of P. donghaiense with 3-IDC addition, following an increase in reactive oxygen species (ROS) production. 3-IDC also hindered the photosynthetic mechanism of P. donghaiense cells. Transcriptional results showed 3-IDC inhibiting the functions of all the nutrient assimilating genes, down-regulated ribulose-1,5-bisphosphate carboxylase/oxygenase II, and cytochrome f genes. The expression of heat shock protein (HSP) 70 and 90 and rhodopsin genes were also suppressed. The binding affinity of investigated receptors was observed. The conformational changes induced by the spatial microstructural alteration through 3-IDC may further contribute to the perturbation of those enzyme catalytic activities. The present results provide new insights on controlling HABs using 3-IDC.
Collapse
Affiliation(s)
- Kokoette Effiong
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Jing Hu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Caicai Xu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Yiyi Zhang
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Shumiao Yu
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Tao Tang
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Yuzhou Huang
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China
| | - Yongliang Lu
- China National Rice Research Institute, Hangzhou 310012, People's Republic of China
| | - Wei Li
- Academy of Agriculture and Forestry, Qinghai University, Xining 810016, People's Republic of China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, People's Republic of China
| | - Xi Xiao
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, People's Republic of China.
| |
Collapse
|
20
|
Transcriptomic and Physiological Responses of Chlorella pyrenoidosa during Exposure to 17α-Ethinylestradiol. Int J Mol Sci 2022; 23:ijms23073583. [PMID: 35408944 PMCID: PMC8999151 DOI: 10.3390/ijms23073583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
17α-ethinylestradiol (17α-EE2) is frequently detected in water bodies due to its use being widespread in the treatment of prostate and breast cancer and in the control of alopecia, posing a threat to humans and aquatic organisms. However, studies on its toxicity to Chlorella pyrenoidosa have been limited to date. This study investigated the effects of 17α-EE2 on the growth, photosynthetic activity, and antioxidant system of C. pyrenoidosa and revealed related molecular changes using transcriptomic analysis. The cell density of algae was inhibited in the presence of 17α-EE2, and cell morphology was also altered. Photosynthetics were damaged, while reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) content increased. Further transcriptomic analysis revealed that the pathways of photosynthesis and DNA replication were affected at three concentrations of 17α-EE2, but several specific pathways exhibited various behaviors at different concentrations. Significant changes in differentially expressed genes and their enrichment pathways showed that the low-concentration group was predominantly impaired in photosynthesis, while the higher-concentration groups were biased towards oxidative and DNA damage. This study provides a better understanding of the cellular and molecular variations of microalgae under 17α-EE2 exposure, contributing to the environmental risk assessment of such hazardous pollutants on aquatic organisms.
Collapse
|
21
|
Zhang F, Lv X, Jia H, Huang C, Wei J, Ding Z, Wang F, Wang J. Toxicity of the novel fungicide oxathiapiprolin to Chlorella vulgaris: Assessments at different levels of biological organization. CHEMOSPHERE 2022; 291:132752. [PMID: 34736937 DOI: 10.1016/j.chemosphere.2021.132752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Oxathiapiprolin (Otp) is the first successful oxysterol-binding protein (OSBP) inhibitor in oomycete control. It is regarded as a significant milestone in the history of fungicide discoveries and has vast application prospects. There is little available information on the ecotoxicity of Otp to aquatic organisms. In this study, we evaluated the toxic effects of Otp in the Chlorella vulgaris (C. vulgaris). The results revealed the acute toxicity of Otp to C. vulgaris, with a 96-h median effective concentration for growth inhibition of 0.74 mg/L. When algal cells were exposed to 0.5 and 1.5 mg/L Otp, their chlorophyll and carotenoid contents dropped dramatically. As suggested by the significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and the remarkable changes in the activity of a series of antioxidant enzymes, Otp induces production of ROS, resulting in oxidative damage. In addition, Otp can damage cell structures and could destroy membrane integrity. Finally, the changes in endogenous substances indicated that Otp can perturb energy metabolism and photosynthesis in C. vulgaris cells. The experimental results suggest that Otp can have toxic effects on algal cells by disturbing photosynthesis and causing oxidative damage and abnormal energy metabolism in C. vulgaris cells.
