1
|
Askarniya Z, Cichocki Ł, Makowiec S, Wang C, Boczkaj G. Degradation of dicamba - A persistent herbicide - By combined application of formic acid and UV as an advanced reduction process. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:137984. [PMID: 40179786 DOI: 10.1016/j.jhazmat.2025.137984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/05/2025]
Abstract
The degradation of dicamba as a persistent herbicide was studied with the combined application of UV and formic acid (FA) as a novel advanced reduction process (ARP). The effects of key parameters of FA concentration, dissolved organic matter, and inorganic anions were studied. A 97 % degradation and 94 % dechlorination of dicamba were obtained through the combination of UV and FA (UV-FA) at a dicamba concentration of 0.023 mM and FA concentration of 0.123 M. With respect to the dechlorination, at a dicamba concentration of 0.23 mM, FA concentration of 0.123 M, and pH of 2, chloride concentration of 12.4 mg/L and 5.2 mg/L was obtained for ARP (UV-FA) and sole UV in acidic condition, respectively. Scavenging test using Methyl viologen (MV2 +) as a scavenger for reductive radicals including carboxyl anion radicals (CO2•¯) led to a decrease in the chloride concentration to 1.7 mg/L, revealing the importance of this radical in the dechlorination of dicamba. Inorganic anions (CO32¯ and SO42¯) had a slightly positive effect on the degradation of dicamba and led to an increase in degradation to 99 %, while they had a negative effect on the dechlorination by 7 % and 30 %, respectively. Due to the turbidity induced by dissolved organic matters (DOM), a moderate decrease in degradation by 39 % and dechlorination by 30 % was observed. The existence of five intermediates identified by GC-MS technique confirmed the proposed mechanism of dicamba degradation via ARP. Reductive degradation of dicamba mainly consists of processes based on CO2•¯, including single electron transfer process and radical-nucleophilic aromatic substitution (SRN) reactions, demonstrating the capability of this ARP for the effective degradation of dicamba.
Collapse
Affiliation(s)
- Zahra Askarniya
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Łukasz Cichocki
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Hu Y, Yang W, Ma Y, Qiu Y, Wei W, Wu B, Li K, Li Y, Zhang Q, Xiao R, Hou C, Wang H. Solid-liquid interface charge transfer for generation of H 2O 2 and energy. Nat Commun 2025; 16:1692. [PMID: 39956810 PMCID: PMC11830785 DOI: 10.1038/s41467-025-57082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
Solid-liquid contact electrification is a widespread interface phenomenon in nature. Recent research and theory demonstrate that electron transfer during this process holds the potential to initiate interfacial chemical reactions. Here, we design a dual-functional device for generation of H2O2 and energy. Interfacial chemical reactions and solid-liquid contact charging occur simultaneously during the liquid phase flow process. Specifically, electron transfer at the solid-liquid interface induces the formation of hydroxyl radicals (·OH) in the liquid phase, leading to spontaneous generation of H2O2. The transfer of charges at the solid-liquid interface is accompanied by energy transfer. By designing an external electrode structure, we can effectively harvest the energy from the flowing liquid phase, yielding an output power of up to 5.8 kW/m3 for water.
Collapse
Affiliation(s)
- Yunhao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
- School of Materials Science and Engineering, Shanghai Dianji University, Shanghai, China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yuji Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yong Qiu
- Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Wei Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Bo Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Ru Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
- School of Materials Science and Engineering, Shanghai Dianji University, Shanghai, China.
| |
Collapse
|
3
|
Dembech E, Sotgiu G, Donnadio A, Buoso S, Dolci G, Nichilo MJFA, Sinisi V. Casein-based film enriched with lignin as a biodegradable substrate for enzyme immobilization. RSC Adv 2025; 15:5344-5355. [PMID: 39967896 PMCID: PMC11833289 DOI: 10.1039/d4ra08521c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
In the last decades, the negative impact of petroleum derived materials on the environment is more and more evident; beyond the unavoidable reduction in the use of classical plastic, another promising approach is the development of alternative materials prepared starting from natural, biodegradable, and more sustainable biomolecules, particularly undervalued or discarded ones. Caseins are the most abundant proteins in milk, with important nutritional value but also interesting film-forming properties. Lignin is a polyphenolic polymer found in wood and derived from a by-product of the cellulose extraction processes; it is well known for its antibacterial, antioxidant, and UV-protecting properties. In the present work, casein was isolated from UHT skimmed bovine milk through acidification and used alone or in combination with lignin to produce films that are biodegradable and environmentally friendly. Casein and casein-lignin films presented a thickness in the range of 180-260 μm and a compact, non-porous texture. The presence of lignin did not affect the morphology of the films but influenced their mechanical properties. For casein and casein-lignin films covalently crosslinked with transglutaminase (TGM), the solubility decreased to 40-50% and the samples retained their shape. The results show that TGM-containing films are suitable as substrates for the immobilization of enzymes; herein, the FAD-dependent glucose oxidase from Aspergillus niger was added to the film and the enzyme remained stable and active against glucose for weeks, as demonstrated by the colorimetric detection of the H2O2 produced in the catalysed reaction. This study opens up the possibility of combining two products of natural origin for the production of films through processes with low environmental impact, thus offering interesting scenarios in the immobilization of macromolecules for the detection of target molecules.
