1
|
Chen Y, Wang R, Wang D, Fang J, Dong R, Dai B. Harnessing Near-Infrared Light for Highly Efficient Photocatalysis. CHEMSUSCHEM 2025; 18:e202401786. [PMID: 39295495 DOI: 10.1002/cssc.202401786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/21/2024]
Abstract
Near-infrared (NIR) light, accounting for approximately 50 % of solar light, cannot directly excite photocatalytic reactions due to its lower energy, which severely restricts the photocatalytic solar energy conversion efficiency and hinders the application of photocatalysis. To overcome this dilemma, some viable strategies have been proposed to harness NIR light for enhancing photocatalytic performance based on material structure, composition, and function designs, and obvious progresses have been witnessed. In this review, the basic principles and representative advances in photocatalyst heterojunction designs (including p-n junctions, S-scheme, Z-scheme, and type-ІІ heterojunctions), photocatalyst composition and function designs (such as preparing rare earth element doped upconversion photocatalysts, rare earth upconversion photocatalytic hybrids and triplet-triplet annihilation upconversion photocatalytic composites), and photothermal-photocatalytic bifunction designs for NIR light utilization are exclusively scrutinized. Meanwhile, the applications of the above-mentioned NIR responsive photocatalyst composites in energy and environmental fields are summarized. Importantly, the challenges and outlooks in the field of NIR light harnessing for efficient photocatalysis are proposed, which may provide theoretical and experimental guidance to those working in solar energy conversion and utilization and other related fields.
Collapse
Affiliation(s)
- Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Ruizhe Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Rulin Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Baoying Dai
- State Key Laboratory of Organic Electronics and Information, Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Xu J, Zhao H, Yu X, Zou H, Hu J, Chen Z. Floating Photothermal Hydrogen Production. CHEMSUSCHEM 2025; 18:e202401307. [PMID: 39176998 DOI: 10.1002/cssc.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Solar-to-hydrogen (STH) is emerging as a promising approach for energy storage and conversion to contribute to carbon neutrality. The lack of efficient catalysts and sustainable reaction systems is stimulating the fast development of photothermal hydrogen production based on floating carriers to achieve unprecedented STH efficiency. This technology involves three major components: floating carriers with hierarchically porous structures, photothermal materials for solar-to-heat conversion and photocatalysts for hydrogen production. Under solar irradiation, the floating photothermal system realizes steam generation which quickly diffuses to the active site for sustainable hydrogen generation with the assistance of a hierarchically porous structure. Additionally, this technology is endowed with advantages in the high utilization of solar energy and catalyst retention, making it suitable for various scenarios, including domestic water supply, wastewater treatment, and desalination. A comprehensive overview of the photothermal hydrogen production system is present due to the economic feasibility for industrial application. The in-depth mechanism of a floating photothermal system, including the solar-to-heat effect, steam diffusion, and triple-phase interaction are highlighted by elucidating the logical relationship among buoyant carriers, photothermal materials, and catalysts for hydrogen production. Finally, the challenges and new opportunities facing current photothermal catalytic hydrogen production systems are analyzed.
Collapse
Affiliation(s)
- Jian Xu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Heng Zhao
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Xinti Yu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2 N 1N4, Canada
| | - Haiyan Zou
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2 N 1N4, Canada
| | - Zhangxing Chen
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| |
Collapse
|
3
|
Hu S, Qin L, Yi H, Lai C, Yang Y, Li B, Fu Y, Zhang M, Zhou X. Carbonaceous Materials-Based Photothermal Process in Water Treatment: From Originals to Frontier Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305579. [PMID: 37788902 DOI: 10.1002/smll.202305579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.
