1
|
Brillas E, Peralta-Hernandez JM. The recent development of innovative photoelectro-Fenton processes for the effective and cost-effective remediation of organic pollutants in waters. CHEMOSPHERE 2024; 366:143465. [PMID: 39369749 DOI: 10.1016/j.chemosphere.2024.143465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Wastewaters with toxic and recalcitrant organic contaminants are poorly remediated in conventional wastewater treatment plants. So, powerful processes need to be developed to destroy such organic pollutants to preserve the quality of the aquatic environment. This critical and comprehensive review presents the recent innovative development of photoelectro-Fenton (PEF) covering the period 2019-September 2024. This emerging photo-assisted Fenton-based electrochemical advanced oxidation process (EAOP) is an efficient and cost-effective treatment for water remediation. It possesses a great oxidation power because the in-situ generated hydroxyl radical as oxidant is combined with the photolysis of the organic by-products under UV or sunlight irradiation. The review is initiated by a brief description of the characteristics of the PEF process to stand out in the role of generated oxidizing agents. Further, the homogeneous PEF. PEF-like, solar PEF (SPEF), and SPEF-like processes with iron catalysts are discussed, taking examples of their application to the removal and mineralization of solutions of industrial chemicals, herbicides, dyes, pharmaceuticals, and direct real wastewaters. Novel heterogeneous PEF treatments of such pollutants with solid iron catalysts or functionalized cathodes are analyzed. Finally, novel hybrid processes including PEF/photocatalysis and PEF/photoelectrocatalysis, followed by novel and potent sequential processes like electrocoagulation-PEF and persulfate-PEF, are discussed. Throughout the manuscript, special attention was made to the total operating cost of PEF, which is more expensive than conventional electro-Fenton due to the high electric cost of the UV lamp, pointing to consider the much more cost-effective SPEF as a preferable alternative in practice.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí I Franquès 1-11, Barcelona, CP, 08028, Spain.
| | - Juan M Peralta-Hernandez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico.
| |
Collapse
|
2
|
Herrera-Chávez S, Pacheco-Álvarez M, Kadier A, Brillas E, Peralta-Hernández JM. Efficient electrochemical advanced degradation of Red CL and Red WB dyes from the tanning industry using a boron-doped diamond anode. CHEMOSPHERE 2024; 363:142825. [PMID: 38996982 DOI: 10.1016/j.chemosphere.2024.142825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Electrochemical oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) with a BDD anode have been comparatively assessed to remediate solutions of Red CL and/or Red WB azo dyes from real raw water. For the EO process in 50 mM Na2SO4 at pH 3.0, the main oxidant was the heterogeneous •OH generated at the anode, whereas in EF and PEF, the cathodic production of H2O2 and the addition of 0.50 mM Fe2+ catalyst additionally originated homogeneous •OH that enhanced the oxidation of organics. In PEF, the solution was illuminated with a 6 W UVA light. An almost total discoloration was always found operating with a 1:1 mixture of 200 mg L-1 of both dyes in 60 min, whose efficiency increased in the order of EO < EF < PEF. The HPLC analysis of the dye mixture treated by PEF disclosed that its degradation process agreed with its discoloration. A high 74% of COD was reduced due to the oxidative action of hydroxyl radicals and the photolysis of final Fe(III)-carboxylate species with UVA irradiation. The process was accompanied by an energy consumption of 0.76 kWh (g COD)-1, a value similar to the energy consumed by the applied UVA light.
Collapse
Affiliation(s)
- Sonia Herrera-Chávez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040 Guanajuato, Mexico
| | - Martin Pacheco-Álvarez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040 Guanajuato, Mexico.
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, CP 08028, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040 Guanajuato, Mexico.
| |
Collapse
|
3
|
Kamenická B, Kuchtová G. Critical review on electrooxidation and chemical reduction of azo dyes: Economic approach. CHEMOSPHERE 2024; 363:142799. [PMID: 38986779 DOI: 10.1016/j.chemosphere.2024.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Effective degradation technologies have been extensively investigated and used to remove azo dyes from wastewater for decades. However, no review dealing with both electrooxidation and chemical reduction of azo dyes from an economic and, therefore, application-relevant perspective has been found in the current literature. A novelty of this review article consists not only in the brief summarization and comparison of both methods but mainly in the evaluation of their economic side. Based on the literature survey of the last 15 years, the costs of treatment approaches published in individual research articles have been summarized, and the missing data have been calculated. A broad spectrum of advanced electrode materials and catalysts have been developed and tested for the treatment, specifically aiming to enhance the degradation performance. An outline of the global prices of electrode materials, reducing agents, and basic chemicals is involved. All additional costs are described in depth in this review. The advantages and disadvantages of respective methods are discussed. It was revealed that effective and cheap treatment approaches can be found even in advanced degradation methods. Based on the collected data, electrooxidation methods offer, on average, 30 times cheaper treatment of aqueous solutions. Concerning chemical reduction, only ZVI provided high removal of azo dyes at prices <100 $ per kg of azo dye. The factors affecting total prices should also be considered. Therefore, the basic diagram of the decision-making process is proposed. In the conclusion, challenges, future perspectives, and critical findings are described.
