1
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Jonsson CM, de Queiroz SCDN. Concepts on Accumulation of Pesticides and Veterinary Drugs in Fish: A Review with Emphasis in Tilapia. Animals (Basel) 2023; 13:2748. [PMID: 37685012 PMCID: PMC10486662 DOI: 10.3390/ani13172748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The quality of the aquatic environment can be compromised by the practice of intensive use of pesticides in agriculture and by the misuse of veterinary drugs. Therefore, organisms that live in aquatic ecosystems may be affected due to the presence of these chemicals, through runoff, leaching and other processes. Exposure of aquatic organisms to these xenobiotics could pose health risks. Consequently, there is a growing interest in predicting the bioaccumulation of these substances in aquatic biota from experiments conducted under laboratory conditions. Studies on fish have been performed due to its importance as human food and their wide distribution in most of the aquatic environment. Thus, this article reviews the concepts on determining the accumulation of pesticides and veterinary drugs in fish. The risk regarding the consumption of fish containing residues of these chemical agents, the acceptable daily intake, the testing protocols and the analytical techniques used to determine the residues of these substances in fish tissues are discussed. An emphasis on studies involving tilapia as the test organism was included because, according to Food and Agricultural Organization (FAO), this species is one of the most cultivated in the world.
Collapse
Affiliation(s)
- Claudio Martín Jonsson
- Laboratório de Aquicultura e Ecotoxicologia, Embrapa Meio Ambiente (Embrapa Environment), Rodovia SP-340, km 127.5, Tanquinho Velho, Jaguariúna 13918-110, SP, Brazil;
| | - Sonia Claudia do Nascimento de Queiroz
- Laboratório de Resíduos e Contaminantes, Embrapa Meio Ambiente (Embrapa Environment), Rodovia SP-340, km 127.5, Tanquinho Velho, Jaguariúna 13918-110, SP, Brazil
| |
Collapse
|
3
|
Cui J, Liu Y, Hao Z, Liu Y, Qiu M, Kang L, Teng X, Tang Y. Cadmium induced time-dependent kidney injury in common carp via mitochondrial pathway: Impaired mitochondrial energy metabolism and mitochondrion-dependent apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023:106570. [PMID: 37202229 DOI: 10.1016/j.aquatox.2023.106570] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Toxic effect of heavy metal cadmium (Cd) on fish kidneys had been reported. Mitochondrion is an important organelle for maintaining kidney function, while its role in Cd-induced kidney injury in common carp remained unclarified. In this experiment, we established a poisoning model of common carp with Cd exposure (0.26 mg/L) for 15, 30, and 45 days. Serum biochemistry determination, histological observation, TUNEL assay, qRT-PCR, Western blot, and integrated biomarker response (IBR) were applied to assess the nephrotoxicity of Cd to common carp. Our results displayed that Cd exposure increased the levels of serum biochemical indexes (UREA, CRE, and UA), indicating kidney injury. We further revealed via histological observation that Cd damaged structural integrity of kidneys, as evidenced by renal glomerulus and renal tubular injury, hallmark phenotypes of apoptosis, and mitochondrial damage, suggesting that mitochondria damage and apoptosis were involved in Cd-induced kidney injury. Moreover, Cd exposure decreased ATPase (Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase) activities as well as PGC-1a and Mfn2 levels, while increased Drp1 and PINK1 levels as well as LC3-II/LC3-I ratio, which indicated that Cd-impaired renal energy metabolism was related to mitochondrial dysfunction. Additionally, we found that Cd induced oxidative stress (abnormal levels of SOD, CAT, GPX, MDA, and H2O2) in kidneys, which was involved in triggering mitochondrial dysfunction and further impairing mitochondrial energy metabolism. Moreover, the occurrence of mitochondria-dependent apoptosis was found after Cd-exposure in common carp kidneys, as indicated by enhanced levels of Bax, CytC, APAF1, Caspase-9, and Caspase-3, while declined level of Bcl-2. Subsequently, we confirmed a time-dependent nephrotoxicity of Cd to common carp via IBR assessment. In conclusion, Cd induced time-dependent nephrotoxicity in common carp via mitochondrial pathway. This mitochondria-oriented study shed light on underlying mechanisms of Cd-induced renal pathologies and provided a theoretical basis for evaluating Cd toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR. China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China.
