1
|
Zhu Y, Ye C, Xiao X, Sun Z, Li X, Fu L, Karimi-Maleh H, Chen J, Lin CT. Graphene-based electrochemical sensors for antibiotics: sensing theories, synthetic methods, and on-site monitoring applications. MATERIALS HORIZONS 2025; 12:343-363. [PMID: 39431856 DOI: 10.1039/d4mh00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the extensive use of antibiotics for treating infectious diseases in livestock and humans, the resulting residual antibiotics are a burden to the ecosystem and human health. Hence, for human health and ecological safety, it is critical to determine the residual antibiotics with accuracy and convenience. Graphene-based electrochemical sensors are an effective tool to detect residual antibiotics owing to their advantages, such as, high sensitivity, simplicity, and time efficiency. In this work, we comprehensively summarize the recent advances in graphene-based electrochemical sensors used for detecting antibiotics, including modifiers for electrode fabrication, theoretical elaboration of electrochemical sensing mechanisms, and practical applications of portable electrochemical platforms for the on-site monitoring of antibiotics. It is anticipated that the current review will be a valuable reference for comprehensively comprehending graphene-based electrochemical sensors and further promoting their applications in the fields of healthcare, environmental protection, and food safety.
Collapse
Affiliation(s)
- Yangguang Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chen Ye
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhuang Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Zhang C, Liu R, Liu R, Cui W, Sun Y, Yang WD. Ultrasonically assisted fabrication of electrochemical platform for tinidazole detection. ULTRASONICS SONOCHEMISTRY 2024; 110:107056. [PMID: 39232289 PMCID: PMC11403520 DOI: 10.1016/j.ultsonch.2024.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Based on sonochemistry, green synthesis methods play an important role in the development of nanomaterials. In this work, a novel chitosan modified MnMoO4/g-C3N4 (MnMoO4/g-C3N4/CHIT) was developed using ultrasonic cell disruptor (500 W, 30 kHz) for ultra-sensitive electrochemical detection of tinidazole (TNZ) in the environment. The morphology and surface properties of the synthesized MnMoO4/g-C3N4/CHIT electrode were characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were utilized to assess the electrochemical performance of TNZ. The results indicate that the electrochemical detection performance of TNZ is highly efficient, with a detection limit (LOD) of 3.78 nM, sensitivity of 1.320 µA·µM-1·cm-2, and a detection range of 0.1-200 μM. Additionally, the prepared electrode exhibits excellent selectivity, desirable anti-interference capability, and decent stability. MnMoO4/g-C3N4/CHIT can be successfully employed to detect TNZ in both the Songhua River and tap water, achieving good recovery rates within the range of 93.0 % to 106.6 %. Consequently, MnMoO4/g-C3N4/CHIT's simple synthesis might provide a new electrode for the sensitive, repeatable, and selective measurement of TNZ in real-time applications. Using the MnMoO4/g-C3N4/CHIT electrode can effectively monitor and detect the concentration of TNZ in environmental water, guiding the sewage treatment process and reducing the pollution level of antibiotics in the water environment.