Collapse
Affiliation(s)
- Elena Dembech
- Institute of Materials for Electronics and Magnetism, National Research Council (CNR-IMEM) Parco Area delle Scienze, 37/A 43124 Parma Italy
| | - Giovanna Sotgiu
- Institute for Organic Synthesis and Photoreactivity, National Research Council (CNR-ISOF) Via P. Gobetti, 101 40129 Bologna Italy
- Kerline Srl Via P. Gobetti, 101 40129 Bologna Italy
| | - Anna Donnadio
- Department of Pharmaceuticals Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy
| | - Sara Buoso
- Institute for Organic Synthesis and Photoreactivity, National Research Council (CNR-ISOF) Via P. Gobetti, 101 40129 Bologna Italy
- Kerline Srl Via P. Gobetti, 101 40129 Bologna Italy
| | - Giovanni Dolci
- Politecnico di Milano, Department of Civil and Environmental Engineering, Environmental Section Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Mary Jo F A Nichilo
- Politecnico di Milano, Department of Civil and Environmental Engineering, Environmental Section Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Valentina Sinisi
- Institute of Materials for Electronics and Magnetism, National Research Council (CNR-IMEM) Parco Area delle Scienze, 37/A 43124 Parma Italy
| |
Collapse
|
4
|
Blázquez S, Jiménez-Pérez R, González-Rodríguez J, González-Sánchez MI, Baeza-Romero MT, Valero E. Selective and highly sensitive measurement of H 2O 2 and organic hydroperoxides with PtNP/Poly(Brilliant Green)/SPCE. Talanta 2025; 283:127082. [PMID: 39447401 DOI: 10.1016/j.talanta.2024.127082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
This research presents a novel electrochemical approach for the selective measurement of hydrogen peroxide and organic hydroperoxides, which is pivotal in many fields. The study details the development of an advanced sensor using a one-pot, one-step synthesis to embed platinum nanoparticles within a 3D-polymeric matrix of poly (brilliant green) on screen-printed carbon electrodes. The modified surfaces were characterized using scanning and transmission electron microscopy, Raman spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The results obtained by amperometry showed that, at 0.1 V, only H2O2 produced an electrochemical signal, while, at higher potential (0.5 V), all the hydroperoxides tested exhibited an electrochemical signal. Sensitivities obtained for H2O2 by flow injection analysis were 431 ± 3 and 465 ± 4 μC mM-1 at 0.1 and 0.5 V, respectively, with detection limits (S/N = 3) 116 and 30 nM, respectively. For organic hydroperoxides, sensitivities ranged from 22.3 to 32.6 μC mM-1 at 0.5 V, and limits of detection from 1.15 to 5.95 μM. Chemometric analysis indicated the sensor can satisfactorily measure H2O2 in the presence of the organic hydroperoxides herein analysed. The proposed sensor showed excellent properties in terms of repeatability, reproducibility and stability, with minimal interference. The reliability of the sensor was verified by measuring hydroperoxides spiked in aqueous extracts from real air quality monitoring filters. These features highlight the suitability of the sensor for hydroperoxide measurement and underscore its reliability as a practical tool for real-world applications.
Collapse
Affiliation(s)
- Sergio Blázquez
- Universidad de Castilla-La Mancha. Department of Physical Chemistry. Higher Technical School of Industrial Engineering, and Institute of Nanoscience, Nanotechnology and Molecular Materials. 02071-Albacete, Spain.
| | - Rebeca Jiménez-Pérez
- Universidad de Castilla-La Mancha. Department of Physical Chemistry. Higher Technical School of Industrial Engineering, and Institute of Nanoscience, Nanotechnology and Molecular Materials. 02071-Albacete, Spain; Current address: Universidad de Málaga. Department of Analytical Chemistry. Faculty of Chemistry. 29071-Málaga, Spain.
| | - José González-Rodríguez
- School of Chemistry, College of Health and Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - María-Isabel González-Sánchez
- Universidad de Castilla-La Mancha. Department of Physical Chemistry. Higher Technical School of Industrial Engineering, and Institute of Nanoscience, Nanotechnology and Molecular Materials. 02071-Albacete, Spain.
| | - María Teresa Baeza-Romero
- Universidad de Castilla-La Mancha. Department of Physical Chemistry. School of Industrial and Aerospace Engineering, and Institute of Nanoscience, Nanotechnology and Molecular Materials. 45071-Toledo, Spain.
| | - Edelmira Valero
- Universidad de Castilla-La Mancha. Department of Physical Chemistry. Higher Technical School of Industrial Engineering, and Institute of Nanoscience, Nanotechnology and Molecular Materials. 02071-Albacete, Spain.
| |
Collapse
|
5
|
Gu P, Zhang W, Wang Y, Yang K, Zhang Z, Ren X, Wu H, Gu X, Miao H, Zheng Z. Calcium peroxide treatment of cyanobacterial blooms: Ecological safety assessment on submerged macrophyte Vallisneria natans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178290. [PMID: 39754955 DOI: 10.1016/j.scitotenv.2024.178290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
The outbreak of cyanobacterial blooms poses an increasingly serious ecological challenge. Our previous study found that calcium peroxide (CaO2) has a high inhibitory effect on cyanobacteria, along with a practical application potential in cyanobacteria-dominated lakes. In order to explore the sensitivity of aquatic ecosystems to CaO2 treatment, we conducted this study to elucidate the ecological impact of CaO2 on Vallisneria natans (V. natans) when inhibiting cyanobacterial bloom. This study firstly optimized the performance of CaO2 by preparing alginate-encapsulated CaO₂ (CaO2-Bead), which prolonged the release time of reactive oxygen species (ROS). Subsequently, the sensitivity of submerged plant V. natans and its biofilm was explored. After adding 100 mg L-1 CaO2-Bead, significant inhibitory effect on cyanobacteria was found, and the inhibition rate of cyanobacterial biomass reached 93.5 %. More importantly, CaO2-Bead can alleviate the oxidative stress, effects of Extracellular Polymeric Substances (EPS) structure and microbial community on the surface of leaf biofilm caused by cyanobacteria. At the same time, it decreased the damage of photosynthesis, mitochondrial transport, plant-pathogen interaction, mitogen-activated protein kinases (MAPK), and ubiquitin-mediated protein degradation in pathways in V. natans under inhibition of cyanobacteria. Our research provides a theoretical basis for evaluating the safety of CaO2 on the aquatic environment when treating cyanobacterial blooms.
Collapse
Affiliation(s)
- Peng Gu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Wanqing Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Yuting Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xueli Ren
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, PR China
| | - Xiaohui Gu
- Jiangsu Dongfang Ecological Dredging Engineering Co., Ltd, Jiangsu 214000, PR China
| | - Hengfeng Miao
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, PR China
| |
Collapse
|
6
|
Peng H, Gu H, Xu Z, Xiong G, Gao P, Wang S, Li X, Li F. Degradation mechanisms and toxicity determination of bisphenol A by FeO x-activated peroxydisulfate under ultraviolet light. ENVIRONMENTAL TECHNOLOGY 2025; 46:13-24. [PMID: 38556710 DOI: 10.1080/09593330.2024.2335670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Abstract
Ultraviolet light (UV)-assisted advanced oxidation processes (AOPs) are commonly used to degrade organic contaminants. However, this reaction system's extensive comprehension of the degradation mechanisms and toxicity assessment remains inadequate. This study focuses on investigating the degradation mechanisms and pathways of bisphenol A (BPA), generation of reactive oxygen species (ROS), and toxicity of degradation intermediates in UV/PDS/ferrous composites (FeOx) systems. The degradation rate of BPA gradually increased from the initial 11.92% to 100% within 120 min. Sulfate radicals (SO 4 . - ), hydroxyl radicals (.OH), superoxide anions (O 2 . - ), and singlet oxygen (1O2) were the primary factors in the photocatalytic degradation of BPA in the UV/PDS/FeOx systems. The main reactions of BPA in this system were deduced to be β-bond cleavage, hydroxyl substitution reaction, hydrogen bond cleavage, and oxidation reaction. A trend of decreasing toxicity for the degradation intermediates of BPA was observed according to the toxicity investigations. The efficient degradation of BPA in UV/PDS/FeOx systems provided theoretical data for AOPs, which will improve the understanding of organic contaminants by FeOx in natural industry wastewater.
