1
|
Mulani SR, Bimli S, Choudhary E, Bunkar R, Kshirsagar UA, Devan RS. Cationic and anionic cross-assisted synergistic photocatalytic removal of binary organic dye mixture using Ni-doped perovskite oxide. CHEMOSPHERE 2023; 340:139890. [PMID: 37619747 DOI: 10.1016/j.chemosphere.2023.139890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Organic dyes present in industrial wastewater are the major contributor to water pollution, which harm human health and the environment. Photocatalytic dye degradation is an effective strategy for water remediation by converting these organic dyes waste into non-harmful by-products. Therefore, in this study, Ni-doped LaFeO3 (NLFO) perovskite nanoparticles were extensively explored for photocatalytic degradation of cationic and anionic dyes and their mixture. The NLFO nanoparticles were successfully synthesized by surfactant assisted hydrothermal method under controlled Ni doping. The X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) revealed the variation in size (40-70 nm) of orthorhombic crystalline LFO nanoparticles with Ni doping and hence the size of microspheres (0.78. to 1.78 μm). The kinetic studies revealed that the LaFe0·6Ni0·4O3 performed well by providing degradation efficiency of 99.2% in 210 min, 99.1% in 100 min, and 98.4% in 70 min for Crystal Violet (CV), Congo Red (CR), and their mixture with rate constant of 0.019, 0.039, and 0.055 min-1 respectively. The radical scavenger tests indicated the synergetic contributions of O2- and •OH- active radicals in faster degradation of CV and CR dye mixture. The stepwise fragmentation of dye molecule during the photocatalytic degradation identified from the LCMS indicates the degradation of CV dye through de-alkylation and benzene ring breaking, whereas azo bond cleavage and oxidation lead to low molecular weight intermediates for CR dye, which all together helped to degrade their dye mixture (50 mg L-1 and 100 mg L-1) in significantly lesser time (70 min). Overall, the Ni-doped LFO microsphere consisting of nanoparticles acts as a superior catalyst for the more efficient and faster degradation of binary dye mixture.
Collapse
Affiliation(s)
- Sameena R Mulani
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Santosh Bimli
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Ekta Choudhary
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India; Department of Physics, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Rajendra Bunkar
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India; Defence R&D Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Rupesh S Devan
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India; Centre for Electric Vehicle and Intelligent Transport Systems, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
2
|
Zhao X, Hu Z, Xu Y, Liu J, An L, Zhu B, Tang W, Yang Q, Yu X, Wang HB. Potential Environmental Contaminants: Exploring Hydrolyzed Dyes in Household Washing Sources and Electrochemical Degradation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:58. [PMID: 37904036 DOI: 10.1007/s00128-023-03822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
Reactive dyes are often released into the environment during the washing process due to their susceptibility to hydrolysis. The hydrolysis experiment of a pure reactive dye, red 195 (RR 195), and the washing experiment of RR 195-colored fabrics (CFSCs) were carried out successively to explore the sources of hydrolyzed dyes in the washing microenvironment. Reversed-phase high-performance liquid chromatography (RP-HPLC) was used for the analysis of hydrolysis intermediates and final products of reactive red 195. The experimental results indicated that the structure of the dye washing shed is consistent with the final hydrolysate of reactive red 195, which is the main colored contaminant in washing wastewater. To eliminate the hydrolyzed dyes from the source, an electrochemical degradation device was designed. The degradation parameters, including voltage, electrolyte concentration, and dye shedding concentration are discussed in the electrochemical degradation experiment. The electrochemical degradation device was also successfully implemented and verified in a home washing machine.
Collapse
Affiliation(s)
- Xu Zhao
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214021, China
| | | | - Yuyao Xu
- School of Geographical Sciences, Faculty of Sciences and Engineering, University of Nottingham, Ningbo, 315100, China
- Institute of Urban Environment, Chinese Academy of Sciences, Ningbo Station, Ningbo, 315800, China
| | - Jianli Liu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214021, China.