Collapse
Affiliation(s)
- Shuyuan Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
4
|
Sun S, Tang Q, Yu T, Gao Y, Zhang W, Zhou L, Elhegazy H, He K. Fabrication of g-C 3N 4@Bi 2MoO 6@AgI floating sponge for photocatalytic inactivation of Microcystis aeruginosa under visible light. ENVIRONMENTAL RESEARCH 2022; 215:114216. [PMID: 36057334 DOI: 10.1016/j.envres.2022.114216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/07/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this work, a floating photocatalyst was constructed by loading g-C3N4@Bi2MoO6@AgI (GBA) nanocomposite on a modified polyurethane sponge via a simple dip-coating method and applied for the inactivation of Microcystis aeruginosa under visible light. GBA ternary photocatalyst was fabricated successfully and the morphology, structure, chemical state, and optical properties were characterized systematically. The floating catalyst achieved near 100% removal efficiency of algae cells under 6 h visible light irradiation and also could be retrieved and used at least three times repeatedly. The influences of various conditions on photocatalytic performance such as loading content of nanoparticles, algae density, and concentration of natural organic matters were also studied, which revealed that the GBA floating catalyst exhibited excellent photocatalytic performance of algae removal under different conditions. Furthermore, the physiological characteristics of algae cells during the photocatalytic process, including cell morphology, membrane permeability, Zeta potential, photosynthetic system, antioxidant system, and the metabolic activity were investigated. Results confirmed that the algae cells were severely damaged during the photocatalytic inactivation and the normal physiological functions were significantly affected, which resulted in the death of algae cells at last. Finally, a possible photocatalytic inactivation mechanism of algae cells was proposed. In summary, GBA floating catalyst can effectively inactivate Microcystis aeruginosa under visible light, which confirmed the high efficiency of the novel photocatalytic algae removal technology. Meanwhile, the recyclable floating material also makes the practical application in eutrophic waters of the algae removal technology possible.
Collapse
Affiliation(s)
- Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| | - Qingxin Tang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Taiping Yu
- Yangtze Ecology and Environment Co. Ltd., Wuhan 430062, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Hosam Elhegazy
- Department of Structural Engineering and Construction Management, Faculty of Engineering and Technology, Future University in Egypt, Egypt
| | - Kai He
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| |
Collapse
|
5
|
Ding Z, Li W, Dou Y, Zhou Y, Ren Y, Jing H, Liang X, Wang X, Li N. Triangular-shaped homologous heterostructure as photocatalytic H 2S scavenger and macrophage modulator for rheumatoid arthritis therapy. J Mater Chem B 2022; 10:8549-8564. [PMID: 36239131 DOI: 10.1039/d2tb01650h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic arthropathy causing cartilage destruction, bone erosion, and even disability. Although some advances in RA treatment have been made based on inflammatory cytokine inhibition, long-term treatment and drug effect have been restrained by severe side effects. Herein, we developed a resveratrol (RSV)-loaded Ag/Ag2S triangular-shaped homologous heterostructure with polyethylene glycol/folic acid (PEG/FA) modification (Ag/Ag2S-PEG-FA/RSV NTs) to simultaneously suppress inflammatory cytokine over-expression through photocatalytic H2S scavenging and macrophage polarization stimulation. On one hand, the over-expressed H2S, which acted as a pro-inflammatory mediator to activate the MAPK/ICAM-1 pathway and exacerbate inflammation, was eliminated through photocatalysis. The homologous Ag and Ag2S of the heterostructure enhanced electron separation and transfer by acting as a charge acceptor and electron generator, respectively, which restrained electron/hole recombination and promoted photocatalysis efficiency. Additionally, the intrinsic superoxide dismutase (SOD) and catalase (CAT) activity of Ag decomposed the reactive oxygen species (ROS) over-expressed in the RA microenvironment, which supplied O2 for the photocatalytic H2S scavenging progress. On the other hand, RSV, a natural product with anti-inflammatory activity, could be delivered to the inflammatory joint by the targeting effect of PEG-FA, thus inhibiting the IκB/NF-κB pro-inflammatory pathway to induce macrophage interconversion balance from M1 to M2. As expected, the Ag/Ag2S-PEG-FA/RSV NTs exhibited H2S scavenging capacity and modulated macrophage polarization to reduce the inflammatory cytokine level and halt RA progression in vitro and in vivo. Overall, this study revealed a therapeutic strategy with high efficacy, which opens broad prospects for RA treatment.
Collapse
Affiliation(s)
- Ziqiao Ding
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Wen Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yingzi Ren
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, 1 Dali Road, Heping District, 300050, Tianjin, P. R. China.