Collapse
Affiliation(s)
- Hongbo Peng
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Hongyan Gu
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Zhimin Xu
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Guomei Xiong
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Peng Gao
- City College, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Siyao Wang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Xiongchao Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Fangfang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
7
|
Niu R, Cheng Y, Wang F, Zhang Y, Wang C. Transcriptome Analysis Provides Insights into the Safe Overwintering of Local Peach Flower Buds. Curr Issues Mol Biol 2024; 46:13903-13921. [PMID: 39727959 PMCID: PMC11727394 DOI: 10.3390/cimb46120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
During the dormant period of peach trees in winter, flower buds exhibit weak cold resistance and are susceptible to freezing at low temperatures. Understanding the physiological and molecular mechanisms underlying the response of local peach buds to low-temperature adversity is crucial for ensuring normal flowering, fruiting, and yield. In this study, the experimental materials included the conventional cultivar 'Xia cui' (XC) and the cold-resistant local resources 'Ding jiaba' (DJB) peach buds. The antioxidant enzyme activity, levels of malondialdehyde (MDA), proline (Pro), and hydrogen peroxide content (H2O2) were determined in peach buds at different dormancy periods. Transcriptome sequencing was performed at three dormancy stages: the dormancy entry stage (FD), deep dormancy release stage (MD), and dormancy release stage (RD). Additionally, transcriptome sequencing was conducted to analyze gene expression profiles during these stages. Our findings revealed that compared with XC cultivars, DJB peach buds exhibited decreased MDA and H2O2 contents but increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities as well as Pro content during the dormancy period. These findings suggest that cold-resistant cultivars possess significantly stronger antioxidant capacity than conventional cultivars under low-temperature stress. A total of 10,168 differential genes were annotated through transcriptome sequencing. Among them, 4975 were up-regulated while 5193 were down-regulated. The differentially expressed genes associated with low-temperature response in peach buds are primarily enriched in plant hormone signal transduction pathway and phenylpropane synthesis pathway. Key differentially expressed genes related to cold resistance include ARF2, GH3, and SAPK2, and differentially expressed transcription factors mainly belong to the AP2/ERF-ERF, bHLH, and C2H2 families. This study provides a theoretical foundation for understanding the key genes involved.
Collapse
Affiliation(s)
| | | | | | | | - Chenbing Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, China; (R.N.); (Y.C.); (F.W.); (Y.Z.)
| |
Collapse
|
8
|
Khan I, Mohyuddin SG, Sohail, Zaman S, Qadir M, Guo J, Li G. Enhancing Growth in Vigna radiata through the Inhibition of Charcoal Rot Disease: A Strategic Approach Using Plant Growth-Promoting Rhizobacteria. Microorganisms 2024; 12:1852. [PMID: 39338526 PMCID: PMC11433702 DOI: 10.3390/microorganisms12091852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Macrophomina phaseolina is a vital seed and soil-borne phytopathogen responsible for substantial crop yield losses. Although various methods exist for managing soil-borne pathogens, such as agronomic practices, chemical treatments, and varietal tolerance, biological control utilizing plant growth-promoting rhizobacteria (PGPR) or their secondary metabolites presents promising avenues. In this study, a screening of 150 isolates from the rhizosphere of Vigna radiata L. was conducted to identify strains capable of promoting host growth and controlling charcoal rot disease. Among the tested isolates, only 15 strains demonstrated the ability to produce plant growth-related metabolites, including indole acetic acid, hydrogen cyanide, ammonia, and lytic enzymes, and solubilize inorganic phosphate. Subsequently, these potent strains were evaluated for their antifungal activity against Macrophomina phaseolina in vitro. Three strains, namely MRP-7 (58% growth inhibition), MRP-12 (55% growth inhibition), and MRP-8 (44% growth inhibition), exhibited the highest percent growth inhibition (PGI.). Furthermore, a pot experiment demonstrated that the selected strains acted as effective growth promoters and ROS (reactive oxygen species) scavengers, and served as potential biocontrol agents, significantly reducing the incidence of charcoal rot disease and improving various agronomic attributes of the host plant. These findings highlight the potential of these strains to be utilized as biofertilizers and biocontrol agents for sustainable agricultural practices.
Collapse
Affiliation(s)
- Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | | | - Sohail
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Shah Zaman
- Department of Botany, University of Malakand KPK, Chakdara 18800, Pakistan
| | - Muhammad Qadir
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| |
Collapse
|
9
|
Bandopadhyay N, Paramanik K, Sarkar G, Roy S, Panda SJ, Purohit CS, Biswas B, Das HS. Phenalenyl-ruthenium synergism for effectual catalytic transformations of primary amines to amides. Dalton Trans 2024; 53:13795-13804. [PMID: 39105500 DOI: 10.1039/d4dt01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The synthesis of amides holds great promise owing to their impeccable contributions as building blocks for highly valued functional derivatives. Herein, we disclose the design, synthesis and crystal structure of a mixed-ligand ruthenium(II) complex, [Ru(η6-Cym)(O,O-PLY)Cl], (1) where Cym = 1-isopropyl-4-methyl-benzene and O,O-PLY = deprotonated form of 9-hydroxy phenalenone (HO,O-PLY). The complex catalyzes the aerobic oxidation of various primary amines (RCH2NH2) to value-added amides (RCONH2) with excellent selectivity and efficiency under relatively mild conditions with common organic functional group tolerance. Structural, electrochemical, spectroscopic, and computational studies substantiate that the synergism between the redox-active ruthenium and π-Lewis acidic PLY moieties facilitate the catalytic oxidation of amines to amides. Additionally, the isolation and characterization of key intermediates during catalysis confirm two successive dehydrogenation steps leading to nitrile, which subsequently transform to the desired amide through hydration. The present synthetic approach is also extended to substitution-dependent tuning at PLY to tune the electronic nature of 1 and to assess substituent-mediated catalytic performance. The effect of substitution at the PLY moiety (5th position) leads to structural isomers, which were further evaluated for the catalytic transformations of amine to amides under similar reaction conditions.