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bo Zhu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214021, China
| | - Wei Tang
- Midea Group, Wuxi, 214122, China
| | | | - Xi Yu
- Textile Industrial Products Testing Center of Nanjing Customs District, Wuxi, 214122, China
| | - Hongbo B Wang
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214021, China.
| |
Collapse
|
3
|
Açıkyıldız M, Gürses A, Güneş K, Şahin E. Adsorption of textile dyes from aqueous solutions onto clay: Kinetic modelling and equilibrium isotherm analysis. Front Chem 2023; 11:1156457. [PMID: 37065829 PMCID: PMC10097906 DOI: 10.3389/fchem.2023.1156457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The commercial activated carbon commonly uses to reduce of dye amount in the textile industry effluents. In this study has focused on the use of a natural clay sample as low cost but potential adsorbent. For this purpose the adsorption of commercial textile dyes, Astrazon Red FBL and Astrazon Blue FGRL, onto clay was investigated. The physicochemical and topographic characteristics of natural clay sample were determined by scanning electron microscopy (SEM), X-Ray fluorescence spectrometry (XRF), X-Ray diffraction (XRD), thermogravimetric analysis (TGA), and cation exchange capacity measurements. It was determined that the major clay mineral was smectite with partial impurities. The effects of several operational parameters such as contact time, initial dye concentration, temperature, and adsorbent dosage on the adsorption process were evaluated. The adsorption kinetics was interpreted with pseudo-first order, pseudo-second order, and intra-particle diffusion models. The equilibrium adsorption data were analyzed using Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherm models. It was determined that the adsorption equilibrium was reached in the first 60 min for each dye. The amount of adsorbed dyes onto clay decreased with increasing temperature, similarly, it decreased with increasing sorbent dosage. The kinetic data were well described by pseudo-second order kinetic model, and adsorption equilibrium data was followed both Langmuir and Redlich-Peterson models for each dyes. The adsorption enthalpy and entropy values were calculated as −10.7 kJ.mol−1 and −13.21 J.mol−1.K−1 for astrazon red and those for astrazon blue −11.65 kJ.mol−1 and 37.4 J.mol−1.K−1, respectively. The experimental results support that the physical interactions between clay particles and dye molecules have an important role for the spontaneous adsorption of textile dyes onto the clay. This study revealed that clay could effectively be used as an alternative adsorbent with high removal percentages of astrazon red and astrazon blue.
Collapse
Affiliation(s)
- Metin Açıkyıldız
- Advanced Technology Application and Research Center, Kilis 7 Aralık University, Kilis, Türkiye
- *Correspondence: Metin Açıkyıldız,
| | - Ahmet Gürses
- Department of Chemistry, K. K. Education Faculty, Atatürk University, Erzurum, Türkiye
| | - Kübra Güneş
- Department of Chemistry, K. K. Education Faculty, Atatürk University, Erzurum, Türkiye
| | - Elif Şahin
- Department of Chemistry, K. K. Education Faculty, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
4
|
Jiang B, Li A, Shuang C, Tan Y, Pan Y, Liu F. Improved mineralization and total nitrogen reduction by combination of electro-reduction and electro-oxidation for nitrophenol removal. CHEMOSPHERE 2022; 305:135400. [PMID: 35728664 DOI: 10.1016/j.chemosphere.2022.135400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In this work, p-Nitrophenol (p-NP) was electro-chemically removed by using a prepared Co3O4/Ti cathode and a BDD anode to achieve the simultaneous reduction of total organic carbon (TOC), total nitrogen (TN) and toxicity. The prepared Co3O4/Ti cathode showed higher electro-activity than the Ti cathode towards p-NP reduction with the removal rate higher than 90.6% but without mineralization. The electro-oxidation removed 84.3% of TOC but none of TN. To develop an optimized process for mineralization and TN removal during p-NP electrolysis, the combination of electro-oxidation and electro-reduction were evaluated by using a dual-chamber cell and a single-chamber cell, respectively. As a result of the re-oxidation and re-reduction in the single-chamber cell, the typically used mode of the simultaneous redox, showed a lower removal of TOC and TN than the combination processes as well as an increased toxicity. The TN removal for both combined modes (21.0%-32.9%) was all higher than that of the mode of reduction because the produced inorganic nitrogen such as ammonia and nitrate could be partially oxidized or reduced to nitrogen gas. The results suggested that the combination process could significantly improve the mineralization and TN reduction for p-NP removal, accompanied with 60.3% decrease of acute toxicity for the reduction after oxidation mode.
