1
|
Zhao C, Sun N, Chen N, Liu T, Feng C. Unraveling the synergistic interplay of sulfur and wheat straw in heterotrophic-autotrophic denitrification for sustainable groundwater nitrate remediation. ENVIRONMENTAL RESEARCH 2024; 263:120166. [PMID: 39419259 DOI: 10.1016/j.envres.2024.120166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Nitrate pollution in groundwater is a global environmental issue that poses significant threats to human health and ecological security. This study focuses on elucidating the mechanisms of heterotrophic-autotrophic cooperative denitrification (HAD) by employing wheat straw and elemental sulfur as electron donors in varying proportions. The research initially underscores that heterotrophic denitrification (HD) accelerates the denitrification process due to its high-energy metabolism. However, as readily degradable organic matter diminished, reliance on more complex substrates such as lignocellulose posed a challenge to HD. This marks a pivotal transition towards autotrophic denitrification (AD), which, despite a slower initial rate, exhibits a more sustained denitrification performance. A low proportion of heterotrophic denitrification layer (e.g., 3:1) at the bottom facilitating efficient and sustainable denitrification. HD is capable of simultaneous removal of nitrates and nitrites, whereas AD demonstrates a higher affinity for nitrates, with nitrite accumulation reaching 100% at high influent nitrate concentrations (100 mg/L). HD not only provides the necessary alkaline environment for AD but also reduces sulfate production, whereas AD utilizes the residual organic carbon and ammonia produced by HD. The heterotrophic layer is characterized by a diverse community, whereas the autotrophic layer is predominantly composed of Thiobacillus. By delineating the interactive mechanisms and characteristics of HAD, this study highlights the importance of balancing heterotrophic and autotrophic activities for the effective remediation of groundwater nitrates.
Collapse
Affiliation(s)
- Chaorui Zhao
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Nan Sun
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Tong Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
2
|
Kumar V, Malyan SK, Apollon W, Verma P. Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach. RENEWABLE ENERGY 2024; 228:120566. [DOI: 10.1016/j.renene.2024.120566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Zhao H, Sun S, Cui Y, Ullah MW, Alabbosh KF, Elboughdiri N, Zhou J. Sustainable production of bacterial flocculants by nylon-6,6 microplastics hydrolysate utilizing Brucella intermedia ZL-06. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133435. [PMID: 38224639 DOI: 10.1016/j.jhazmat.2024.133435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Nylon-6,6 microplastics (NMPs) in aquatic systems have emerged as potential contaminants to the global environment and have garnered immense consideration over the years. Unfortunately, there is currently no efficient method available to eliminate NMPs from sewage. This study aims to address this issue by isolating Brucella intermedia ZL-06, a bacterium capable of producing a bacterial polysaccharide-based flocculant (PBF). The PBF generated from this bacterium shows promising efficacy in effectively flocculating NMPs. Subsequently, the precipitated flocs (NMPs + PBF) were utilized as sustainable feedstock for synthesizing PBF. The study yielded 6.91 g/L PBF under optimum conditions. Genome sequencing analysis was conducted to study the mechanisms of PBF synthesis and nylon-6,6 degradation. The PBF exhibited impressive flocculating capacity of 90.1 mg/g of PBF when applied to 0.01 mm NMPs, aided by the presence of Ca2+. FTIR and XPS analysis showed the presence of hydroxyl, carboxyl, and amine groups in PBF. The flocculation performance of PBF conformed to Langmuir isotherm and pseudo-first-order adsorption kinetics model. These findings present a promising approach for reducing the production costs of PBF by utilizing NMPs as sustainable nutrient sources.
Collapse
Affiliation(s)
- Haijuan Zhao
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China; School of Mathematics and Statistics, Hubei University of Education, Wuhan 430205, China
| | - Su Sun
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongming Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China.