Collapse
Affiliation(s)
- Barbora Kamenická
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Gabriela Kuchtová
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
4
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
5
|
Merdoud R, Aoudjit F, Mouni L, Ranade VV. Degradation of methyl orange using hydrodynamic Cavitation, H 2O 2, and photo-catalysis with TiO 2-Coated glass Fibers: Key operating parameters and synergistic effects. ULTRASONICS SONOCHEMISTRY 2024; 103:106772. [PMID: 38310738 PMCID: PMC10847762 DOI: 10.1016/j.ultsonch.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
Advanced oxidation processes (AOPs) are eco-friendly, and promising technology for treating dye containing wastewater. This study focuses on investigating the removal of methyl orange (MO), an azo dye, from a synthetic wastewater through the use of hydrodynamic cavitation (HC), both independently and in combination with hydrogen peroxide (H2O2), as an external oxidant, as well as photocatalysis (PC) employing catalyst coated on glass fibers tissue (GFT). The examination of various operating parameters, including the pressure drop and the concentration of H2O2, was systematically conducted to optimize the degradation of MO. A per-pass degradation modelwas used to interpret and describe the experimental data. The data revealed that exclusive employment of HC using a vortex-based cavitation device at 1.5 bar pressure drop, resulted in a degradation exceeding 96 % after 100 passes, equivalent to 230 min of treatment (cavitation yield of 3.6 mg/kJ for HC), with a COD mineralization surpassing 12 %. The presence of a small amount of H2O2 (0.01 %) significantly reduced the degradation time from 230 min to 36 min (16 passes), achieving a degradation of 99.8 % (cavitation yield of 6.77 mg/kJ for HC) with COD mineralization rate twice as much as HC alone, indicating a synergistic effect of 4.8. The degradation time was further reduced to 21 min by combining HC with PC using TiO2-coated glass fibers and H2O2, (cavitation yield of 11.83 mg/kJ for HC), resulting in an impressive synergistic effect of 9.2 and COD mineralization twice as high as the HC/H2O2 system. The results demonstrate that HC based hybrid AOPs can be very effective for treating and mineralizing azo dyes in water.
Collapse
Affiliation(s)
- Ryma Merdoud
- Laboratoire Matériaux et Développement Durable, Faculté des Sciences et Sciences Appliqués, Université de Bouira, 10000 Bouira, Algeria; Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculté SNVST, Université de Bouira, 10000, Algeria; Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland
| | - Farid Aoudjit
- Laboratoire Matériaux et Développement Durable, Faculté des Sciences et Sciences Appliqués, Université de Bouira, 10000 Bouira, Algeria
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculté SNVST, Université de Bouira, 10000, Algeria
| | - Vivek V Ranade
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
6
|
Camcıoğlu Ş, Özyurt B, Oturan N, Portehault D, Trellu C, Oturan MA. Heterogeneous electro-Fenton treatment of chemotherapeutic drug busulfan using magnetic nanocomposites as catalyst. CHEMOSPHERE 2023; 341:140129. [PMID: 37690550 DOI: 10.1016/j.chemosphere.2023.140129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The rapid and efficient mineralization of the chemotherapeutic drug busulfan (BSF) as the target pollutant has been investigated for the first time by three different heterogeneous EF systems that were constructed to ensure the continuous electro-generation of H2O2 and •OH consisting of: i) a multifunctional carbon felt (CF) based cathode composed of reduced graphene oxide (rGO), iron oxide nanoparticles and carbon black (CB) (rGO-Fe3O4/CB@CF), ii) rGO modified cathode (rGO/CB@CF) and rGO supported Fe3O4 (rGO-Fe3O4) catalyst and iii) rGO modified cathode (rGO/CB@CF) and multi walled carbon nanotube supported Fe3O4 (MWCNT-Fe3O4) catalyst. The effects of main variables, including the catalyst amount, applied current and initial pH were investigated. Based on the results, H2O2 was produced by oxygen reduction reaction (ORR) on the liquid-solid interface of both fabricated cathodes. •OH was generated by the reaction of H2O2 with the active site of ≡FeII on the surface of the multifunctional cathode and heterogeneous EF catalysts. Utilizing carbon materials with high conductivity, the redox cycling between ≡FeII and ≡FeIII was effectively facilitated and therefore promoted the performance of the process. The results demonstrated almost complete mineralization of BSF through the heterogeneous systems over a wide applicable pH range. According to the reusability and stability tests, multifunctional cathode exhibited outstanding performance after five consecutive cycles which is promising for the efficient mineralization of refractory organic pollutants. Moreover, intermediates products of BSF oxidation were identified and a plausible oxidation pathway was proposed. Therefore, this study demonstrates efficient and stable cathodes and catalysts for the efficient treatment of an anticancer active substance.