Collapse
Affiliation(s)
- Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rijia Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Wenyu Cui
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Wein-Duo Yang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
3
|
Li Y, Deng L, Jiang Y, Jiang X. Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples. CHEMOSPHERE 2024; 367:143616. [PMID: 39447769 DOI: 10.1016/j.chemosphere.2024.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China; Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Lihua Deng
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China
| | - Yaxi Jiang
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Selvamani M, Kesavan A, Arulraj A, Ramamurthy PC, Rahaman M, Pandiaraj S, Thiruvengadam M, Sacari Sacari EJ, Limache Sandoval EM, Viswanathan MR. Microwave-Assisted Synthesis of Flower-like MnMoO 4 Nanostructures and Their Photocatalytic Performance. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1451. [PMID: 38611966 PMCID: PMC11012821 DOI: 10.3390/ma17071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 04/14/2024]
Abstract
This article describes an affordable method for the synthesis of MnMoO4 nanoflowers through the microwave synthesis approach. By manipulating the reaction parameters like solvent, pH, microwave power, and irradiation duration along this pathway, various nanostructures can be acquired. The synthesized nanoflowers were analyzed by using a powder X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and UV-vis diffuse reflectance spectroscopy (UV-DRS) to determine their crystalline nature, morphological and functional group, and optical properties, respectively. X-ray photoelectron spectroscopy (XPS) was performed for the examination of elemental composition and chemical states by qualitative and quantitative analysis. The results of the investigations demonstrated that the MnMoO4 nanostructures with good crystallinity and distinct shape were formed successfully. The synthesized MnMoO4 nanoflowers were tested for their efficiency as a photocatalyst in the degradation studies of methylene blue (MB) as model organic contaminants in an aqueous medium under visible light, which showed their photocatalytic activity with a degradation of 85%. Through the band position calculations using the electronegative value of MnMoO4, the photocatalytic mechanism of the nanostructures was proposed. The results indicated that the effective charge separation, and transfer mechanisms, in addition to the flower-like shape, were responsible for the photocatalytic performance. The stability of the recovered photocatalyst was examined through its recyclability in the degradation of MB. Leveraging MnMoO4's photocatalytic properties, future studies may focus on scaling up these processes for practical and large-scale environmental remediation.
Collapse
Affiliation(s)
- Muthamizh Selvamani
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Arulvarman Kesavan
- Department of Physics & Nanotechnology, SRM Institute of Science & Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago 7800002, Chile;
| | - Praveen C. Ramamurthy
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India;
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea;
| | - Elisban Juani Sacari Sacari
- Centro de Energías Renovables de Tacna, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Avenida Miraflores S/N, Ciudad Universitaria, Tacna 23003, Peru;
| | - Elmer Marcial Limache Sandoval
- Grupo de Investigación HIDROCIENCIA, Facultad de Ciencias de la Salud, Universidad Privada de Tacna, Av. Jorge Basadre Grohmann S/N Pocollay, Tacna 23003, Peru
| | - Mangalaraja Ramalinga Viswanathan
- Faulty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago 7941169, Chile;
- Department of Mechanical Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
5
|
Maurya PK, Mishra AK. Ni-Fe/Co-Fe Oxide-MoSe 2 Hybrid Nanostructures as Novel Electrocatalysts for High-Performance Rechargeable Zinc-Air Batteries. J Phys Chem Lett 2024; 15:1246-1253. [PMID: 38277511 DOI: 10.1021/acs.jpclett.3c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Metal-air batteries can play a crucial role in curbing air pollution due to carbon emission. Here, we report the hydrothermally synthesized bimetal oxides (NiFe2O4 and CoFe2O4) and their hybrid nanostructures with MoSe2 as potential electrocatalysts for electrically rechargeable Zn-air batteries. The NiFe2O4-MoSe2 hybrid nanostructure exhibits the best electrocatalytic activity (overpotential η10 ≈ 218 mV and Tafel slope ≈ 37 mV dec-1) for the OER study among prepared electrocatalysts in 1 M KOH electrolyte. Among the designed rechargeable Zn-air batteries, hybrid nanostructure-based batteries show superior performance, with the NiFe2O4-MoSe2 based device showing the best performance, having a high open-circuit voltage of ∼1.43 V, a peak power density of ∼176 mW cm-2, a specific capacity of ∼1025 mAh gZn-1, and an energy density of ∼1205 Wh kgZn-1. The superior performance of the hybrid nanostructures is due to the synergistic effect between MoSe2 and bimetal oxides, which enhances the conductivity, oxygen mobility, and active sites of the catalysts.
