1
|
Abera GB, Trømborg E, Solli L, Walter JM, Wahid R, Govasmark E, Horn SJ, Aryal N, Feng L. Biofilm application for anaerobic digestion: a systematic review and an industrial scale case. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:145. [PMID: 39695822 DOI: 10.1186/s13068-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas-liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants. This work comprehensively reviewed the current applications of biofilm in anaerobic digestion and focused on impacting factors, optimization strategies, reactor set-up, and microbial communities. Moreover, a full-scale biofilm reactor case from Norway is also reported. This review provides a state of-the- art insight on the role of biofilm in anaerobic digestion.
Collapse
Affiliation(s)
- Getachew Birhanu Abera
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, Postbox 128, Shashemene, Ethiopia
| | - Erik Trømborg
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Linn Solli
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
| | | | - Radziah Wahid
- Antec Biogas As, Olaf Helsets Vei 5, 0694, Oslo, Norway
| | | | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Nabin Aryal
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway (USN), Campus Porsgrunn, Kjølnes Ring 56, 3918, Porsgrunn, Norway
| | - Lu Feng
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway.
| |
Collapse
|
2
|
Graca B, Rychter A, Bełdowska M, Wojdasiewicz A. Seasonality of mercury and its fractions in microplastics biofilms -comparison to natural biofilms, suspended particulate matter and bottom sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174814. [PMID: 39032739 DOI: 10.1016/j.scitotenv.2024.174814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Biofilms can enhance the sorption of heavy metals onto microplastic (MP) surfaces. However, most research in this field relies on laboratory experiments and neglects metal fractions and seasonal variations. Further studies of the metal/biofilm interaction in the aquatic environment are essential for assessing the ecological threat that MPs pose. The present study used in situ experiments in an environment conducive to biofouling (Vistula Lagoon, Baltic Sea). The objective was to investigate the sorption of mercury and its fractions (thermodesorption technique) in MP (polypropylene-PP, polystyrene-PS, polylactide-PLA) biofilms and natural matrices across three seasons. After one month of incubation, the Hg concentrations in MP and natural substratum (gravel grains-G) biofilms were similar (MP: 145 ± 45 ng/g d.w.; G: 132 ± 23 ng/g d.w.) and approximately twofold those of suspended particulate matter (SPM) (63 ± 27 ng/g d.w.). Hg concentrations in biofilms and sediments were similar, but labile fractions dominated in biofilms and stable fractions in sediments. Seasonal Hg concentrations in MP biofilms decreased over summer>winter>spring, with significant variation for mineral and loosely bound Hg fractions. Multiple regression analysis revealed that hydrochemical conditions and sediment resuspension played a crucial role in the observed variability. The influence of polymer type and morphology (pellets, fibres, aged MP) on Hg sorption in biofilms was visible only in high summer temperatures. In this season, PP fibres and aged PP pellets encouraged biofilm growth and the accumulation of labile Hg fractions. Additionally, high concentrations of mineral (stable and semi-labile) Hg fractions were found in expanded PS biofilms. These findings suggest that organisms that ingest MPs or feed on the biofilms are exposed to the adverse effects of Hg and the presence of MPs in aquatic ecosystems may facilitate the transfer of mercury within the food chain.
Collapse
Affiliation(s)
- Bożena Graca
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agata Rychter
- University of Applied Sciences in Elbląg, Ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adriana Wojdasiewicz
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
3
|
Delgado-Nungaray JA, Grajeda-Arias D, Reynaga-Delgado E, Gonzalez-Reynoso O. Biodegradation of Nitrile Gloves as Sole Carbon Source of Pseudomonas aeruginosa in Liquid Culture. Polymers (Basel) 2024; 16:1162. [PMID: 38675080 PMCID: PMC11055158 DOI: 10.3390/polym16081162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Nitrile gloves have become a significant environmental pollutant after the COVID-19 pandemic due to their single-use design. This study examines the capability of P. aeruginosa to use nitrile gloves as its sole carbon energy source. Biodegradation was determined by P. aeruginosa adapting to increasing nitrile glove concentrations at 1%, 3%, and 5% (w/v). The growth kinetics of P. aeruginosa were evaluated, as well as the polymer weight loss. Topographic changes on the glove surfaces were examined using SEM, and FT-IR was used to evaluate the biodegradation products of the nitrile gloves. Following the establishment of a biofilm on the glove surface, the nitrile toxicity was minimized via biodegradation. The result of the average weight loss of nitrile gloves was 2.25%. FT-IR analysis revealed the presence of aldehydes and aliphatic amines associated with biodegradation. SEM showed P. aeruginosa immersed in the EPS matrix, causing the formation of cracks, scales, protrusions, and the presence of semi-spherical particles. We conclude that P. aeruginosa has the capability to use nitrile gloves as its sole carbon source, even up to 5%, through biofilm formation, demonstrating the potential of P. aeruginosa for the degradation of nitrile gloves.