Collapse
Affiliation(s)
- Şule Camcıoğlu
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Baran Özyurt
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de La Matière Condensée de Paris (CMCP), 4 Place Jussieu, Paris, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
7
|
Vigil-Castillo HH, Ruiz-Ruiz EJ, López-Velázquez K, Hinojosa-Reyes L, Gaspar-Ramírez O, Guzmán-Mar JL. Assessment of photo electro-Fenton and solar photo electro-Fenton processes for the efficient degradation of asulam herbicide. CHEMOSPHERE 2023; 338:139585. [PMID: 37478989 DOI: 10.1016/j.chemosphere.2023.139585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The degradation of asulam herbicide by photo electro-Fenton (PEF) and solar photo electro-Fenton (SPEF) processes was studied using an undivided electrochemical BDD/carbon-felt cell to generate H2O2 continuously. A central composite design combined with response surface methodology was applied to determine the optimal operating conditions of current intensity = 0.30 A, [Fe2+] = 0.3 mM, and [Na2SO4] = 0.11 M at pH 3 to achieve the complete degradation of asulam by electro-Fenton. Subsequently, the SPEF process was more efficient treatment compared to PEF, achieving a complete degradation of asulam and 98% of mineralization in 180 min. Moreover, 4-aminobenzenesulfonamide, 4-aminophenol, and 4-benzoquinone were detected as aromatic intermediates, whereas acetic acid, oxalic acid, and NO3- ions were identified as final degradation by-products. Thus, the SPEF process is an efficient alternative for the complete degradation and mineralization of herbicide asulam in an aqueous solution under natural sunlight.
Collapse
Affiliation(s)
- Héctor H Vigil-Castillo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de Los Garza, Nuevo León, México
| | - Edgar J Ruiz-Ruiz
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de Los Garza, Nuevo León, México
| | - Khirbet López-Velázquez
- Universidad Politécnica de Tapachula, Carretera Tapachula - Puerto Madero, Km. 24 + 300, CP 30830, Tapachula, Chiapas, México
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de Los Garza, Nuevo León, México
| | - Octavio Gaspar-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de La Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque, PIIT, C.P. 66628, Apodaca, Nuevo León, México
| | - Jorge L Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de Los Garza, Nuevo León, México.