Collapse
Affiliation(s)
- Prince Kumar Maurya
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashish Kumar Mishra
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
6
|
Vetrimani A, Geetha K, Angel Jemima E, Arulnathan N, Kim HS, Kathalingam A. Effect of the green synthesis of CuO plate-like nanoparticles on their photodegradation and antibacterial activities. Phys Chem Chem Phys 2022; 24:28923-28933. [PMID: 36416292 DOI: 10.1039/d2cp03531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Green synthesis of copper oxide nanoparticles and its effects on photocatalytic dye degradation and antibacterial activities are reported. The synthesis of nanoparticles by green routes provides many advantages over chemical routes, including simplicity, cost-effectiveness, and fast processing route without using any costly or harmful chemicals. Tridax procumbense (coat buttons) plant root extract was used to synthesize copper oxide nanoparticles. The synthesized Tridax procumbense-copper oxide nanoparticles (TP-CuO NPs) were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering spectroscopy (DLS), and X-ray diffraction (XRD) techniques. The synthesized TP-CuO NPs were applied for photocatalytic dye degradation and antibacterial activity studies. The TP-CuO NPs exhibited a maximum antibacterial activity at 500 μg mL-1 concentration against Staphylococcus aureus and E. coli showing inhibition zones of 7.5 mm and 7.2 mm, respectively. The photocatalytic ability of the TP-CuO was also tested against the textile dye Trypan blue (TB), and showed about 55% degradation after 48 h for 500 μg mL-1 CuO NP concentration, showing a concentration-dependent degradation efficiency. This is the first work on TP-derived CuO nanoparticles and their photocatalytic and antimicrobial applications. Overall, this study supports the superiority of green-synthesized TP-CuO NPs as photocatalytic and antimicrobial agents.
Collapse
Affiliation(s)
- A Vetrimani
- Nanotechnology Division, Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, Tamil Nadu, India
| | - K Geetha
- Nanotechnology Division, Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, Tamil Nadu, India
| | - E Angel Jemima
- Trichy Research Institute of Biotechnology Private Limited, Tiruchirappalli, Tamil Nadu, India
| | - N Arulnathan
- Department of Animal Nutrition, Veterinary College and Research Institute, Tirunelveli, Tamil Nadu, India
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - A Kathalingam
- Millimeter-wave Innovation Technology (MINT) Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
7
|
Pournemati K, Habibi-Yangjeh A, Khataee A. Rational design of TiO2/MnMoO4/MoO3 nanocomposites: Visible-light-promoted photocatalysts for decomposition of tetracycline with tandem n-n heterojunctions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Sivaraman N, Duraisamy V, Senthil Kumar SM, Thangamuthu R. N, S dual doped mesoporous carbon assisted simultaneous electrochemical assay of emerging water contaminant hydroquinone and catechol. CHEMOSPHERE 2022; 307:135771. [PMID: 35931262 DOI: 10.1016/j.chemosphere.2022.135771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Heteroatom doped mesoporous carbon materials are promising catalysts for the electrochemical sensing application. Herein, we report highly efficient dual heteroatom-doped hexagonal mesoporous carbon (MC) derived from Santa Barbara Amorphous-15 (SBA-15) hard template for the detection of phenolic isomers. The synthesis involves dopamine hydrochloride (DA)/thiophene complex, which helps to attain perfectly retained N and S dual doped mesoporous carbon (NS-MC) framework. NS-MC exhibits higher surface area (951 m2 g-1) as well as higher pore volume (0.12 cm3 g-1) with huge graphitic, pyridinic and thiophenic defective sites which facilitates the well-resolved simultaneous electrochemical detection of phenolic isomers hydroquinone (HQ) and catechol (CC). Our results demonstrate that as-synthesized NS-MC material had a LOD of 0.63 μM and 0.29 μM for HQ and CC, respectively. From the calibration curve, sensitivities of proposed sensor were found to be 9.44, 2.71 μA μM-1 cm-2 and 20.80, 10.02 μA μM-1 cm-2 for HQ and CC, respectively with good linear ranges of 10-45 μM and 45-115 μM for HQ; 2-16 μM and 16-40 μM for CC. The NS-MC modified electrode exhibited good selectivity over various possible interferences. The present investigation reveals that the proposed NS-MC material is a promising metal-free catalyst which boosted to electrochemically detect both HQ and CC, present in the municipal tap as well as natural river stream water samples.