Collapse
Affiliation(s)
- Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Xiaolin Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Haijiang Jia
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, PR China
| | - Chongjun Huang
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, PR China
| | - Jianyu Wei
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, PR China
| | - Zhonglin Ding
- Guizhou Tobacco Company Qiannan Prefecture Company, Qiannan, 558000, PR China
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China.
| |
Collapse
|
22
|
Zhang Y, Wan J, Li Z, Wu Z, Dang C, Fu J. Enhanced removal efficiency of sulfamethoxazole by acclimated microalgae: Tolerant mechanism, and transformation products and pathways. BIORESOURCE TECHNOLOGY 2022; 347:126461. [PMID: 34863845 DOI: 10.1016/j.biortech.2021.126461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
This study utilized sulfamethoxazole (SMX) acclimatization to enhance the tolerance and biodegradation capacity of Chlorella vulgaris. Compared to wild C. vulgaris, the growth inhibition and oxidative damage induced by SMX evidently decreased in acclimated C. vulgaris, and meanwhile photosynthetic and antioxidant activities were significantly promoted. The physiological analyses with the aid of principal component analysis revealed the increase of catalase and glutathione reductase activities was the critical tolerant mechanism of acclimated C. vulgaris. As the consequence, the acclimated C. vulgaris exhibited enhanced efficiency and (pseudo-first-order) kinetic rate for removal of SMX. The distribution analysis of residual SMX demonstrated the biodegradation was the major removal mechanism of SMX by C. vulgaris, while bioadsorption and bioaccumulation made pimping contributions. During the degradation process of SMX, nine transformation products (TPs) were identified. Based on the identified TPs, a possible transformation pathway was proposed.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenbing Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
23
|
Effect of Oxidative Stress on Physicochemical Quality of Taiwanese Seagrape (Caulerpa lentillifera) with the Application of Alternating Current Electric Field (ACEF) during Post-Harvest Storage. Processes (Basel) 2021. [DOI: 10.3390/pr9061011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study aims to determine the physicochemical quality of seagrape (Caulerpa lentillifera) as a freshness label for products cultivated in different seasons. The applied post-harvest storage experiments compared between, within and without seawater that led to oxidative stress conditions. Water content, malondialdehyde (MDA) compound, total phenolic content (TPC), and chlorophyll content were observed at 0, 3, 6, and 9 days of storage. The storage without seawater showed sharper quality reductions by reaching 20–40% of water loss, 70–90% of MDA production, 15–25% of TPC reduction, and 40–60% of total chlorophyll degradation. The storage within seawater showed lower quality reductions due to the specific growth rates still reaching 5–10%. This study found that the greater the physicochemical quality, the slower the decomposition rates of the stored seagrape during storage. Therefore, the seagrapes’ obvious discoloration occurred earlier in winter, followed by summer and spring. Kinetics of chlorophyll degradation on seagrape in different seasons meet different order-reactions during storage. Furthermore, alternating current electric field (ACEF) treatment with 125 kV/m of intensity for 60 min can lower the spring seagrapes’ physicochemical quality by reaching 10–30% of inhibition, resulting in the shelf-life extension for up to 12 days of post-harvest storage.