Collapse
Affiliation(s)
- Nilaj Bandopadhyay
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | | | - Gayetri Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Suvojit Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Subhra Jyoti Panda
- Department of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa-751005, India
| | - Chandra Shekhar Purohit
- Department of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa-751005, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Hari Sankar Das
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| |
Collapse
|
10
|
Li H, Zhang X, Yang S, Sun Y, Qian J. Discerning the Relevance of Singlet Oxygen in Pollutant Degradation in Peroxymonosulfate Activation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14005-14012. [PMID: 39039842 DOI: 10.1021/acs.est.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significant efforts have recently been exerted toward construction of singlet oxygen (1O2)-dominated catalytic oxidation systems for selective removal of organic contaminants from wastewater, with peroxides serving as the chemical source. However, the relevance of 1O2 in the removal of pollutants remains ambiguous and requires elucidation. In this study, we scrupulously exclude the significant role of 1O2 in contaminant degradation in various peroxymonosulfate (PMS) activation systems. Multiple experimental results indicate that the activation of PMS catalyzed by CuO, MnO2, Fe-doped g-C3N4 (Fe-CN), or N-doped graphite does not predominantly follow the 1O2 pathway. More importantly, the reactivity of 1O2 is remarkably overestimated in the literature, given its inferior capacity in degradation of a range of heterocyclic contaminants and aromatic compounds possessing electron-withdrawing groups. In addition, the strong physical quenching effect of water, coupled with the low oxidizing ability of 1O2, would notably reduce the utilization efficiency of peroxide, which is particularly apparent in the degradation of micropollutants. We reckon that this study is expected to end the long-running dispute associated with the relevance of 1O2 in pollutant removal.
Collapse
Affiliation(s)
- Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Shuai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jieshu Qian
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
| |
Collapse
|
11
|
Kumar Chaudhary V, Kukreti P, Sharma K, Kumar K, Singh S, Kumari S, Ghosh K. A sustainable strategic approach for N-alkylation of amines with activation of alcohols triggered via a hydrogen auto-transfer reaction using a Pd(II) complex: evidence for metal-ligand cooperativity. Dalton Trans 2024; 53:8740-8749. [PMID: 38712566 DOI: 10.1039/d4dt00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This work describes a new well-defined, air-stable, phosphine free palladium(II) [Pd(L)Cl] (1) catalyst. This catalyst was utilized for N-alkylation of amines and indole synthesis where H2O was found to be the by-product. A broad range of aromatic amines were alkylated using this homogeneous catalyst with a catalyst loading of 0.1 mol%. Greener aromatic and aliphatic primary alcohols were utilized and a hydrogen auto-transfer strategy via a metal-ligand cooperative approach was investigated. The precursor of the antihistamine-containing drug molecule tripelennamine was synthesized on a gram scale for large-scale applicability of the current synthetic methodology. A number of control experiments were performed to investigate the possible reaction pathway and the outcomes of these experiments indicated the azo-chromophore as a hydrogen reservoir during the catalytic cycle.
Collapse
Affiliation(s)
- Virendra Kumar Chaudhary
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Keshav Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Kapil Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
12
|
Zhang W, Yan D, Liang B, Shi F, Yan Y, Wang S, Xue F. Boosting electrochemical fenton process Via Cu, S-doped FeOOH sheet for hydrogen peroxide detection. Electrochim Acta 2024; 486:144122. [DOI: 10.1016/j.electacta.2024.144122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
13
|
Song R, Zhang J, Yang G, Wu Y, Yu J, Zhu H. A Non-Disposable Electrochemical Sensor Based on Laser-Synthesized Pd/LIG Nanocomposite-Modified Screen-Printed Electrodes for the Detection of H 2O 2. SENSORS (BASEL, SWITZERLAND) 2024; 24:2043. [PMID: 38610254 PMCID: PMC11014152 DOI: 10.3390/s24072043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
There have been many studies on the significant correlation between the hydrogen peroxide content of different tissues or cells in the human body and the risk of disease, so the preparation of biosensors for detecting hydrogen peroxide concentration has been a hot topic for researchers. In this paper, palladium nanoparticles (PdNPs) and laser-induced graphene (LIG) were prepared by liquid-phase pulsed laser ablation and laser-induced technology, respectively. The complexes were prepared by stirring and used for the modification of screen-printed electrodes to develop a non-enzymatic hydrogen peroxide biosensor that is low cost and mass preparable. The PdNPs prepared with anhydrous ethanol as a solvent have a uniform particle size distribution. The LIG prepared by laser direct writing has good electrical conductivity, and its loose porous structure provides more adsorption sites. The electrochemical properties of the modified electrode were characterized by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Compared with bare screen-printed electrodes, the modified electrodes are more sensitive for the detection of hydrogen peroxide. The sensor has a linear response range of 5 µM-0.9 mM and 0.9 mM-5 mM. The limit of detection is 0.37 µM. The above conclusions indicate that the hydrogen peroxide electrochemical biosensor prepared in this paper has great advantages and potential in electrochemical catalysis.
Collapse
Affiliation(s)
- Ruijie Song
- Department of the School of Medicine, Dalian University of Technology, Dalian 116024, China; (R.S.); (G.Y.); (Y.W.); (J.Y.)
| | - Jianwei Zhang
- Department of the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Ge Yang
- Department of the School of Medicine, Dalian University of Technology, Dalian 116024, China; (R.S.); (G.Y.); (Y.W.); (J.Y.)
| | - Yu Wu
- Department of the School of Medicine, Dalian University of Technology, Dalian 116024, China; (R.S.); (G.Y.); (Y.W.); (J.Y.)
| | - Jun Yu
- Department of the School of Medicine, Dalian University of Technology, Dalian 116024, China; (R.S.); (G.Y.); (Y.W.); (J.Y.)