Collapse
Affiliation(s)
- Narmatha Sivaraman
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Rangasamy Thangamuthu
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India.
| |
Collapse
|
9
|
Yousefipour K, Sarraf-Mamoory R, Mollayousefi S. Synthesis of manganese molybdate/MWCNT nanostructure composite with a simple approach for supercapacitor applications. RSC Adv 2022; 12:27868-27876. [PMID: 36320277 PMCID: PMC9520677 DOI: 10.1039/d2ra04691a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/15/2022] [Indexed: 01/07/2023] Open
Abstract
Recently, magnesium molybdate materials have attracted scientific attention for application in supercapacitor devices due to advantages like low synthesis cost and good redox reactions. Nevertheless, these materials endure low electrical conductivity leading to inferior electrochemical performance. To eliminate this drawback, we prepare a composite powder containing magnesium molybdate and functionalized carbon nanotubes (MMO/C) using a simple process to improve the supercapacitive properties. The results proved an electrostatic interaction between the two components of the composite powder, which contains 18-30 nm magnesium molybdate nanoparticles. A crystal model related to magnesium molybdate powder (MMO) was simulated, illustrating that MnO6 octahedra are formed next to MoO4 tetrahedra. The mesoporous structure of both powders was confirmed whereas the specific surface area of the MMO was enhanced by 69.9% to 36.86 m2 g-1 in the MMO/C powder with more electroactive sites. The higher electrical conductivity of the MMO/C electrode was proved using electrochemical impedance spectroscopy (EIS) results, with the MMO/C electrode achieving a specific capacitance of 571 F g-1 at 1 A g-1 current density, improved by more than 4.5 times that of the MMO. Furthermore, the rate performance and cycling stability of the MMO/C electrode reached 87% and 85.2%, respectively. Finally, a two-electrode energy storage device (MMO/C//AC) was assembled. It reveals a specific capacitance of 94.7 F g-1, a maximum energy density of 29.6 W h kg-1 at a power density of 660.1 W kg-1, and cycling performance of 84.3% after 2000 cycles. As a result, the resulting data demonstrate that the MMO/C electroactive material has promising abilities in capacitive energy storage systems.
Collapse
Affiliation(s)
- Kian Yousefipour
- Department of Materials Engineering, Tarbiat Modares University Tehran Iran
| | | | - Shadi Mollayousefi
- Department of Materials Engineering, Tarbiat Modares University Tehran Iran
| |
Collapse
|
10
|
Ettadili F, Azriouil M, Matrouf M, Tahiri Alaoui O, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi M. Materials framework based bio/sensors for the detection of ornidazole and metronidazole antibiotics in environment and foodstuffs. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Fu L, Mao S, Chen F, Zhao S, Su W, Lai G, Yu A, Lin CT. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). CHEMOSPHERE 2022; 297:134127. [PMID: 35240147 DOI: 10.1016/j.chemosphere.2022.134127] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
The residues of antibiotics in the environment pose a potential health hazard, so highly sensitive detection of antibiotics has always appealed to analytical chemists. With the widespread use of new low-dimensional materials, graphene-modified electrochemical sensors have emerged as an excellent candidate for highly sensitive detection of antibiotics. Graphene, its derivatives and its composites have been used in this field of exploration in the last decade. In this review, we have not only described the field using traditional summaries, but also used bibliometrics to quantify the development of the field. The literature between 2011 and 2021 was included in the analysis. Also, the sensing performance and detection targets of different sensors were compared. We were able to trace not only the flow of research themes, but also the future areas of development. Graphene is a material that has a high potential to be used on a large scale in the preparation of electrochemical sensors. How to design a sensor with selectivity and low cost is the key to bring this material from the laboratory to practical applications.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
12
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
13
|
