1
|
Chen F, Zhang LH, Duan F. Degradative solvent-catalyzed extraction of sewage sludge. BIORESOURCE TECHNOLOGY 2024; 411:131322. [PMID: 39173958 DOI: 10.1016/j.biortech.2024.131322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
It is necessary for the further development of sludge degradative solvent extraction (DSE) to significantly increase the bio-oil yield and adjust its composition. In this study, the effects of MCM-41, HZSM-5, and SSZ-13 on the physical properties, yield, and composition of bio-oil were compared. Results show that all three catalysts effectively promote the conversion of volatiles in the residue to the heavy component (heavy-s). The addition of MCM-41 improved the yieldof both the light component (light-s) and heavy-s. Their yields increased from 8.11% and 20.47% to 14.39% and 29.18%, respectively. Its all-silicon structure and weak acidity have no significant effect on the composition of the bio-oil. HZSM-5 addition increases the light-s yield to 25.58%. Its MFI structure and proper acidity are beneficial to the formation of aromatic hydrocarbons and olefins, while effectively reducing oxygenates. SSZ-13 increases the heavy-s yield to 27.89%, and promoted the formation of nitrogen-containing compounds significantly.
Collapse
Affiliation(s)
- Fangmin Chen
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, Anhui Province, PR China
| | - Li-Hui Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, Anhui Province, PR China
| | - Feng Duan
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, Anhui Province, PR China.
| |
Collapse
|
2
|
Xu X, Liang B, Zhu Y, Chen J, Gan T, Hu H, Zhang Y, Huang Z, Qin Y. Direct and efficient conversion of cellulose to levulinic acid catalyzed by carbon foam-supported heteropolyacid with Brønsted-Lewis dual-acidic sites. BIORESOURCE TECHNOLOGY 2023; 387:129600. [PMID: 37532058 DOI: 10.1016/j.biortech.2023.129600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
This study aimed to produce bio-based levulinic acid (LA) via direct and efficient conversion of cellulose catalyzed by a sustainable solid acid. A carbon foam (CF)-supported aluminotungstic acid (HAlW/CF) catalyst with Brønsted-Lewis dual-acidic sites was creatively engineered by a hydrothermal impregnation method. The activity of the HAlW/CF catalyst was determined via the hydrolysis and conversion of cellulose to prepare LA in aqueous system. The cooperative effect of Brønsted and Lewis acids in HAlW/CF resulted in high cellulose conversion (89.4%) and LA yield (60.9%) at 180 °C for 4 h, which were greater than the combined catalytic efficiencies of single HAlW and CF under the same conditions. The HAlW/CF catalyst in block form exhibited superior catalytic activity, facile separation from reaction system, and favorable reusability. This work offers novel perspectives for the development of recyclable dual-acidic catalysts to achieve one-pot catalytic conversion of biomass to value-added chemicals.
Collapse
Affiliation(s)
- Xiaofen Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Beiling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ying Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiashuo Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Pusfitasari ED, Ruiz-Jimenez J, Samuelsson J, Besel V, Fornstedt T, Hartonen K, Riekkola ML. Assessment of physicochemical properties of sorbent materials in passive and active sampling systems towards gaseous nitrogen-containing compounds. J Chromatogr A 2023; 1703:464119. [PMID: 37271082 DOI: 10.1016/j.chroma.2023.464119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
The adsorption and desorption behavior of volatile nitrogen-containing compounds in vapor phase by solid-phase microextraction Arrow (SPME-Arrow) and in-tube extraction (ITEX) sampling systems, were investigated experimentally using gas chromatography-mass spectrometry. Three different SPME-Arrow coating materials, DVB/PDMS, MCM-41, and MCM-41-TP and two ITEX adsorbents, TENAX-GR and MCM-41-TP were compared to clarify the selectivity of the sorbents towards nitrogen-containing compounds. In addition, saturated vapor pressures for these compounds were estimated, both experimentally and theoretically. In this study, the adsorption of nitrogen-containing compounds on various adsorbents followed the Elovich model well, while a pseudo-first-order kinetics model best described the desorption kinetics. Pore volume and pore sizes of the coating sorbents were essential parameters for the determination of the adsorption performance for the SPME-Arrow sampling system. MCM-41-TP coating with the smallest pore size gave the slowest adsorption rate compared to that of DVB/PDMS and MCM-41 in the SPME-Arrow sampling system. Both adsorbent and adsorbate properties, such as hydrophobicity and basicity, affected the adsorption and desorption kinetics in SPME-Arrow system. The adsorption and desorption rates of studied C6H15N isomers in the MCM-41 and MCM-41-TP sorbent materials of SPME-Arrow system were higher for dipropylamine and triethylamine (branched amines) than for hexylamine (linear chain amines). DVB/PDMS-SPME-Arrow gave fast adsorption rates for the aromatic-ringed pyridine and o-toluidine. All studied nitrogen-containing compounds demonstrated high desorption rates with DVB/PDMS-SPME-Arrow. Chemisorption and physisorption were the sorption mechanisms in MCM-41- and MCM-41-TP- SPME-Arrow, but additional experiments are needed to confirm this. An active sampling technique ITEX gave comparable adsorption and desorption rates on the selective MCM-41-TP and universal TENAX-GR sorbent materials for all the compounds studied. Vapor pressures of nitrogen-containing compounds were experimentally estimated by using retention index approach and these values were compared with the theoretical ones, calculated using the COnductor-like Screening MOdel for Real Solvent (COSMO-RS) model. Both values agreed well with those found in the literature proving that these methods can be successfully used in predicting VOC's vapor pressures, e.g. for the formation of secondary organic aerosols.