| | - Huichao Zhu
- Department of the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|
14
|
Anferov SW, Boyn JN, Mazziotti DA, Anderson JS. Selective Cobalt-Mediated Formation of Hydrogen Peroxide from Water under Mild Conditions via Ligand Redox Non-Innocence. J Am Chem Soc 2024; 146:5855-5863. [PMID: 38375752 DOI: 10.1021/jacs.3c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Despite the broad importance of hydrogen peroxide (H2O2) in oxidative transformations, there are comparatively few viable routes for its production. The majority of commercial H2O2 is currently produced by the stepwise reduction of dioxygen (O2) via the anthraquinone process, but direct electrochemical formation from water (H2O) would have several advantages─namely, avoiding flammable gases or stepwise separations. However, the selective oxidation of H2O to form H2O2 over the thermodynamically favored product of O2 is a difficult synthetic challenge. Here, we present a molecular H2O oxidation system with excellent selectivity for H2O2 that functions both stoichiometrically and catalytically. We observe high efficiency for electrocatalytic H2O2 production at low overpotential with no O2 observed under any conditions. Mechanistic studies with both calculations and kinetic analyses from isolated intermediates suggest that H2O2 formation occurs in a bimolecular fashion via a dinuclear H2O2-bridged intermediate with an important role for a redox non-innocent ligand. This system showcases the ability of metal-ligand cooperativity and strategic design of the secondary coordination sphere to promote kinetically and thermodynamically challenging selectivity in oxidative catalysis.
Collapse
Affiliation(s)
- Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - David A Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| |
Collapse
|
15
|
Kokulnathan T, Wang TJ, Ahmed F, Alshahrani T, Arshi N. Synergism of Holmium Orthovanadate/Phosphorus-Doped Carbon Nitride Nanocomposite: Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Inorg Chem 2024; 63:3019-3027. [PMID: 38286799 PMCID: PMC10865356 DOI: 10.1021/acs.inorgchem.3c03804] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Developing efficient and robust electrode materials for electrochemical sensors is critical for real-time analysis. In this paper, a hierarchical holmium vanadate/phosphorus-doped graphitic carbon nitride (HoVO4/P-CN) nanocomposite is synthesized and used as an electrode material for electrochemical detection of hydrogen peroxide (H2O2). The HoVO4/P-CN nanocomposite exhibits superior electrocatalytic activity at a peak potential of -0.412 V toward H2O2 reduction in alkaline electrolytes while compared with other reported electrocatalysts. The HoVO4/P-CN electrochemical platform operated under the optimized conditions shows excellent analytical performance for H2O2 detection with a linear concentration range of 0.009-77.4 μM, a high sensitivity of 0.72 μA μM-1 cm-2, and a low detection limit of 3.0 nΜ. Furthermore, the HoVO4/P-CN-modified electrode exhibits high selectivity, remarkable stability, good repeatability, and satisfactory reproducibility in detecting H2O2. Its superior performance can be attributed to a large specific surface area, high conductivity, more active surface sites, unique structure, and synergistic action of HoVO4 and P-CN to benefit enhanced electrochemical activity. The proposed HoVO4/P-CN electrochemical platform is effectively applied to ascertain the quantity of H2O2 in food and biological samples. This work outlines a promising and effectual strategy for the sensitive electrochemical detection of H2O2 in real-world samples.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Tzyy-Jiann Wang
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Faheem Ahmed
- Department
of Applied Sciences & Humanities, Faculty of Engineering &
Technology, Jamia Millia Islamia, New Delhi 110025, India
| | - Thamraa Alshahrani
- Department
of Physics, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nishat Arshi
- Department
of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
16
|
Zhou C, Yu Y, Zeng W, Feng S, Li J. Effects of microbubble pretreatment on physiochemical and microbial properties of excess activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12528-12542. [PMID: 38233712 DOI: 10.1007/s11356-024-31939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Fast increased amount of excess activated sludge (EAS) from wastewater treatment plants has aroused universal concerns on its environmental risks and demands for appropriate treatments, while effective treatment is dependent upon proper pretreatment. In this study, air-supplied microbubbles (air-MBs) with generated size of 25.18 to 28.25 μm were used for EAS pretreatment. Different durations (30, 60, 90, and 120 s) yielded sludge with varied physiochemical conditions, and 60 s decreased sludge oxidation status and significantly increased adenosine triphosphate (ATP) content. Soluble, loosely-bound, and tightly-bound extracellular polymeric substances (SEPS, LB-EPS, and TB-EPS) were extracted from the sludge through a stepwise approach and examined through three-dimensional excitation-emission matrix (3D-EEM) and quantitative analysis. The results showed that 60- and 120-s treatments generated stronger fluorescence intensities on dissolved organic matters (DOMs) of protein-like and fulvic acid in LB-EPS and TB-EPS, which indicated the decrease of counterparts in EAS, and therefore facilitated sludge dewaterability and reduction. The dominant microbial communities in EAS, including Proteobacteria, Bacteroidota, Chloroflexi, and Actinobacteriota, were not significantly affected by MB pretreatment. The results collectively revealed the effects of MB pretreatment on EAS and indicated that MBs could be an effective pretreatment technique for EAS treatment process.
Collapse
Affiliation(s)
- Cuihong Zhou
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China
| | - Yiqiong Yu
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China
| | - Wanlin Zeng
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China
- E20 Institute of Environment Industry, Beijing, 100093, China
| | - Shugeng Feng
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China.
| | - Jiangting Li
- Beijing Institute of Petrochemical Technology, College of Mechanical Engineering, Beijing, 102617, China
| |
Collapse
|
17
|
Li J, Chen A, Meng Q, Xue H, Yuan B. A Novel Spectrophotometric Method for Determination of Percarbonate by Using N, N-Diethyl-P-Phenylenediamine as an Indicator and Its Application in Activated Percarbonate Degradation of Ibuprofen. Molecules 2023; 28:7732. [PMID: 38067463 PMCID: PMC10708432 DOI: 10.3390/molecules28237732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Sodium percarbonate (SPC) concentration can be determined spectrophotometrically by using N, N-diethyl-p-phenylenediamine (DPD) as an indicator for the first time. The ultraviolet-visible spectrophotometry absorbance of DPD•+ measured at 551 nm was used to indicate SPC concentration. The method had good linearity (R2 = 0.9995) under the optimized experimental conditions (pH value = 3.50, DPD = 4 mM, Fe2+ = 0.5 mM, and t = 4 min) when the concentration of SPC was in the range of 0-50 μM. The blank spiked recovery of SPC was 95-105%. The detection limit and quantitative limit were 0.7-1.0 μM and 2.5-3.3 μM, respectively. The absorbance values of DPD•+ remained stable within 4-20 min. The method was tolerant to natural water matrix and low concentration of hydroxylamine (<0.8 mM). The reaction stoichiometric efficiency of SPC-based advanced oxidation processes in the degradation of ibuprofen was assessed by the utilization rate of SPC. The DPD and the wastewater from the reaction were non-toxic to Escherichia coli. Therefore, the novel Fe2+/SPC-DPD spectrophotometry proposed in this work can be used for accurate and safe measurement of SPC in water.