Collapse
Affiliation(s)
- Javier Alejandro Delgado-Nungaray
- Chemical Engineering Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico;
| | - David Grajeda-Arias
- Pharmacobiology Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico; (D.G.-A.); (E.R.-D.)
| | - Eire Reynaga-Delgado
- Pharmacobiology Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico; (D.G.-A.); (E.R.-D.)
| | - Orfil Gonzalez-Reynoso
- Chemical Engineering Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico;
| |
Collapse
|
4
|
Hong JK, Lee TK, Kim I, Park S. Determinants of microbial colonization on microplastics through wastewater treatment processes: The role of polymer type and sequential treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170072. [PMID: 38218474 DOI: 10.1016/j.scitotenv.2024.170072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
This study examines the microbial colonization characteristics of microplastics (MPs) in wastewater treatment plants (WWTPs), focusing on polymer types (High-Density Polyethylene (HDPE) and Polyethylene Terephthalate (PET)) and various stages of wastewater treatments. Through individual and sequential deployment approaches, the research aimed to identify the determinants of bacterial colonization on MPs, whether they were introduced at each stage of treatment individually or in sequence from primary to tertiary stages. The study revealed that the stage of wastewater treatment profoundly influenced bacterial colonization on the polymer types MPs, with bacterial attachment being largely niche-specific. HDPE showed increased sensitivity to wastewater composition, leading to selective biofilm formation. For instance, in HDPE, Firmicutes accounted for 25.1 ± 0.04 % during primary treatment, while Alphaproteobacteria increased significantly in the tertiary treatment to 19.8 ± 0.1 %. Conversely, PET exhibited a stochastic pattern of bacterial colonization due to differences in surface hydrophilicity. Additionally, in sequential deployments, a notable shift towards stochastic bacterial attachment on MPs, particularly with HDPE was observed. The Shannon diversity values for MP biofilms were consistently higher than those for wastewater across all stages, with PET showing an increase in diversity in sequential deployments (Shannon diversity: 5.01 ± 0.03 for tertiary stage). These findings highlight the critical role of MPs as carriers of diverse bacteria, emphasizing the necessity for strategies to mitigate their impact in WWTPs. This study presents a significant advancement in our understanding of the interactions between MPs and microbial populations in WWTP environments.
Collapse
Affiliation(s)
- Jin-Kyung Hong
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ilho Kim
- Department of Environmental research, Korea Institute of Civil engineering and building Technology (KICT), Gyeonggi-Do 10223, Republic of Korea; Department of Civil and Environmental Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Saerom Park
- Department of Environmental research, Korea Institute of Civil engineering and building Technology (KICT), Gyeonggi-Do 10223, Republic of Korea; Department of Civil and Environmental Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
5
|
Fitriani N, Theresia L, O'Marga TTN, Kurniawan SB, Supriyanto A, Abdullah SRS, Rietveld LC. Performance of a modified and intermittently operated slow sand filter with two different mediums in removing turbidity, ammonia, and phosphate with varying acclimatization periods. Heliyon 2023; 9:e22577. [PMID: 38046171 PMCID: PMC10686868 DOI: 10.1016/j.heliyon.2023.e22577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
The present study investigated the utilization of blood clam shells as a potential substitute for conventional media, as well as the influence of the acclimation time on the efficacy of an intermittent slow sand filter (ISSF) in the treatment of real domestic wastewater. ISSF was operated with 16 h on and 8 h off, focusing on the parameters of turbidity, ammonia, and phosphate. Two media combinations (only blood clam shells [CC] and sand + blood clam shells [SC]) were operated under two different acclimatization periods (14 and 28 d). Results showed that SC medium exhibited significantly higher removal of turbidity (p < 0.05) as compared to CC medium (45.99 ± 26.84 % vs. 3.79 ± 9.35 %), while CC exhibited slightly higher (p > 0.05) removal of ammonia (23.12 ± 20.2 % vs. 16.77 ± 16.8 %) and phosphate (18.03 ± 11.96 % vs 13.48 ± 12 %). Comparing the acclimatization periods, the 28 d of acclimatization period showed higher overall performances than the 14 d. Further optimizations need to be conducted to obtain an effluent value below the national permissible limit, since the ammonia and phosphate parameters are still slightly higher. SEM analysis confirmed the formation of biofilm on both mediums after 28 d of acclimatization; with further analysis of schmutzdecke formation need to be carried out to enrich the results.