Collapse
Affiliation(s)
- Eka Dian Pusfitasari
- Department of Chemistry, PO Box 55, FI-00014, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, Chemistry, Faculty of science, PO Box 55, FI-00014, University of Helsinki, Finland
| | - Jose Ruiz-Jimenez
- Department of Chemistry, PO Box 55, FI-00014, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, Chemistry, Faculty of science, PO Box 55, FI-00014, University of Helsinki, Finland
| | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Vitus Besel
- Institute for Atmospheric and Earth System Research, Physics, Faculty of science, PO Box 64, FI-00014, University of Helsinki, Finland
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Kari Hartonen
- Department of Chemistry, PO Box 55, FI-00014, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, Chemistry, Faculty of science, PO Box 55, FI-00014, University of Helsinki, Finland.
| | - Marja-Liisa Riekkola
- Department of Chemistry, PO Box 55, FI-00014, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, Chemistry, Faculty of science, PO Box 55, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
4
|
Pham GTT, Vu HT, Pham TT, Thanh NN, Thuy VN, Tran HQ, Doan HV, Nguyen MB. Exploring the potential of ZnO-Ag@AgBr/SBA-15 Z-scheme heterostructure for efficient wastewater treatment: synthesis, characterization, and real-world applications. RSC Adv 2023; 13:12402-12410. [PMID: 37091624 PMCID: PMC10116339 DOI: 10.1039/d3ra01856c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
This study reports on the synthesis and characterization of ZnO-Ag@AgBr/SBA-15 composites using natural halloysite clay from Yenbai Province, Vietnam, as a silica aluminum source. The synthesized materials demonstrated visible light absorption with a band gap energy range of 2.63-2.98 eV. The dual Z-scheme ZnO-Ag@AgBr/SBA-15 heterojunction exhibited superior catalytic performance compared to ZnO/SBA-15 and Ag@AgBr/SBA-15, owing to its improved electron transfer and reduced electron and hole recombination rate. In particular, the photocatalytic efficiency of ZnO-Ag@AgBr/SBA-15 was evaluated for the removal of harmful phenol red from wastewater under visible light irradiation. The photocatalytic process was optimized by varying the phenol red concentration, pH, and catalyst dosage, and showed that 98.8% of phenol red in 100 mL wastewater (pH = 5.5) can be removed using 40 mg of 20%ZnO-Ag@AgBr/SBA-15 within 120 min. Furthermore, the degradation pathway of phenol red was predicted using liquid chromatographic-mass spectrometry (LC-MS). Finally, the photocatalytic process was successfully tested using water samples collected from the four main domestic waste sources in Hanoi, including the To Lich River, the Hong River, the Hoan Kiem Lake, and the West Lake, demonstrating the high potential of the ZnO-Ag@AgBr/SBA-15 photocatalyst for phenol red degradation in real-world wastewater treatment applications.