Collapse
Affiliation(s)
| | | | | | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (J.L.); (A.C.); (Q.M.); (B.Y.)
| | | |
Collapse
|
18
|
Berbille A, Li XF, Su Y, Li S, Zhao X, Zhu L, Wang ZL. Mechanism for Generating H 2 O 2 at Water-Solid Interface by Contact-Electrification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304387. [PMID: 37487242 DOI: 10.1002/adma.202304387] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Indexed: 07/26/2023]
Abstract
The recent intensification of the study of contact-electrification at water-solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water-solid contact-electrification can drive chemical reactions. This mechanism, named contact-electro-catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2 O2 ) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2 O2 evolution reaches 58.87 mmol L-1 gcat -1 h-1 . Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2 O2 is formed from hydroxyl radicals (HO• ) or two superoxide radicals (O2 •- ) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab-initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2 O2 from air and water.
Collapse
Affiliation(s)
- Andy Berbille
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Fen Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- China Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yusen Su
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunning Li
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xin Zhao
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
19
|
Oh SY, Kim JH. Degradation of phenol by perborate in the presence of iron-bearing and carbonaceous materials. RSC Adv 2023; 13:32833-32841. [PMID: 37942454 PMCID: PMC10629399 DOI: 10.1039/d3ra06986a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
We investigated the oxidation of phenol by perborate-a newly proposed oxidant-in the presence of iron-bearing and carbonaceous materials through batch experiments. We hypothesized that the oxidation of phenol by perborate was enhanced due to the formation of reactive oxygen species (ROS) in the presence of iron-bearing or carbonaceous materials. Zero-valent iron and ferrous iron (Fe2+) promoted the oxidation of phenol by perborate. Biochar, granular activated carbon, an anode carbonaceous material recovered from a spent Li-ion battery, and graphite also accelerated the oxidation of phenol by perborate. Quenching experiments with radical scavengers and electron paramagnetic resonance (EPR) analysis revealed that hydroxyl (˙OH) and superoxide (O2˙-) radicals were generated and enhanced the degradation of phenol in the perborate systems. Singlet oxygen (1O2) was involved in the iron-bearing material-perborate systems. Moreover, we found that Persil®, a commercial perborate detergent, enhances the oxidation of phenol in the presence of iron-bearing and carbonaceous materials. Our results suggest that perborate can be used for advanced oxidation processes to remediate recalcitrant organic contaminants in natural environments and engineered systems.
Collapse
Affiliation(s)
- Seok-Young Oh
- Department of Civil and Environmental Engineering, University of Ulsan 93 Daehak-ro, Nam-gu Ulsan 44610 South Korea +82-52-259-2629 +82-52-259-2752
| | - Jun-Hwan Kim
- Department of Civil and Environmental Engineering, University of Ulsan 93 Daehak-ro, Nam-gu Ulsan 44610 South Korea +82-52-259-2629 +82-52-259-2752
| |
Collapse
|
20
|
Guan Y, Xu F, Sun L, Luo Y, Cheng R, Zou Y, Liao L, Cao Z. Hydrogen Peroxide Electrochemical Sensor Based on Ag/Cu Bimetallic Nanoparticles Modified on Polypyrrole. SENSORS (BASEL, SWITZERLAND) 2023; 23:8536. [PMID: 37896629 PMCID: PMC10611109 DOI: 10.3390/s23208536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Due to the strong oxidizing properties of H2O2, excessive discharge of H2O2 will cause great harm to the environment. Moreover, H2O2 is also an energetic material used as fuel, with specific attention given to its safety. Therefore, it is of great importance to explore and prepare good sensitive materials for the detection of H2O2 with a low detection limit and high selectivity. In this work, a kind of hydrogen peroxide electrochemical sensor has been fabricated. That is, polypyrrole (PPy) has been electropolymerized on the glass carbon electrode (GCE), and then Ag and Cu nanoparticles are modified together on the surface of polypyrrole by electrodeposition. SEM analysis shows that Cu and Ag nanoparticles are uniformly deposited on the surface of PPy. Electrochemical characterization results display that the sensor has a good response to H2O2 with two linear intervals. The first linear range is 0.1-1 mM (R2 = 0.9978, S = 265.06 μA/ (mM × cm2)), and the detection limit is 0.027 μM (S/N = 3). The second linear range is 1-35 mM (R2 = 0.9969, 445.78 μA/ (mM × cm2)), corresponding to 0.063 μM of detection limit (S/N = 3). The sensor reveals good reproducibility (σ = 2.104), repeatability (σ = 2.027), anti-interference, and stability. The recoveries of the electrode are 99.84-103.00% (for 0.1-1 mM of linear range) and 98.65-104.80% (for 1-35 mM linear range). Furthermore, the costs of the hydrogen peroxide electrochemical sensor proposed in this work are reduced largely by using non-precious metals without degradation of the sensing performance of H2O2. This study provides a facile way to develop nanocomposite electrochemical sensors.
Collapse
Affiliation(s)
- Yanxun Guan
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fen Xu
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Yumei Luo
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Riguang Cheng
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Yongjin Zou
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
| | - Lumin Liao
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.G.); (Y.L.); (R.C.); (Y.Z.); (L.L.)