Collapse
Affiliation(s)
- Nurina Fitriani
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Ledy Theresia
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Timothy Tjahja Nugraha O'Marga
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Agus Supriyanto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Luuk C. Rietveld
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, CN Delft 2628, Netherlands
| |
Collapse
|
6
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|
7
|
Radojević ID, Jakovljević VD, Ostojić AM. A mini-review on indigenous microbial biofilm from various wastewater for heavy-metal removal - new trends. World J Microbiol Biotechnol 2023; 39:309. [PMID: 37715865 DOI: 10.1007/s11274-023-03762-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Biofilm, as a form of the microbial community in nature, represents an evolutionary adaptation to the influence of various environmental conditions. In nature, the largest number of microorganisms occur in the form of multispecies biofilms. The ability of microorganisms to form a biofilm is one of the reasons for antibiotic resistance. The creation of biofilms resistant to various contaminants, on the other hand, improves the biological treatment process in wastewater treatment plants. Heavy metals cannot be degraded, but they can be transformed into non-reactive and less toxic forms. In this process, microorganisms are irreplaceable as they interact with the metals in a variety of ways. The environment polluted by heavy metals, such as wastewater, is also a source of undiscovered microbial diversity and specific microbial strains. Numerous studies show that biofilm is an irreplaceable strategy for heavy metal removal. In this review, we systematize recent findings regarding the bioremediation potential of biofilm-forming microbial species isolated from diverse wastewaters for heavy metal removal. In addition, we include some mechanisms of action, application possibilities, practical issues, and future prospects.
Collapse
Affiliation(s)
- Ivana D Radojević
- Faculty of Science, Department of Biology and Ecology, Laboratory of microbiology, University of Kragujevac, Radoja Domanoviča 12, 34000, Kragujevac, Republic of Serbia.
| | - Violeta D Jakovljević
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300, Novi Pazar, Republic of Serbia
| | - Aleksandar M Ostojić
- Faculty of Science, Department of Biology and Ecology, Laboratory of microbiology, University of Kragujevac, Radoja Domanoviča 12, 34000, Kragujevac, Republic of Serbia
| |
Collapse
|
8
|
Núñez P, Misic C, Cutroneo L, Capello M, Medina R, Besio G. Biofilm-induced effect on the buoyancy of plastic debris: An experimental study. MARINE POLLUTION BULLETIN 2023; 193:115239. [PMID: 37459835 DOI: 10.1016/j.marpolbul.2023.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Plastic floating on the ocean surface represents about 1 % of all plastic in the ocean, despite the buoyancy of most plastics. Biofouling can help to sink debris, which could explain this discrepancy. A set of laboratory experiments was conducted to investigate biofilm-induced effects on the buoyancy of different plastic debris. Ten materials of different densities (buoyant/non-buoyant), sizes (micro/meso/macro), and shapes (irregular/spherical/cylindrical/flat), including facemasks and cotton swabs, were evaluated. Biofilm was incubated in these materials from a few weeks to three months to investigate the effect of different growth levels on their buoyancy. Biofilm levels and rising/settling velocities were measured and compared at seven time-points. The results show a hindered buoyancy for solid materials, while hollow and open materials showed the opposite trend in early biofilm colonization stages. A relationship was established between biofilm-growth and equivalent sphere diameter that can be used to improve predictive modeling of plastic-debris transport.