Collapse
Affiliation(s)
- Giang T T Pham
- Faculty of Chemical Technology, Hanoi University of Industry 298 Minh Khai, Bac Tu Liem Ha Noi 10000 Vietnam
| | - Hoa T Vu
- Faculty of Chemical Technology, Hanoi University of Industry 298 Minh Khai, Bac Tu Liem Ha Noi 10000 Vietnam
| | - Tham Thi Pham
- Faculty of Chemical Technology, Hanoi University of Industry 298 Minh Khai, Bac Tu Liem Ha Noi 10000 Vietnam
| | - Nguyen Ngoc Thanh
- Faculty of Chemical Technology, Hanoi University of Industry 298 Minh Khai, Bac Tu Liem Ha Noi 10000 Vietnam
| | - Van Ngo Thuy
- Faculty of Chemical Technology, Hanoi University of Industry 298 Minh Khai, Bac Tu Liem Ha Noi 10000 Vietnam
| | - Hung Quang Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay Ha Noi Vietnam
| | - Huan V Doan
- Department of Mechanical Engineering, University of Bristol Bristol BS8 1TH UK
| | - Manh B Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay Ha Noi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay Ha Noi Vietnam
| |
Collapse
|
5
|
Hashim LH, Halilu A, Umar YB, Johan MRB, Aroua MK, Koley P, Bhargava SK. Role of lattice strain in bifunctional catalysts for tandem furfural hydrogenation–esterification. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01929a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This research represents that the bifunctional catalyst (Cu/RHSiO2–Al–Mg) which has the lowest lattice strain can significantly enhance catalytic reactivity such as the furfural conversion into furfural acetate.
Collapse
Affiliation(s)
- Luqman H. Hashim
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur – 50603, Malaysia
| | - Ahmed Halilu
- Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur – 50603, Malaysia
| | - Yahaya Balarabe Umar
- School of Chemical and Process Engineering, University of Leeds, LS2 9JT, Leeds, UK
| | - Mohd Rafie Bin Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur – 50603, Malaysia
- Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, Kuala Lumpur – 50603, Malaysia
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, Bandar Sunway, 47500 Petaling Jaya, Malaysia
- Sunway Materials Smart Science and Engineering (SMS2E) Research Cluster, Sunway University, Bandar Sunway, 47500 Petaling Jaya, Malaysia
- Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Paramita Koley
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne – 3001, Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne – 3001, Australia
| |
Collapse
|
6
|
Efficient synthesis of celecoxib and pyrazole derivatives on heterogeneous Ga-MCM-41-SO3H catalyst under mild condition. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhang C, Lv X, Zhang X, Huo S, Song H, Guan Y, Gao X. Progress in Selective Conversion of 5‐Hydroxymethylfurfural to DHMF and DMF. ChemistrySelect 2022. [DOI: 10.1002/slct.202201255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chi Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xuechuan Lv
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaofan Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
- Olefin Factory of Fushun Petrochemical Company Petrochina, Fushun 113001, Liaoning China
| | - Sihan Huo
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Hanlin Song
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Yining Guan
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaohan Gao
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| |
Collapse
|
8
|
Wu Y, Wang H, Peng J, Ding M. Advances in catalytic valorization of cellulose into value-added chemicals and fuels over heterogeneous catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Lu X, Guo H, Chen J, Wang D, Lee AF, Gu X. Selective Catalytic Transfer Hydrogenation of Lignin to Alkyl Guaiacols Over NiMo/Al-MCM-41. CHEMSUSCHEM 2022; 15:e202200099. [PMID: 35192235 DOI: 10.1002/cssc.202200099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Efficient deoxygenation of lignin-derived bio-oils is central to their adoption as precursors to sustainable liquid fuels in place of current fossil resources. In-situ catalytic transfer hydrogenation (CTH), using isopropanol and formic acid as solvent and in-situ hydrogen sources, was demonstrated over metal-doped and promoted MCM-41 for the depolymerization of oxygen-rich (35.85 wt%) lignin from Chinese fir sawdust (termed O-lignin). A NiMo/Al-MCM-41 catalyst conferred an optimal lignin-derived oil yield of 61.6 wt% with a comparatively low molecular weight (Mw =542 g mol-1 , Mn =290 g mol-1 ) and H/C ratio of 1.39. High selectivity to alkyl guaiacols was attributed to efficient in-situ hydrogen transfer from isopropanol/formic acid donors, and a synergy between surface acid sites in the Al-doped MCM-41 support and reducible Ni/Mo species, which improved the chemical stability and quality of the resulting lignin-derived bio-oils.