Collapse
Affiliation(s)
- Bicun Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Yan Tan
- Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Yang Pan
- Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| |
Collapse
|
5
|
Borja-Maldonado F, López Zavala MÁ. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells. Heliyon 2022; 8:e09849. [PMID: 35855980 PMCID: PMC9287189 DOI: 10.1016/j.heliyon.2022.e09849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 10/25/2022] Open
Abstract
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.
Collapse
Affiliation(s)
- Fátima Borja-Maldonado
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| | - Miguel Ángel López Zavala
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| |
Collapse
|
6
|
Qiu B, Hu Y, Tang C, Chen Y, Cheng J. Degradation of diclofenac via sequential reduction-oxidation by Ru/Fe modified biocathode dual-chamber bioelectrochemical system: Performance, pathways and degradation mechanisms. CHEMOSPHERE 2022; 291:132881. [PMID: 34774907 DOI: 10.1016/j.chemosphere.2021.132881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
A sequential reduction-oxidation for DCF degradation was proposed by alternating anaerobic/aerobic conditions at Ru/Fe-biocathode in a dual-chamber bioelectrochemical system (BES). Results showed that Ru/Fe-electrode was successfully fabricated by in-situ electro-deposition, which was rough and uniformly distributed with Ru0 and Fe0 particles. The morphologic changing and biocompatibility were favorable to increase the surface area and enhance microbial adhesion on Ru/Fe-electrode. At an applied voltage of 0.6 V, the potential and impedance of Ru/Fe-biocathode were -0.80 V and 26 Ω, respectively, lower than that of carbon-felt-biocathode. It led to a higher DCF degradation efficiency of 93.2% under anaerobic conditions, which was superior to that of 88.0% under aerobic conditions. Using NaHCO3 as carbon source, DCF removal efficiency increased with increasing applied voltage, but decreased with increasing initial DCF concentration. Thirteen intermediates were measured, and two degradation pathways were proposed, among which sequential reduction-oxidation of DCF was the main pathway, dechlorination intermediates were first generated by [H] attacked under anaerobic conditions, further oxidized by microbes and OH attacked under aerobic conditions, achieving 69.6% of mineralization. After 4 d of reaction, microcystis aeruginosa growth inhibition rate decreased from 22.9 to 8.0%, signifying a significant reduction in biotoxicity. Bacteria (e.g. Nitrobacter, Nitrosomonas, Pseudofulvimonas, Aquamicrobium, Sulfurvermis, Lentimicrobiaceae, Anaerobineaceae, Bacteroidales, Hydrogenedensaceae, Dethiosulfatibacter and Azoarcus) for DCF degradation were enriched in Ru/Fe-biocathode. Microbes in Ru/Fe-biocathode had established defense mechanisms to acclimate to the unfriendly environment, while Ru/Fe-biocathode possessed higher nitrification and denitrification activities than carbon-felt-biocathode, and Ru/Fe-biocathode might be of aerobic and anaerobic biodegradation activities. DCF could be mineralized by the synergistic reaction between Ru/Fe and bacteria under sequential anaerobic/aerobic conditions.
Collapse
Affiliation(s)
- Bing Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Chaoyang Tang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
7
|
Li K, Yan J, Zhou Y, Li B, Li X. β-cyclodextrin and magnetic graphene oxide modified porous composite hydrogel as a superabsorbent for adsorption cationic dyes: Adsorption performance, adsorption mechanism and hydrogel column process investigates. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|