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| |
Collapse
|
6
|
Sadoun AK, Gebreil A, Eltabey RM, Kospa DA, Ahmed AI, Ibrahim AA. Silver sulfide decorated carbonaceous sawdust/ES-PANI composites as salt-resistant solar steam generator. RSC Adv 2022; 12:28843-28852. [PMID: 36320508 PMCID: PMC9552864 DOI: 10.1039/d2ra04362a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Solar steam generation (SSG) is a potential approach for resolving the global water and energy crisis while causing the least amount of environmental damage. However, using adaptable photothermal absorbers with salt resistance through a simple, scalable, and cost-effective production approach is difficult. Herein, taking advantage of the ultra-fast water transportation in capillaries, and the large seawater storage capacity of wood, we develop a highly efficient natural evaporator. The wood wastes (sawdust) were carbonized at low temperatures to fabricate a green and low-cost carbonaceous porous material (CW). To enhance the salt resistance in high saline water, this evaporator was coated with polyaniline emeraldine salt (ES-PANI) which was synthesized through facile and cost-effective one-step oxidation of aniline. Furthermore, the composite was decorated with silver sulfide to increase the evaporation rate which reached up to 1.1 kg m−2 h−1 under 1 sun irradiation with 91.5% efficiency. Besides, the evaporator performs exceptionally well over 10 cycles due to the salt resistance capability of ES-PANI which generates a “Donnan exclusion” effect against cations in saline water. The Ag2S@PANI/CW evaporator may be a viable large-scale generator of drinking water due to its high efficiency for energy conversion, simple and low-cost fabrication approach, salt-resistance, and durability. Solar steam generation (SSG) is a potential approach for resolving the global water and energy crisis while causing the least amount of environmental damage.![]()
Collapse
Affiliation(s)
- Ahmed K. Sadoun
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| | - Ahmed Gebreil
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272,Nile Higher Institutes of Engineering and TechnologyEl-MansouraEgypt
| | - Rania M. Eltabey
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| | - Doaa A. Kospa
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| | - Awad I. Ahmed
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| | - Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| |
Collapse
|
7
|
S D, Tayade RJ. Low temperature energy- efficient synthesis methods for bismuth-based nanostructured photocatalysts for environmental remediation application: A review. CHEMOSPHERE 2022; 304:135300. [PMID: 35691396 DOI: 10.1016/j.chemosphere.2022.135300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Bismuth-based composite materials have unique structural, chemical, optical, and electrical properties that are highly beneficial in Photocatalysis. The layered structure and tunable bandgap properties of the Bismuth-based composites are advantageous for the absorption of solar light efficiently. Also, these properties help the separation and recombination of photogenerated charge carriers, leading to enhancement in the photocatalytic activity. Synthesis of the catalyst at a lower temperature to produce catalyst reduces the production cost and electrical energy consumption. This review provides an overview of the recent development in Bismuth-based composite nanostructured photocatalytic materials, mainly using low-temperature driven synthesis methods. Herein, we have mainly summarized the primarily used low temperature-based synthetic routes, particularly in the temperature range of 50-300 °C for synthesizing Bismuth-based composite materials. In addition to this, the photocatalytic mechanism, the textural, structural, electronic, and photocatalytic properties of the synthesized photocatalysts are discussed. The literature shows that the surface area of the composite Bismuth-based photocatalytic materials synthesized using the low-temperature synthetic route is in the range of 1.5-81 m2/g and can be activated by solar, ultraviolet, and Light Emitting Diode (LEDs) light irradiation based on the synthetic route. Their photocatalytic performance and structural stability are excellent and utilized for several runs. The comprehensive understanding of the low-temperature synthesis of Bismuth-based composite materials for visible light-activated photocatalytic applications provided will be useful for developing photocatalytic materials on an industrial scale due to energy-efficient synthetic routes. Furthermore, the prospects of low temperature-driven Bismuth-based composite synthesis routes are discussed.