| |
Collapse
|
8
|
Channab BE, El Ouardi M, Marrane SE, Layachi OA, El Idrissi A, Farsad S, Mazkad D, BaQais A, Lasri M, Ait Ahsaine H. Alginate@ZnCO 2O 4 for efficient peroxymonosulfate activation towards effective rhodamine B degradation: optimization using response surface methodology. RSC Adv 2023; 13:20150-20163. [PMID: 37409044 PMCID: PMC10318575 DOI: 10.1039/d3ra02865h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023] Open
Abstract
A facile chemical procedure was utilized to produce an effective peroxy-monosulfate (PMS) activator, namely ZnCo2O4/alginate. To enhance the degradation efficiency of Rhodamine B (RhB), a novel response surface methodology (RSM) based on the Box-Behnken Design (BBD) method was employed. Physical and chemical properties of each catalyst (ZnCo2O4 and ZnCo2O4/alginate) were characterized using several techniques, such as FTIR, TGA, XRD, SEM, and TEM. By employing BBD-RSM with a quadratic statistical model and ANOVA analysis, the optimal conditions for RhB decomposition were mathematically determined, based on four parameters including catalyst dose, PMS dose, RhB concentration, and reaction time. The optimal conditions were achieved at a PMS dose of 1 g l-1, a catalyst dose of 1 g l-1, a dye concentration of 25 mg l-1, and a time of 40 min, with a RhB decomposition efficacy of 98%. The ZnCo2O4/alginate catalyst displayed remarkable stability and reusability, as demonstrated by recycling tests. Additionally, quenching tests confirmed that SO4˙-/OH˙ radicals played a crucial role in the RhB decomposition process.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University B.P. 146 Casablanca Morocco
| | - Mohamed El Ouardi
- Laboratory of Applied Materials Chemistry, Faculty of Sciences, MohammedV University in Rabat Morocco
- Aix Marseille University, University of Toulon, CNRS, IM2NP CS 60584, CEDEX 9 F-83041 Toulon France
| | - Salah Eddine Marrane
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University B.P. 146 Casablanca Morocco
| | - Omar Ait Layachi
- Laboratory of Physical Chemistry and Biotechnology of Biomolecules and Materials, Faculty of Sciences and Technology, Hassan II University of Casablanca Mohammedia 20650 Morocco
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University B.P. 146 Casablanca Morocco
| | - Salaheddine Farsad
- Materials and Environment Laboratory, Ibn Zohr University Agadir 8000 Morocco
| | - Driss Mazkad
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Materials for Environment Team, ENSAM, Mohammed V University in Rabat Morocco
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohammed Lasri
- Laboratoire of Applied Chemistry and Biomass, Department of Chemistry, Faculty of Sciences, University Cadi Ayyad Semlalia BP 2390 Marrakech Morocco
| | - Hassan Ait Ahsaine
- Laboratory of Applied Materials Chemistry, Faculty of Sciences, MohammedV University in Rabat Morocco
| |
Collapse
|
9
|
Li Y, Xie S, Yao J. Singlet oxygen generation for selective oxidation of emerging pollutants in a flow-by electrochemical system based on natural air diffusion cathode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17854-17864. [PMID: 36201074 DOI: 10.1007/s11356-022-23364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The decay of free radicals involved in side reactions is one of the challenges faced by electrochemical degradation of organic pollutants. To this end, a non-radical oxidation system was constructed by a natural air diffusion cathode (ADC) and a Ti-based dimensional stable anode coated by RuO2 (RuO2-Ti anode) for cathodic hydrogen peroxide activation by anodic chlorine evolution. The ADC fabricated by the carbon black of BP2000 produced a stable concentration of hydrogen peroxide of 339.94 mg L-1 (current efficiency of 73.4%) without aeration, which was superior to the cathode made by the XC72 carbon black. The flow-by ADC-RuO2 system consisted of an ADC and a RuO2-Ti anode showed high selectivity to aniline (AN) compared to benzoate (BA) in a NaCl electrolyte, whose degradation efficiencies were 97.72% and 1.3%, respectively. Rapid degradations of a mixture of emerging pollutants and AN were also observed in the ADC-RuO2 system, with pseudo-first-order kinetic constants of 0.51, 1.29, 0.89, and 0.99 min-1 for Bisphenol A (BPA), tetracycline (TC), sulfamethoxazole (SMX) and AN, respectively. Quenching experiments revealed the main reactive oxygen species for the pollutant degradation was singlet oxygen (1O2), which was also identified by the electron spin resonance (ESR) analysis. Finally, the steady-stable content of 1O2 was quantitatively determined to be 6.25 × 10-11 M by the method of furfuryl alcohol (FFA) probe. Our findings provide a fast, low energy consumption and well controlled electrochemical oxidation method for selective degradation of organic pollutants. H2O2 generated on an air diffusion cathode by naturally diffused O2, reacts with ClO- produced from chloride oxidation on the RuO2-Ti anode to form singlet oxygen (1O2). The electrochemical system shows an efficient oxidation to electron-rich emerging pollutants including bisphenol A, tetracycline, sulfamethoxazole and aniline, but a poor performance on the electron-deficient compounds (e.g., benzoate).