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Jiangang Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
4
|
Kumar V, Verma P. A critical review on environmental risk and toxic hazards of refractory pollutants discharged in chlorolignin waste of pulp and paper mills and their remediation approaches for environmental safety. ENVIRONMENTAL RESEARCH 2023; 236:116728. [PMID: 37495063 DOI: 10.1016/j.envres.2023.116728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Agro-based pulp and paper mills (PPMs) inevitably produce numerous refractory pollutants in their wastewater, including chlorolignin, chlorophenols, chlorocatechols, chloroguaiacol, cyanide, furan, dioxins, and other organic compounds, as well as various heavy metals, such as nickel (Ni), zinc (Zn), chromium (Cr), iron (Fe), lead (Pb), arsenic (As), etc. These pollutants pose significant threats to aquatic and terrestrial life due to their cytogenotoxicity, mutagenicity, impact on sexual organs, hormonal interference, endocrine disruption, and allergenic response. Consequently, it is crucial to reclaim pulp paper mill wastewater (PPMW) with high loads of refractory pollutants through effective and environmentally sustainable practices to minimize the presence of these chemicals and ensure environmental safety. However, there is currently no comprehensive published review providing up-to-date knowledge on the fate of refractory pollutants from PPMW in soil and aquatic environments, along with valuable insights into the associated health hazards and remediation methods. This critical review aims to shed light on the potential adverse effects of refractory pollutants from PPMW on natural ecosystems and living organisms. It explores existing effective treatment technologies for remediating these pollutants from wastewater, highlighting the advantages and disadvantages of each approach, all in pursuit of environmental safety. Special emphasis is placed on emerging technologies used to decontaminate wastewater discharged from PPMs, ensuring the preservation of the environment. Additionally, this review addresses the major challenges and proposes future research directions for the proper disposal of PPMW. It serves as a comprehensive source of knowledge on the environmental toxicity and risks associated with refractory pollutants in PPMW, making it a valuable reference for policymakers and researchers when selecting appropriate technologies for remediation. The scientific community, concerned with mitigating the widespread risks posed by refractory pollutants from PPMs, is expected to take a keen interest in this review.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
5
|
Zhang LY, Han YL, Liu M, Deng SL. Ni-Al layered double hydroxide-coupled layered mesoporous titanium dioxide (Ni-Al LDH/LM-TiO 2) composites with integrated adsorption-photocatalysis performance. RSC Adv 2023; 13:16797-16814. [PMID: 37283865 PMCID: PMC10240257 DOI: 10.1039/d3ra02160b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Nickel aluminum layered double hydroxides (Ni-Al LDHs) and layered mesoporous titanium dioxide (LM-TiO2) were prepared via a simple precipitation process and novel precipitation-peptization method, respectively, and Ni-Al LDH-coupled LM-TiO2 (Ni-Al LDH/LM-TiO2) composites with dual adsorption and photodegradation properties were obtained via the hydrothermal approach. The adsorption and photocatalytic properties were investigated in detail with methyl orange as the target, and the coupling mechanism was systematically studied. The sample with the best performance was recovered after photocatalytic degradation, which was labeled as 11% Ni-Al LDH/LM TiO2(ST), and characterization and stability studies were carried out. The results showed that Ni-Al LDHs showed good adsorption for pollutants. Ni-Al LDH coupling enhanced the absorption of UV and visible light, and the transmission and separation of photogenerated carriers were also significantly promoted, which was conducive to improving the photocatalytic activity. After treatment in the dark for 30 min, the adsorption of methyl orange by 11% Ni-Al LDHs/LM-TiO2 reached 55.18%. Under illumination for 30 min, the decolorization rate of methyl orange solution reached 87.54%, and the composites also showed an excellent recycling performance and stability.
Collapse
Affiliation(s)
- Li-Yuan Zhang
- College of Chemistry and Chemical Engineering, Neijiang Normal University Neijiang 641112 China
- Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College Neijiang 641112 China
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province No. 1, Xingqiao Street Neijiang 641112 Sichuan China +86 832 2341577
| | - Yan-Lin Han
- College of Chemistry and Chemical Engineering, Neijiang Normal University Neijiang 641112 China
| | - Min Liu
- College of Chemistry and Chemical Engineering, Neijiang Normal University Neijiang 641112 China
- Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College Neijiang 641112 China
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province No. 1, Xingqiao Street Neijiang 641112 Sichuan China +86 832 2341577
| | - Sheng-Lian Deng
- College of Chemistry and Chemical Engineering, Neijiang Normal University Neijiang 641112 China
| |
Collapse
|
6
|
Guo H, Zhao Y, Chang JS, Lee DJ. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. BIORESOURCE TECHNOLOGY 2023; 367:128252. [PMID: 36334864 DOI: 10.1016/j.biortech.2022.128252] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
7
|
Cao F, Liang M, Liu J, Liu Y, Renye JA, Qi PX, Ren D. Characterization of an exopolysaccharide (EPS-3A) produced by Streptococcus thermophilus ZJUIDS-2-01 isolated from traditional yak yogurt. Int J Biol Macromol 2021; 192:1331-1343. [PMID: 34673108 DOI: 10.1016/j.ijbiomac.2021.10.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Yak yogurt, one of the naturally fermented dairy products prepared by local herdsmen in the Qinghai-Tibet Plateau, contains a diverse array of microorganisms. We isolated and identified a novel Streptococcus thermophilus strain, ZJUIDS-2-01, from the traditional yak yogurt. We further purified and carried out detailed structural, physiochemical, and bioactivity studies of an exopolysaccharide (EPS-3A) produced by S. thermophilus ZJUIDS-2-01. The weight-average molecular weight (Mw) of EPS-3A was estimated to be 1.38 × 106 Da by High-Performance Gel Permeation Chromatography (HPGPC). The monosaccharide analysis established its composition to be glucose, galactose, N-acetyl-D-galactosamine, and rhamnose in a ratio of 5.2:2.5:6.4:1.0. The molecular structure of EPS-3A was determined by the combination of permethylation analysis, FT-IR, and NMR spectroscopic techniques. The ζ-potential measurements indicated that EPS-3A had a pKa value of ~4.40. The DSC yielded a melting point (Tm) of 80.4 °C and enthalpy change (ΔH) of 578 J/g for EPS-3A, comparable to those of the xanthan gum (XG), a commercial EPS. EPS-3A exhibited better O/W emulsion stability and flocculating capacity than XG. Furthermore, it also demonstrated similar antioxidant activity to XG and promising in vitro antibacterial properties. This work evidenced that EPS-3A derived from S. thermophilus ZJUIDS-2-01 holds the potential for food and industrial applications.