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science & Technology, Changsha 410114, China;
| |
Collapse
|
21
|
Garcia-Munoz P, Valenzuela L, Wegstein D, Schanz T, Lopez GE, Ruppert AM, Remita H, Bloh JZ, Keller N. Photocatalytic Synthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Top Curr Chem (Cham) 2023; 381:15. [PMID: 37160833 DOI: 10.1007/s41061-023-00423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/11/2023]
Abstract
Hydrogen peroxide is a powerful and green oxidant that allows for the oxidation of a wide span of organic and inorganic substrates in liquid media under mild reaction conditions, and forms only molecular water and oxygen as end products. Hydrogen peroxide is therefore used in a wide range of applications, for which the well-documented and established anthraquinone autoxidation process is by far the dominating production method at the industrial scale. As this method is highly energy consuming and environmentally costly, the search for more sustainable synthesis methods is of high interest. To this end, the article reviews the basis and the recent development of the photocatalytic synthesis of hydrogen peroxide. Different oxygen reduction and water oxidation mechanisms are discussed, as well as several kinetic models, and the influence of the main key reaction parameters is itemized. A large range of photocatalytic materials is reviewed, with emphasis on titania-based photocatalysts and on high-prospect graphitic carbon nitride-based systems that take advantage of advanced bulk and surface synthetic approaches. Strategies for enhancing the performances of solar-driven photocatalysts are reported, and the search for new, alternative, photocatalytic materials is detailed. Finally, the promise of in situ photocatalytic synthesis of hydrogen peroxide for water treatment and organic synthesis is described, as well as its coupling with enzymes and the direct in situ synthesis of other technical peroxides.
Collapse
Affiliation(s)
- Patricia Garcia-Munoz
- Department of Chemical and Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006, Madrid, Spain
| | - Laura Valenzuela
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France
| | - Deborah Wegstein
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Tobias Schanz
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Girlie Eunice Lopez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Hynd Remita
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Jonathan Z Bloh
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France.
| |
Collapse
|
22
|
Chen JW, Wu TC, Liang W, Ciou JJ, Lai CH. Boronates as hydrogen peroxide-reactive warheads in the design of detection probes, prodrugs, and nanomedicines used in tumors and other diseases. Drug Deliv Transl Res 2022; 13:1305-1321. [PMID: 36258159 DOI: 10.1007/s13346-022-01248-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
Abstract
Hydrogen peroxide (H2O2) has always been a topic of great interests attributed to its vital role in biological process. H2O2 is known as a major reactive oxygen species (ROS) which is involve in numerous physiological processes such as cell proliferation, signal transduction, differentiation, and even pathogenesis. A plenty of diseases development such as chronic disease, inflammatory disease, and organ dysfunction are found to be relevant to abnormality of H2O2 production. Thus, imminent and feasible strategies to modulate and detect H2O2 level in vitro and in vivo have gained great importance. To date, the boronate-based chemical structure probes have been widely used to address the problems from the above aspects because of the rearranged chemical bonding which can detect and quantify ROS including hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). This present article discusses boronate-based probes based on the chemical structure difference as well as reactivities to H2O2 and ONOO-. In this review, we also focus on the application of boronate-based probes in the field of cell imaging, prodrugs nanoplatform, nanomedicines, and electrochemical biosensors for disease diagnosis and treatment. In a nutshell, we outline the recent application of boronate-based probes and represent the prospective potentiality in biomedical domain in the future.
Collapse
Affiliation(s)
- Jyun-Wei Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tzu-Chien Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wun Liang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jyun-Jia Ciou
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
23
|
Wang L, Riaz M, Song B, Song X, Huang W, Bai X, Zhao X. Study on phytotoxicity evaluation and physiological properties of nicosulfuron on sugar beet ( Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 13:998867. [PMID: 36304402 PMCID: PMC9593059 DOI: 10.3389/fpls.2022.998867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 05/25/2023]
Abstract
Nicosulfuron is an herbicide widely used in corn fields. In northeast China, sugar beet is often planted adjacent to corn, resulting in frequent phytotoxicity of nicosulfuron drift in sugar beet fields. This study was conducted by spraying nicosulfuron to assess the phytotoxicity and clarify the mechanism of nicosulfuron toxicity on sugar beet. The results showed that nicosulfuron impaired growth and development by reducing photosynthetic capacity and disrupting antioxidant systems at a lethal dose of 81.83 g a.i. ha-1. Nicosulfuron damaged the function of photosynthetic system II (PSII), lowered photosynthetic pigment content, and inhibited photosynthetic efficiency. Compared with the control, the electron transfer of PSII was blocked. The ability of PSII reaction centers to capture and utilize light energy was reduced, resulting in a weakened photosynthetic capacity. The maximum net photosynthetic rate (Amax), light saturation point (LSP), and apparent quantum yield (AQY) decreased gradually as the nicosulfuron dose increased, whereas the light compensation point (LCP) and dark respiration (Rd) increased. Nicosulfuron led to reactive oxygen species (ROS) accumulation in sugar beet leaf, a significant rise in malondialdehyde (MDA) content, electrolytic leakage (EL), and considerable oxidative damage to the antioxidant system. This study is beneficial for elucidating the effects of nicosulfuron toxicity on sugar beet, in terms of phytotoxicity, photosynthetic physiology, and antioxidative defense system.
Collapse
Affiliation(s)
- Longfeng Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Muhammad Riaz
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-biore Sources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Baiquan Song
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Xin Song
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wengong Huang
- Safety and Quality Institution of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaoshan Bai
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xiaoyu Zhao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
24
|
Li Y, Liu X, Zhang G, Wang R, Yue R, Liao G, Sun Z, Liu Y. Rapid and selective on-site detection of triacetone triperoxide based on visual colorimetric method. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221117409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work, a visual colorimetric method for the rapid and selective detection of triacetone triperoxide is reported. This visual colorimetric method is based on the reaction between potassium titanyl oxalate and hydrogen peroxide (H2O2) released from triacetone triperoxide degradation. Potassium titanyl oxalate can selectively react with H2O2 to form peroxo-titanic acid (an orange complex), enabling the colorimetric detection of triacetone triperoxide. Based on the theory that triacetone triperoxide produces hydrogen peroxide under acidic conditions, acid types, acid concentration, response time, visual limit of detection, and reactants ratio are systematically studied simultaneously for this colorimetric method. Under sulfuric acid concentration is 60%, the proposed method can almost detect triacetone triperoxide instantly, and the color of the solution reaches the maximum within 1 min and remains stable with a visual limit of detection as low as 3.0 × 10−5 mol/L. Interference experiments were carried out on other kinds of explosives (hexamethylene triperoxide diamine, trinitrotoluene, etc.). The use of colorimetric card brings great convenience to the rapid, qualitative, and semi-quantitative on-site detection of triacetone triperoxide. Because of its rapidity, high sensitivity, simplicity, and selectivity, the proposed visual colorimetric method can serve as a valuable and promising reference for triacetone triperoxide’s rapid, qualitative on-site detection.