| | - You Tang
- Digital Agriculture key discipline of Jilin Province, JiLin Agricultural Science and Technology University, Jilin 132101, PR. China.
| |
Collapse
|
4
|
Cui J, Hao Z, Zhou Q, Qiu M, Liu Y, Liu Y, Teng X, Kang L. Chlorpyrifos induced autophagy and mitophagy in common carp livers through AMPK pathway activated by energy metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114983. [PMID: 37148751 DOI: 10.1016/j.ecoenv.2023.114983] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Water pollution caused by widely used agricultural pesticide chlorpyrifos (CPF) has aroused extensive public concern. While previous studies have reported on toxic effect of CPF on aquatic animal, little is known about its effect on common carp (Cyprinus carpio L.) livers. In this experiment, we exposed common carp to CPF (11.6 μg/L) for 15, 30, and 45 days to establish a poisoning model. Histological observation, biochemical assay, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and integrated biomarker response (IBR) were applied to assess the hepatotoxicity of CPF in common carp. Our results displayed that CPF exposure damaged histostructural integrity and induced liver injury in common carp. Furthermore, we found that CPF-induced liver injury may be associated with mitochondrial dysfunction and autophagy, as evidenced by swollen mitochondria, broken mitochondrial ridges, and increased the number of autophagosomes. Moreover, CPF exposure decreased the activities of ATPase (Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase), altered glucose metabolism-related genes (GCK, PCK2, PHKB, GYS2, PGM1, and DLAT), and activated energy-sensing AMPK, indicating that CPF caused energy metabolism disorder. The activation of AMPK further induced mitophagy via AMPK/Drp1 pathway, and induced autophagy via AMPK/mTOR pathway. Additionally, we found that CPF induced oxidative stress (abnormal levels of SOD, GSH, MDA, and H2O2) in common carp livers, which further contributed to the induction of mitophagy and autophagy. Subsequently, we confirmed a time-dependent hepatotoxicity caused by CPF in common carp via IBR assessment. Our findings presented a new insight into molecular mechanism of CPF induced-hepatotoxicity in common carp, and provided a theoretical basis for evaluating CPF toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Wang J, Yang Z, Li G, Zhang Z, Zhang D, Sun H. Oxidative stress and DNA damage in earthworms induced by methyl tertiary-butyl ether in natural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20514-20526. [PMID: 36258110 DOI: 10.1007/s11356-022-23679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Adverse effects of methyl tertiary-butyl ether (MTBE) have been noticed at different trophic levels by international researchers. However, there was unclear evidence about its effects on oxidative stress and DNA damage in earthworms. In this study, earthworms were cultivated in various doses of MTBE (0.0 mg/kg, 10.0 mg/kg, 30.0 mg/kg, and 60.0 mg/kg) contaminated agricultural soil for 7 days, 14 days, 21 days, and 28 days, respectively. The result showed that the reactive oxygen species (ROS) content of earthworms significantly increased in MTBE treatment groups compared to the control group. In MTBE treatment groups, the activities of superoxide dismutase, catalase, peroxidase, and glutathione S-transferase were significantly activated at the exposure of 7 days, which increased by 36.3-78.9%, 51.8-97.3%, 36.5-61.9%, and 12.0-54.8%, respectively. Then, the activities of these defense enzymes showed various changes following the changes in exposure times and MTBE concentrations. Especially in the 60.0 mg kg-1 group, both antioxidant enzymes and GST were still significantly activated at the exposure of 14 days and then significantly inhibited at the exposure of 28 days. The analysis of olive tail moment showed significant DNA damage in the 10.0 mg kg-1 group at the exposure of 28 days, and this damage in 30.0 mg/kg and 60.0 mg/kg groups was found at the exposure of 7 days. This result was consistent with the malondialdehyde accumulation in earthworms. Additionally, the analysis of IBRv2 showed the effects of MTBE treatments on earthworms in dose- and time-dependent manners. This study helps better to understand the effects of MTBE on soil invertebrate animals and provide theoretical support for soil protection in governing MTBE application.