Collapse
Affiliation(s)
- Yi Li
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Shiwei Xie
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
- Institute of High Performance Engineering Structure, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
| | - Jiaxiong Yao
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
- Shenzhen Bao'an Songgang Water Supply Co., Ltd., Shenzhen, 518100, People's Republic of China
| |
Collapse
|
10
|
Paquini LD, Marconsini LT, Profeti LPR, Campos OS, Profeti D, Ribeiro J. An overview of electrochemical advanced oxidation processes applied for the removal of azo-dyes. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Hejazi SA, Taghipour F. Polytetrafluoroethylene-based gas diffusion electrode for electrochemical generation of hydrogen peroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Márquez AA, Coreño O, Nava JL. A hybrid process combining electrocoagulation and active chlorine-based photoelectro-Fenton-like methods during the removal of Acid Blue 29 dye. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Song W, Li J, Zhang X, Feng J, Du X, Wang Q, Fu C, Qiu W, Wang Z, Gao X. A feasible approach for azo-dye methyl orange degradation in siderite/H 2O 2 assisted by persulfate: Optimization using response surface methodology and pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114397. [PMID: 35121467 DOI: 10.1016/j.jenvman.2021.114397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/28/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Siderite was applied to the binary oxidant system of siderite-catalyzed hydrogen peroxide (H2O2) and enhanced with persulfate (PS). In the absence of PS, methyl orange (MO) almost could not be degraded by the siderite/H2O2 process. However, adding PS significantly improved the capacity of MO to oxidize azo-dye. The influence of individual and interaction of reaction factors have been explored with a simple response surface methodology (RSM) based on central composite design (CCD). The quadratic model with low probabilities (<0.0001) at a confidence level of 95% was satisfactory to predict MO degradation in siderite/H2O2/PS system, whose correlation coefficients of R2 and R2-adj were 0.9569 and 0.9264, respectively. Moreover, the optimum operation conditions of 21.20 mM, 2.75 g/L, 3.86 mM, and 4.69 for H2O2, siderite, PS and initial pH, respectively with the response of C/C0 around 0.047. Radical scavenging experiments and electron spin resonance (ESR) determined that ·OH was crucial for MO degradation, while the contribution of SO4·- was minor. The surface morphology and iron content of siderite before and after the oxidation process showed clear differences. Possible intermediates and a degradation pathway were proposed based on the results of UV-Vis spectral and GC-MS analysis. Moreover, the toxicity to Vibrio fischeri bioluminescent bacterium has increased in the earlier degradation stage due to the generated by-products and weaken with the continuous treatment. This study demonstrated that the siderite/H2O2/PS system was effective over a relatively wide pH range without producing secondary pollutants, making it a promising technology and potential environmentally benign approach to azo-dye wastewater treatment.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jianpei Feng
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Qiao Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Caixia Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Xinlei Gao
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Guangdong Water Co., Ltd, Shenzhen, 518021, China
| |
Collapse
|
14
|
Zhao M, Ma X, Li R, Mei J, Rao T, Ren G, Guo H, Wu Z. In-situ slow production of Fe2+ to motivate electro-Fenton oxidation of bisphenol A in a flow through dual-anode reactor using current distribution strategy: Advantages, CFD and toxicity assessment. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Márquez AA, Coreño O, Nava JL. Removal of brilliant green tannery dye by electrocoagulation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Cornejo OM, Sirés I, Nava JL. Cathodic generation of hydrogen peroxide sustained by electrolytic O2 in a rotating cylinder electrode (RCE) reactor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Liu J, Jia J, Yu H, Zhang J, Li J, Ge H, Zhao Y. Graphite felt modified by nanoporous carbon as a novel cathode material for the EF process. NEW J CHEM 2022. [DOI: 10.1039/d2nj01679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanoporous carbon prepared by carbonizing ZIF-8@MWCNTs can greatly improve the performance of graphite felt as an electro-Fenton cathode.
Collapse
Affiliation(s)
- Jiaman Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiping Jia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaqiang Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
18
|
Villaseñor-Basulto D, Picos-Benítez A, Bravo-Yumi N, Perez-Segura T, Bandala ER, Peralta-Hernández JM. Electro-Fenton mineralization of diazo dye Black NT2 using a pre-pilot flow plant. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Clematis D, Panizza M. Electro-Fenton, solar photoelectro-Fenton and UVA photoelectro-Fenton: Degradation of Erythrosine B dye solution. CHEMOSPHERE 2021; 270:129480. [PMID: 33421751 DOI: 10.1016/j.chemosphere.2020.129480] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The treatment of Erythrosine B, selected as a model compound, has been comparatively studied by electrochemical advanced oxidation processes (EAOPs) such as electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Experiments are performed in a one-compartment cell with a BDD anode, and a commercial carbon felt cathode at pH = 3, treating a volume of 0.3 L in each test. The irradiation plays a crucial role in the increasing of hydroxyl radical production and in the recover of iron catalyst. A faster colour and COD removal degradation are achieved under the light application. UVA photoelectro-Fenton and solar photoelectro-Fenton processes allow degrading COD entirely in 90 min, while a conventional electro-Fenton does not reach 90% COD removal after 2 h. Energy consumptions are a substantial factor in process selection. Photo electro-Fenton with a UVA-100 W lamp has one of the best removal performance, but it becomes not suitable for application due to high energy demand, up to 515.6 kWh m-3, and the UVA system requires the main fraction of this energy. Possible alternatives are proposed to contain costs: the first is the reduction of UVA lamp power to 25 W, maintaining a high-performance removal with an Ec decreasing to 187.9 kWh m-3. Nevertheless, the lowest and competitive energy demands is obtained working with a solar photoelectro-Fenton system, where energy consumption are only related to the electrochemical process (20.9 kWh m-3), and removal is complete.