Collapse
Affiliation(s)
- Devika S
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Rajesh J Tayade
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India.
| |
Collapse
|
8
|
Huang J, Shen J, Zhang G, Guo Y, Zheng X. Visible-light-driven 3D Bi 5O 7I/BiOCl microsphere with enhanced photocatalytic capability: Performance, degradation pathway, antibacterium and mechanism. CHEMOSPHERE 2022; 299:134482. [PMID: 35378169 DOI: 10.1016/j.chemosphere.2022.134482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
It is well known that both of the separation efficiency of photogenerated carriers and the response capability to visible light remarkably affect the photocatalytic performance. In the present work, a 3D microsphere of Bi5O7I/BiOCl heterojunction catalyst was synthetised. The synergy of Bi5O7I and BiOCl not only significantly enhances the transfer rate and separation efficiency of carriers, but also heightens light absorption capacity. As-prepared Bi5O7I/BiOCl (40 wt% BiOCl) has a higher degradation efficiency on doxycycline hydrochloride (DC) (90 min, 83.0%) and super high inhibition rate (90 min, 99.92%) on Escherichia coli under visible light, compared to the two monomers. Pollutants DC is finally decomposed into CO2, H2O and small molecule intermediates by generated h+, •OH and •O2-. The effects of reactive radicals follow the order of •OH radicals > h+ radicals ≫ •O2- and e- radicals. The possible structures of intermediates and four possible degradation pathways involved were also discussed. In addition, As-synthetised Bi5O7I/BiOCl has preferable reusability and excellent chemical stability. Biological toxicity experiments also verify that Bi5O7I/BiOCl is a green and environmentally friendly composite material. This strategy provides a green, low-toxic way for the application of traditional type II heterojunction in the fields of environmental remediation and photocatalysis.
Collapse
Affiliation(s)
- Jialun Huang
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingtao Shen
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ganwei Zhang
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongfu Guo
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, Jiangsu, China.
| | - Xinyu Zheng
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
9
|
Lee JH, Lee Y, Bathula C, Kadam AN, Lee SW. A zero-dimensional/two-dimensional Ag-Ag 2S-CdS plasmonic nanohybrid for rapid photodegradation of organic pollutant by solar light. CHEMOSPHERE 2022; 296:133973. [PMID: 35181435 DOI: 10.1016/j.chemosphere.2022.133973] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Herein, the two synthesis strategies are employed for rational design of 0D/2DAg-Ag2S-CdS heterojunctions towards photocatalytic degradation of methyl orange (MO) under simulated solar light. As the first strategy, a ternary Ag-Ag2S-CdS nanosheet (NS) heterojunction was fabricated via combined cation exchange and photo-reduction (CEPR) method (Ag-Ag2S-CdS/CEPR). The second strategy employed coprecipitation (CP) method (Ag-Ag2S-CdS/CP). Strikingly, SEM, TEM and HR-TEM images are manifested the first strategy is beneficial for retaining the original thickness (20.2 nm) of CdS NSs with a dominant formation of metallic Ag, whereas the second strategy increases the thickness (33.4 nm) of CdS NSs with a dominant formation of Ag2S. The Ag-Ag2S-CdS/CEPR exhibited 1.8-fold and 3.5-fold enhancement in photocatalytic activities as compared to those of Ag-Ag2S-CdS/CP and bare CdS NSs, respectively. This enhanced photocatalytic activity could be ascribed to fact that the first strategy produces a high-quality interface with intimate contact between the Ag-Ag2S-CdS heterojunctions, resulting in enhanced separation of photo-excited charge carriers, extended light absorption, and enriched active-sites. Furthermore, the degradation efficiency of Ag-Ag2S-CdS/CEPR was significantly reduced to ∼5% in the presence of BQ (•O2- scavenger), indicating that •O2- is the major active species that can decompose MO dye under simulated solar light.
Collapse
Affiliation(s)
- Jin Hyeok Lee
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do, 461-701, South Korea
| | - Yechan Lee
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do, 461-701, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Abhijit N Kadam
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do, 461-701, South Korea.
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do, 461-701, South Korea.
| |
Collapse
|
10
|
Song YZ, Wang J, Li MT, Xie W. Electrochemical Catalytic Reduction of p-Nitrotoluene on the Surface of α-Ag2S Crystal. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s003602442204029x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Di L, Sun X, Xian T, Li H, Gao Y, Yang H. Preparation of Z-scheme Au-Ag2S/Bi2O3 composite by selective deposition method and its improved photocatalytic degradation and reduction activity. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|