Collapse
Affiliation(s)
- Xinyu Lu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| | - Haoquan Guo
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| | - Jiajia Chen
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| | - Duoying Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| | - Adam F Lee
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC3000, Australia
| | - Xiaoli Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China
| |
Collapse
|
10
|
Recyclable Catalyst of ZnO/SiO2 Prepared from Salacca Leaves Ash for Sustainable Biodiesel Conversion. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Zhang S, Jin C, Sheng K, Zhang X. Mechanistic investigation of cellulose formate to 5-hydroxymethylfurfural conversion in DMSO-H2O. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Muthumanickam S, Thennila M, Yuvaraj P, Lingam KAP, Selvakumar K. An Efficient Synthesis of Heterogeneous and Hard Bound Ti
IV
‐MCM‐41 Catalyzed Mannich Bases and π‐Conjugated Imines. ChemistrySelect 2021. [DOI: 10.1002/slct.202103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Muthukumar Thennila
- Department of Physics Sethu Institute of Technology Virudhunagar 626115 . Tamilnadu India
| | - Paneerselvam Yuvaraj
- CSIR-North East Institute of Science & Technology Branch Laboratory Lamphelpat Imphal Manipur 795004 India
| | | | | |
Collapse
|
13
|
Kinetic Analysis for the Catalytic Pyrolysis of Polypropylene over Low Cost Mineral Catalysts. SUSTAINABILITY 2021. [DOI: 10.3390/su132313386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A kinetic analysis of non-catalytic pyrolysis (NCP) and catalytic pyrolysis (CP) of polypropylene (PP) with different catalysts was performed using thermogravimetric analysis (TGA) and kinetic models. Three kinds of low-cost natural catalysts were used to maximize the cost-effectiveness of the process: natural zeolite (NZ), bentonite, olivine, and a mesoporous catalyst, Al-MCM-41. The decomposition temperature of PP and apparent activation energy (Ea) were obtained from the TGA results at multiple heating rates, and a model-free kinetic analysis was performed using the Flynn–Wall–Ozawa model. TGA indicated that the maximum decomposition temperature (Tmax) of the PP was shifted from 464 °C to 347 °C with Al-MCM-41 and 348 °C with bentonite, largely due to their strong acidity and large pore size. Although olivine had a large pore size, the Tmax of PP was only shifted to 456 °C, because of its low acidity. The differential TG (DTG) curve of PP over NZ revealed a two-step mechanism. The Tmax of the first peak on the DTG curve of PP with NZ was 376 °C due to the high acidity of NZ. On the other hand, that of the second peak was higher (474 °C) than the non-catalytic reaction. The Ea values at each conversion were also decreased when using the catalysts, except olivine. At <0.5 conversion, the Ea obtained from the CP of PP with NZ was lower than that with the other catalysts: Al-MCM-41, bentonite, and olivine, in that order. The Ea for the CP of PP with NZ increased more rapidly, to 193 kJ/mol at 0.9 conversion, than the other catalysts.
Collapse
|
14
|
Nguyen MB, Pham XN, Doan HV. Heterostructure of vanadium pentoxide and mesoporous SBA-15 derived from natural halloysite for highly efficient photocatalytic oxidative desulphurisation. RSC Adv 2021; 11:31738-31745. [PMID: 35496832 PMCID: PMC9041538 DOI: 10.1039/d1ra06901b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 02/02/2023] Open
Abstract
Integration between conventional semiconductors and porous materials can enhance electron–hole separation, improving photocatalytic activity. Here, we introduce a heterostructure that was successfully constructed between vanadium pentoxide (V2O5) and mesoporous SBA-15 using inexpensive halloysite clay as the silica–aluminium source. The composite material with 40% doped V2O5 shows excellent catalytic performance in the oxidative desulphurisation of dibenzothiophene (conversion of 99% with only a minor change after four-cycle tests). These results suggest the development of new catalysts made from widely available natural minerals that show high stability and can operate in natural light to produce fuel oils with ultra-low sulphur content. New and robust catalysts made from natural minerals that can operate in sunlight to produce fuel oils with ultra-low-sulphur content.![]()
Collapse
Affiliation(s)
- Manh B Nguyen
- Institute of Chemistry (IOC), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam.,Hanoi University of Science and Technology (HUST) 01 Dai Co Viet Road Hanoi Vietnam
| | - Xuan Nui Pham
- Department of Chemical Engineering, Hanoi University of Mining and Geology 18 Vien Street, Bac Tu Liem District Hanoi Vietnam
| | - Huan V Doan
- Department of Chemical Engineering, Hanoi University of Mining and Geology 18 Vien Street, Bac Tu Liem District Hanoi Vietnam .,School of Chemistry, University of Bristol Bristol BS8 1TS UK
| |
Collapse
|