Collapse
Affiliation(s)
- Paula Núñez
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain.
| | - Cristina Misic
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Laura Cutroneo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Marco Capello
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Raúl Medina
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | - Giovanni Besio
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università degli studi di Genova, Via Montallegro 1, 16145 Genoa, Italy
| |
Collapse
|
9
|
Banti DC, Samaras P, Kostopoulou E, Tsioni V, Sfetsas T. Improvement of MBBR-MBR Performance by the Addition of Commercial and 3D-Printed Biocarriers. MEMBRANES 2023; 13:690. [PMID: 37623751 PMCID: PMC10456846 DOI: 10.3390/membranes13080690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
Moving bed biofilm reactor combined with membrane bioreactor (MBBR-MBR) constitute a highly effective wastewater treatment technology. The aim of this research work was to study the effect of commercial K1 biocarriers (MBBR-MBR K1 unit) and 3D-printed biocarriers fabricated from 13X and Halloysite (MBBR-MBR 13X-H unit), on the efficiency and the fouling rate of an MBBR-MBR unit during wastewater treatment. Various physicochemical parameters and trans-membrane pressure were measured. It was observed that in the MBBR-MBR K1 unit, membrane filtration improved reaching total membrane fouling at 43d, while in the MBBR-MBR 13X-H and in the control MBBR-MBR total fouling took place at about 32d. This is attributed to the large production of soluble microbial products (SMP) in the MBBR-MBR 13X-H, which resulted from a large amount of biofilm created in the 13X-H biocarriers. An optimal biodegradation of the organic load was concluded, and nitrification and denitrification processes were improved at the MBBR-MBR K1 and MBBR-MBR 13X-H units. The dry mass produced on the 13X-H biocarriers ranged at 4980-5711 mg, three orders of magnitude larger than that produced on the K1, which ranged at 2.9-4.6 mg. Finally, it was observed that mostly extracellular polymeric substances were produced in the biofilm of K1 biocarriers while in 13X-H mostly SMP.
Collapse
Affiliation(s)
- Dimitra C. Banti
- QLAB Private Company, Research & Development, Quality Control and Testing Services, 57008 Thessaloniki, Greece; (E.K.); (V.T.); (T.S.)
- Department of Food Science and Technology, School of Geotechnical Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Petros Samaras
- Department of Food Science and Technology, School of Geotechnical Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Eleni Kostopoulou
- QLAB Private Company, Research & Development, Quality Control and Testing Services, 57008 Thessaloniki, Greece; (E.K.); (V.T.); (T.S.)
| | - Vassiliki Tsioni
- QLAB Private Company, Research & Development, Quality Control and Testing Services, 57008 Thessaloniki, Greece; (E.K.); (V.T.); (T.S.)
| | - Themistoklis Sfetsas
- QLAB Private Company, Research & Development, Quality Control and Testing Services, 57008 Thessaloniki, Greece; (E.K.); (V.T.); (T.S.)
| |
Collapse
|
10
|
Hu X, Zhang Y, Chen Z, Gao Y, Teppen B, Boyd SA, Zhang W, Tiedje JM, Li H. Tetracycline accumulation in biofilms enhances the selection pressure on Escherichia coli for expression of antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159441. [PMID: 36252660 DOI: 10.1016/j.scitotenv.2022.159441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms are present as either biofilm or planktonic species in natural and engineered environments. Little is known about the selection pressure emanating from exposure to sub-minimal inhibitory concentration of antibiotics on planktonic vs. biofilm bacteria. In this study, an E. coli bioreporter was used to develop biofilms on glass and high-density polyethylene (HDPE) surfaces, and compared with the corresponding planktonic bacteria in antibiotic resistance expression when exposed to a range of μg/L levels of tetracycline. The antibiotic resistance-associated fluorescence emissions from biofilm E. coli reached up to 1.6 times more than those from planktonic bacteria. The intensively developed biofilms on glass surfaces caused the embedded bacteria to experience higher selection pressure and express more antibiotic resistance than those on HDPE surfaces. The temporal pattern of fluorescence emissions from biofilm E. coli was consistent with the biofilm-developing processes during the experimental period. The increased expression of antibiotic resistance from biofilm bacteria could be attributed to the high affinity of tetracycline with extracellular polymeric substances (EPS). The enhanced accumulation of tetracycline in biofilms could exert higher selection pressure on the embedded bacteria. These results suggest that in many natural and engineered systems the higher antibiotic resistance in biofilm bacteria could be attributed partially to the retention antibiotics by the EPS in biofilms.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Yingjie Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Zeyou Chen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Brian Teppen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
11
|
Stable year-round nutrients removal and recovery from wastewater by technical-scale Algal Turf Scrubber (ATS). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|