Collapse
|
24
|
Zhang H, Xu J, Chen Q, Wang H, Kong B. Physiological, Morphological and Antioxidant Responses of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 Isolated from Harbin Dry Sausages to Oxidative Stress. Foods 2021; 10:foods10061203. [PMID: 34073637 PMCID: PMC8229211 DOI: 10.3390/foods10061203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/01/2023] Open
Abstract
As functional starter cultures and potential probiotics, the ability of lactic acid bacteria to resist oxidative stress is essential to maintain viability and functional properties. This study investigates the effects of H2O2 at different concentrations (0, 1, 2, and 3 mM) on the physiological, morphological, and antioxidant properties of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 isolated from Harbin dry sausages. The increase in H2O2 concentration induced a significant increase in reactive oxygen species and a decrease in intracellular ATP levels (p < 0.05). Based on scanning electron microscopy, transmission electron microscopy, and electric conductivity analysis, H2O2 stress caused cell deformation, the destruction of cell membrane integrity, partial loss of the cytoplasm, and an increase in the cell conductivity of both strains. H2O2 stress with 1 mM or 2 mM concentrations could effectively improve the scavenging rates of free radicals, the activities of superoxide dismutase and glutathione peroxide, and the total antioxidant capacity of both strains (p < 0.05). In conclusion, an appropriate oxidative stress contributed to the activation of the antioxidant defense system of both strains, conferred strains a better effect in inhibiting the oxidation of fermented foods, and improved the health of the host.
Collapse
Affiliation(s)
| | | | | | | | - Baohua Kong
- Correspondence: ; Tel.: +86-4515-519-1794; Fax: +86-4515-519-0577
| |
Collapse
|
25
|
Zhang H, Ding T, Luo X, Li J. Toxic effect of fluorene-9-bisphenol to green algae Chlorella vulgaris and its metabolic fate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112158. [PMID: 33798865 DOI: 10.1016/j.ecoenv.2021.112158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a bisphenol A (BPA) alternative, has recently attracted attention due to its wide use and potential toxicity. However, the toxic effects and fate of BHPF in freshwater algae remains to be elucidated. In this study, the impact of BHPF on Chlorella vulgaris was explored and the removal and bioaccumulation of BHPF by Chlorella vulgaris were investigated. Results showed that C. vulgaris was sensitive to BHPF at the concentration of >1 mg L-1, and lipid peroxidation was significantly increased under the exposure of >0.1 mg BHPF L-1. An oxidative stress was caused by BHPF, as the activities of superoxide dismutase (SOD) were significantly decreased in algal cells by >0.5 mg BHPF L-1. The removal rate of BHPF was significantly enhanced by the addition of algae. In addition, the increasing accumulation of BHPF in algae at concentrations ranging from 0.5 to 5 mg L-1 was observed and may contribute for the increased toxicity of BHPF to C. vulgaris. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) results demonstrated that three metabolites of BHPF were identified in algal cells, which may pose an unexpected effect in aquatic environment.
Collapse
Affiliation(s)
- Huijun Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xu Luo
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
26
|
Possible Protective Effects of TA on the Cancerous Effect of Mesotrione. Nutrients 2020; 12:nu12051343. [PMID: 32397133 PMCID: PMC7285202 DOI: 10.3390/nu12051343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
The interaction of different food ingredients is now a very important and often emerging topic of research. Pesticides and their breakdown products, which may be carcinogenic, are one of the frequently occurring food contaminants. Compounds like traumatic acid (TA), which originates from plants, are beneficial, antioxidant, and anticancer food ingredients. Previously obtained results from our research group indicated antioxidative in normal human fibroblasts and prooxidative in cancer cells activity of TA. Since the literature data show an undoubted connection between the presence of pesticides in food and the increased incidence of different types of cancers, we attempted to clarify whether TA can abolish the effect of mesotrione stimulating the growth of cancer cells. In order to study the influence of mesotrione on breast cancer cells, we decided to carry out cytotoxicity studies of environmentally significant herbicide concentrations. We also analyzed the cytotoxicity of TA and mixtures of these two compounds. After selecting the most effective concentrations of both components tested, we conducted analyses of oxidative stress parameters and apoptosis in ZR-75-1 cells. The obtained results allow us to conclude that traumatic acid by stimulating oxidative stress and apoptosis contributes to inhibiting the growth and development of cells of the ZR-75-1 line strengthened by mesotrione. This may mean that TA is a compound with pro-oxidative and proapoptotic effects in cancer cells whose development and proliferation are stimulated by the presence of mesotrione. The presented results may be helpful in answering the question of whether herbicides and their residues in edibles may constitute potential threat for people diagnosed with cancer and whether compounds with proven pro-oxidative effects on cancer cells can have potential cytoprotective functions.
Collapse
|