Collapse
Affiliation(s)
- Feiwei Cao
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mingming Liang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Liu
- College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - John A Renye
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Phoebe X Qi
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
8
|
Liu C, Sun D, Liu J, Zhu J, Liu W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. BIORESOUR BIOPROCESS 2021; 8:51. [PMID: 38650196 PMCID: PMC10992557 DOI: 10.1186/s40643-021-00405-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial flocculants are macromolecular substances produced by microorganisms. Due to its non-toxic, harmless, and biodegradable advantages, microbial flocculants have been widely used in various industrial fields, such as wastewater treatment, microalgae harvest, activated sludge dewatering, heavy metal ion adsorption, and nanoparticle synthesis, especially in the post-treatment process of fermentation with high safety requirement. However, compared with the traditional inorganic flocculants and organic polymeric flocculants, the high production cost is the main bottleneck that restricts the large-scale production and application of microbial flocculants. To reduce the production cost of microbial flocculant, a series of efforts have been carried out and some exciting research progresses have been achieved. This paper summarized the research advances in the last decade, including the screening of high-yield strains and the construction of genetically engineered strains, search of cheap alternative medium, the extraction and preservation methods, microbial flocculants production as an incidental product of other biological processes, combined use of traditional flocculant and microbial flocculant, and the production of microbial flocculant promoted by inducer. Moreover, this paper prospects the future research directions to further reduce the production cost of microbial flocculants, thereby promoting the industrial production and large-scale application of microbial flocculants.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
9
|
An J, Hu C, Wang Y, Jin Y, Zhang J, Yuan S, Wang P. Preparation of Activated Carbon Fibers‐α‐FeOOH as a High‐performance Heterogeneous Fenton‐like Catalyst for Efficient Removal of Hydrotropic Lignin Model Compound. ChemistrySelect 2021. [DOI: 10.1002/slct.202100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junjian An
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industry and Food Engineering Guangxi University Nanning 530004 P.R.China
| | - Chenyan Hu
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| | - Yin Wang
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| | - Yi Jin
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| | - Jian Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industry and Food Engineering Guangxi University Nanning 530004 P.R.China
| | - Shiju Yuan
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| | - Peng Wang
- Hubei Key Laboratory of Green Materials for Light Industry School of Materials science and Chemical Engineering Hubei University of Technology Wuhan 430068 P.R.China
| |
Collapse
|
10
|
Marine Actinobacteria Bioflocculant: A Storehouse of Unique Biotechnological Resources for Wastewater Treatment and Other Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bioactive compounds produced by actinobacteria have played a major role in antimicrobials, bioremediation, biofuels, enzymes, and anti-cancer activities. Biodegradable microbial flocculants have been produced by bacteria, algae, and fungi. Microbial bioflocculants have also attracted biotechnology importance over chemical flocculants as a result of degradability and environmentally friendly attributes they possess. Though, freshwater actinobacteria flocculants have been explored in bioflocculation. Yet, there is a paucity of information on the application of actinobacteria flocculants isolated from the marine environment. Similarly, marine habitats that supported the biodiversity of actinobacteria strains in the field of biotechnology have been underexplored in bioflocculation. Hence, this review reiterates the need to optimize culture conditions and other parameters that affect bioflocculant production by using a response surface model or artificial neural network.
Collapse
|
11
|
Zhang Y, Chen Y, Cao G, Ma X, Zhou J, Xu W. Bacterial cellulose production from terylene ammonia hydrolysate by Taonella mepensis WT-6. Int J Biol Macromol 2020; 166:251-258. [PMID: 33122073 DOI: 10.1016/j.ijbiomac.2020.10.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022]
Abstract
Hydrothermal degradation was used to pretreat terylene with an aim of noticeably improving the yield of fermentable monomers: terephthalic acid (TPA), mono (2- hydroxyethyl) terephthalic acid (MHET), bis-hydroxyethyl terephthalate (BHET), and ethylene glycol (EG). After 0.5 h of reaction time at 180 °C, hydrothermal degradation with ammonia led to almost complete conversion of the terylene to TPA, MHET, BHET and EG, which were then transformed by Taonella mepensis WT-6 to bacterial cellulose (BC). Furthermore, the optimum fermentation conditions with the maximum BC yield were 5.0 g/L yeast extract, 30.0 °C, pH 9.0, 8.0% inoculum, and hydrolysate TOC (5.02 g/L). Additionally, mechanical and thermal analysis revealed that the properties of BC produced from TAH medium were similar to those of BC produced with HS medium. Considering the substantial amount of global terylene waste being produced, this study provides an alternative solution for the biosynthesis of BC.
Collapse
Affiliation(s)
- Yanbo Zhang
- Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Yihui Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Gang Cao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoyu Ma
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiangang Zhou
- Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China; School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|