Collapse
Affiliation(s)
- Davide Clematis
- University of Genoa, Department of Civil, Chemical and Environmental Engineering, Via All'Opera Pia 15, 16137, Genova, Italy
| | - Marco Panizza
- University of Genoa, Department of Civil, Chemical and Environmental Engineering, Via All'Opera Pia 15, 16137, Genova, Italy.
| |
Collapse
|
20
|
Cornejo OM, Ortiz M, Aguilar ZG, Nava JL. Degradation of Acid Violet 19 textile dye by electro-peroxone in a laboratory flow plant. CHEMOSPHERE 2021; 271:129804. [PMID: 33736209 DOI: 10.1016/j.chemosphere.2021.129804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with the degradation of Acid Violet 19 (AV19) textile dye by the electro-peroxone (E-peroxone) process in a laboratory flow plant using a filter press cell fitted with a 3D gas diffusion electrode (3D GDE) containing a graphite felt positioned on carbon-cloth PTFE as cathode, and a Ti|IrSnSb-oxides plate as anode. H2O2 was formed by the oxygen reduction reaction (ORR) in the cathode; the air was supplied by an external compressor. The O3 produced externally by an ozonator was added in the pipeline at the outlet of the electrolyzer to promote the reaction between the H2O2 and O3 to produce OH, which is the responsible for the mineralization of the dye. The effect of electrolyte flow rate (Q), current density (j), and initial concentration of AV19 dye on its degradation was addressed. The best electrolysis in a solution containing 40 mg TOC L-1, 0.05 M Na2SO4, at pH 3, was obtained at j = 20 mA cm-2, Q = 2.0 L min-1, using a pressure of the air fed to the 3D GDE of PGDE = 3 psi, and an ozone inlet mass flow rate of [Formula: see text] = 14.5 mg L-1, achieving 100% discoloration, 60% mineralization, with mineralization current efficiency and energy consumption of 36% and 0.085 kWh(gTOC)-1. The degradation of AV19 dye was also performed by anodic oxidation plus H2O2 electrogenerated (AO-H2O2) and ozonation. The oxidation power was AO-H2O2 < ozonation < E-peroxone. Three carboxylic acids were quantified by chromatography as oxidation end products.
Collapse
Affiliation(s)
- Oscar M Cornejo
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| | - Mariela Ortiz
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| | - Zaira G Aguilar
- Departamento de Ingeniería Química, Tecnológico Nacional de Mexico-Instituto Tecnológico de Celaya, Av. García Cubas 600, 38010, Celaya, Guanajuato, Mexico.
| | - José L Nava
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
21
|
Ledakowicz S, Paździor K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021; 26:molecules26040870. [PMID: 33562176 PMCID: PMC7914684 DOI: 10.3390/molecules26040870] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 3 years alone, over 10,000 publications have appeared on the topic of dye removal, including over 300 reviews. Thus, the topic is very relevant, although there are few articles on the practical applications on an industrial scale of the results obtained in research laboratories. Therefore, in this review, we focus on advanced oxidation methods integrated with biological methods, widely recognized as highly efficient treatments for recalcitrant wastewater, that have the best chance of industrial application. It is extremely important to know all the phenomena and mechanisms that occur during the process of removing dyestuffs and the products of their degradation from wastewater to prevent their penetration into drinking water sources. Therefore, particular attention is paid to understanding the mechanisms of both chemical and biological degradation of dyes, and the kinetics of these processes, which are important from a design point of view, as well as the performance and implementation of these operations on a larger scale.
Collapse
|