Collapse
Affiliation(s)
- Yanqiang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Zhongkang Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Guangde Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Zhongwen Zhang
- Weifang Environmental Science Research & Design Institute, Weifang City, 26104, Shandong Province, China
| | - Dexin Zhang
- Bureau of Agriculture and Rural Affairs of Changle, Changle City, 262400, Shandong Province, China
| | - Hui Sun
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|
6
|
Mendy A, Pinney SM. Exposure to neonicotinoids and serum testosterone in men, women, and children. ENVIRONMENTAL TOXICOLOGY 2022; 37:1521-1528. [PMID: 35191592 DOI: 10.1002/tox.23503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoids are the most used pesticides in the world and, despite being harmful to honeybees, they are considered safe for mammals. However, they have been associated with decreasing testosterone levels in several experimental animal models. In the present study, we aimed to determine the association of urinary neonicotinoids with serum testosterone in humans. We analyzed data on 2014 male and female participants to the National Health and Nutrition Examination Survey conducted between 2015 and 2016 aged 6 or older. In linear regression adjusted for age and potential confounders, serum total testosterone was 37.78% lower with 10-fold increase in urinary total neonicotinoids (95% CI: -58.82, -6.00), 20.81% lower with 10-fold increase in urinary 5-hydroxy-imidacloprid (95% CI: -34.94, -3.62) and 25.01% lower with 10-fold increase in urinary n-desmethyl-acetamiprid (95% CI: -39.80, -6.58) among males. Serum free androgen index (FAI) was also decreased with higher urinary n-desmethyl-acetamiprid. In females, serum total testosterone was 32.91% lower with 10-fold increase in urinary total neonicotinoids (95% CI: -54.93, -0.13), 21.32% lower with 10-fold increase in urinary 5-hydroxy-imidacloprid (95% CI: -29.31, -12.42) and 15.42% lower with urinary detection of 5-hydroxy-imidacloprid (95% CI: -22.80, -7.34). FAI was likewise reduced with higher urinary levels of 5-hydroxy-imidacloprid and N-desmethyl-acetamiprid. In conclusion, this study using a sample representative of the US population is the first to report that exposure to neonicotinoids is associated with decreased serum testosterone levels in humans. However, future prospective studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Susan M Pinney
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Bavia L, Santiesteban-Lores LE, Carneiro MC, Prodocimo MM. Advances in the complement system of a teleost fish, Oreochromisniloticus. FISH & SHELLFISH IMMUNOLOGY 2022; 123:61-74. [PMID: 35227880 DOI: 10.1016/j.fsi.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
As the earliest known vertebrate possessing a complete immune system, teleost fish played an important role in the evolution of this system. The complement system is an ancient defense mechanism present in invertebrates and vertebrates. In teleost fish the complement system is formed by more than 35 circulating proteins, or found at the cell surface. This system is activated by three pathways: alternative, classical and lectin, generating functions such as the opsonization, lysis and modulation of the innate and adaptive immune responses. The complement system is an important immunological indicator that can be used to study and monitor the effects of environmental, nutritional, and infectious processes. The Nile tilapia (Oreochromis niloticus) is a teleost fish of great economic interest due to its characteristics of easy cultivation, high growth rates, and tolerance to adverse environmental conditions. In addition, Nile tilapia is an excellent model for ecotoxicological studies, however, there are very few studies reporting the performance of the complement system in this species after exposure to environmental pollutants. The aim of this review is to gather recent studies with to address the molecular and functional characterizations of the complement system in Nile tilapia and provide new insights about this defense mechanism. Looking to the future, we believe that the complement system analysis in Tilapia can be used as a biomarker of water quality and the general health status of fish.
Collapse
Affiliation(s)
- Lorena Bavia
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Lazara Elena Santiesteban-Lores
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Milena Carvalho Carneiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|