Collapse
Affiliation(s)
- Yonggang Li
- School of Investigation, People’s Public Security University of China, Beijing, China
| | - Xingsheng Liu
- School of Investigation, People’s Public Security University of China, Beijing, China
| | - Guannan Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Ruihua Wang
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Ruimin Yue
- Shenxian First High School, Liaocheng, China
| | - Guangfu Liao
- Engineering Research Center of NanoGeomaterials of Ministry of Education, China University of Geosciences, Wuhan, China
| | - Zhenwen Sun
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Yao Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| |
Collapse
|
25
|
Li L, Zheng M, Yan X, Huang H, Cao S, Liu K, Liu JB. Quantitative detection of H2O2 with a composite fluorescent probe of 8-quinoline boronic acid-Al(III). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Lin J, Xiao J, Cai H, Huang Y, Li J, Yang H, Li T, Zou J. Multi-wavelength spectrophotometric determination of peracetic acid and the coexistent hydrogen peroxide via oxidative coloration of ABTS with the assistance of Fe 2+ and KI. CHEMOSPHERE 2022; 287:132242. [PMID: 34826929 DOI: 10.1016/j.chemosphere.2021.132242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, a multi-wavelength spectrophotometric method for simultaneous determination of peracetic acid (PAA) and coexistent hydrogen peroxide (H2O2) was presented. This method was based on the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) with the assistance of Fe2+/KI to produce a stable green radical (ABTS●+), which could be determined at four characteristic peaks (i.e., 415 nm, 650 nm, 732 nm, and 820 nm). The absorbances of ABTS●+ at four peaks were well linear (R2 > 0.999) with concentrations of both total peroxides (PAA + H2O2) and PAA in the range of 0-40 μM under optimized conditions. The sensitivities for determining total peroxides at 415 nm, 650 nm, 732 nm and 820 nm were determined to be 4.248 × 104 M-1 cm-1, 1.682 × 104 M-1 cm-1, 2.132 × 104 M-1 cm-1, and 1.928 × 104 M-1 cm-1, respectively. For determining PAA, the corresponding sensitivities were 4.622 × 104 M-1 cm-1, 1.895 × 104 M-1 cm-1, 2.394 × 104 M-1 cm-1 and 2.153 × 104 M-1 cm-1, respectively. The concentration of coexistent H2O2 was gained by deducting PAA concentration from total peroxides concentration. The ABTS method was accurate enough to determine PAA concentration in natural water samples. Moreover, the ABTS method was successfully used to determine the changes of PAA and coexistent H2O2 and to distinguish their role on naproxen degradation in heat-activated PAA process. Overall, the ABTS method could be used as an alternative method for the convenient, rapid and sensitive determination of PAA and the coexistent H2O2 in water samples.
Collapse
Affiliation(s)
- Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hengyu Cai
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Yixin Huang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Jiawen Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Haoyu Yang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Tao Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| |
Collapse
|
27
|
Huang Y, Lin J, Zou J, Xu J, Wang M, Cai H, Yuan B, Ma J. ABTS as an electron shuttle to accelerate the degradation of diclofenac with horseradish peroxidase-catalyzed hydrogen peroxide oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149276. [PMID: 34333427 DOI: 10.1016/j.scitotenv.2021.149276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Horseradish peroxidase (HRP)-catalyzed hydrogen peroxide (H2O2) oxidation could degrade a variety of organic pollutants, but the intrinsic drawback of slow degradation rate limited its widespread application. In this study, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) was introduced into HRP/H2O2 system as an electron shuttle to enhance diclofenac degradation under neutral pH conditions. The green-colored ABTS radical (ABTS•+), generated by the oxidation of ABTS with HRP-catalyzed H2O2 oxidation, was proved to be the main reactive species for the rapid degradation of diclofenac in HRP/H2O2/ABTS system. There was no destruction of ABTS/ABTS•+ in HRP/H2O2/ABTS system, and ABTS was verified as an ideal electron shuttle. The reaction conditions including solution pH (4.5-10.5), HRP concentration (0-8 units mL-1) and H2O2 concentration (0-500 μM) would impact the formation of ABTS•+, and affect the degradation of diclofenac in HRP/H2O2/ABTS system. Moreover, compared with Fenton and hydroxylamine/Fenton systems, HRP/H2O2/ABTS system had better diclofenac degradation efficiency, higher H2O2 utilization efficiency and stronger anti-interference capacity in actual waters. Overall, the present study provided a meaningful and promising way to enhance the degradation of organic pollutants in water with HRP-catalyzed H2O2 oxidation.
Collapse
Affiliation(s)
- Yixin Huang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Jiaxin Xu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Mengyun Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Huahua Cai
- China Academy Urban Planning & Design Shenzhen, Guangdong 518000, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| |
Collapse
|
28
|
Lin J, Zou J, Cai H, Huang Y, Li J, Xiao J, Yuan B, Ma J. Hydroxylamine enhanced Fe(II)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters. WATER RESEARCH 2021; 207:117796. [PMID: 34736001 DOI: 10.1016/j.watres.2021.117796] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, a commonly used reducing agent, hydroxylamine (HA), was introduced into Fe(II)/PAA process to improve its oxidation capacity. The HA/Fe(II)/PAA process possessed high oxidation performance for diclofenac degradation even with trace Fe(II) dosage (i.e., 1 μM) at pH of 3.0 to 6.0. Based on electron paramagnetic resonance technology, methyl phenyl sulfoxide (PMSO)-based probe experiments and alcohol quenching experiments, FeIVO2+ and carbon-centered radicals (R-O•) were considered as the primary reactive species responsible for diclofenac elimination. HA accelerated the redox cycle of Fe(III)/Fe(II) and itself was gradually decomposed to N2, N2O, NO2- and NO3-, and the environmentally friendly gas of N2 was considered as the major decomposition product of HA. Four possible degradation pathways of diclofenac were proposed based on seven detected intermediate products. Both elevated dosages of Fe(II) and PAA promoted diclofenac removal. Cl-, HCO3- and SO42- had negligible impacts on diclofenac degradation, while humic acid exhibited an inhibitory effect. The oxidation capacity of HA/Fe(II)/PAA process in natural water matrices and its application to degrade various micropollutants were also investigated. This study proposed a promising strategy for improving the Fe(II)/PAA process and highlighted its potential application in water treatment.
Collapse
Affiliation(s)
- Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Hengyu Cai
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yixin Huang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jiawen Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China
| |
Collapse
|