Venkatesh K, Muthukutty B, Chen SM, Karuppasamy P, Haidyrah AS, Karuppiah C, Yang CC, Ramaraj SK. Spinel CoMn2O4 nano-/micro-spheres embedded RGO nanosheets modified disposable electrode for the highly sensitive electrochemical detection of metol. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Silver-Capped Selenium Explored As an Electro-Catalyst for Simultaneous Detection of Nitro-Aromatic Drugs in Different Aqueous Samples. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Manganese Molybdenum Oxide Micro Rods Adorned Porous Carbon Hybrid Electrocatalyst for Electrochemical Determination of Furazolidone in Environmental Fluids. Catalysts 2021. [DOI: 10.3390/catal11111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The frequent occurrence of furazolidone (FZD) in environmental fluids reveals the ongoing increase in use and raises concerns about the need of monitoring it. To investigate the electrochemical behavior of FZD, a novel sensor of manganese molybdenum oxide (MMO) micro rods adorned three-dimensional porous carbon (PC) electrocatalyst was constructed. The crystalline structure and surface morphology of the MMO/PC composite was characterized by XRD, Raman, FESEM, and HR-TEM. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometric(i-t) methods were used to assess the electrocatalytic activity of modified electrodes. In the presence of FZD, the as-fabricated MMO/PC modified glassy carbon electrode (GCE) performed better at lower potentials with a greater peak current than other modified GCE. These results emanate from the synergistic effect of the MMO/PC suspension on the GCE. The electrochemical behavior of the amperometric(i-t) technique was used to determine FZD. Amperometric(i-t) detection yielded linear dynamic ranges of 150 nM to 41.05 µM and 41.05 to 471.05 µM with detection limits of 30 nM. The MMO/PC hybrid sensor was also effectively used to detect FZD in environmental fluids, yielding ultra-trace level detection.
Collapse
|
16
|
Fabrication of a Selective Sensor Amplification Probe Modified with Multi-Component Zn 2SnO 4/SnO 2 Heterostructured Microparticles as a Robust Electrocatalyst for Electrochemical Detection of Antibacterial Drug Secnidazole. MATERIALS 2021; 14:ma14216700. [PMID: 34772226 PMCID: PMC8588501 DOI: 10.3390/ma14216700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
In this study, we synthesized heterostructured zinc stannate/tin oxide microparticles (ZTO/TO MPs) by a simple coprecipitation method and used them as an effective electrode material for the electrochemical detection of the antibacterial drug secnidazole (SCZ). The as-prepared ZTO/TO MPs were characterized by XRD, Raman, FE-SEM, HR-TEM, EDX, and XPS analyses. The physiochemical studies clearly proved that the fabricated ZTO/TO MPs were formed in a heterostructure phase without other impurities. A glassy carbon electrode modified with the synthesized ZTO/TO MPs showed an excellent and improved electrocatalytic activity in the electrochemical reduction of SCZ. Using differential pulse voltammetry (DPV), an impressive linear calibration range, extending from 0.01 to 193 μM, was observed, coupled with a detection limit of 0.0054 μM and a sensitivity of 0.055 μA/μM. In addition, the ZTO/TO MPs/GCE showed very good selectivity for the detection of SCZ in the presence of a number of biological, inorganic, and structurally related compounds. Finally, the ZTO/TO MPs/GCE was investigated for the analysis of SCZ in human blood serum samples. A very good recovery was obtained when spiking the blood serum with SCZ, highlighting the good applicability of the ZTO/TO MPs/GCE for the electrochemical analysis of SCZ in complex biological samples.
Collapse
|
17
|
Thirumal V, Dhamodharan K, Yuvakkumar R, Ravi G, Saravanakumar B, Thambidurai M, Dang C, Velauthapillai D. Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. CHEMOSPHERE 2021; 282:131033. [PMID: 34102489 DOI: 10.1016/j.chemosphere.2021.131033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
This paper reported the successful preparation and characterization of bio-activated carbon nanosheets (ACNSs) synthesized from tamarind (tamarind indicia) fruits shells (TFSs) by employing Chemical Vapor Deposition (CVD) tubular furnace. The preparation of pure ACNSs and also potassium hydroxide (KOH) activated carbon nanosheets (K-ACNSs) were made through a pyrolysis process with Argon (Ar) gas as an inert gas at 800 °C for 2h 30min, followed by further purifications of K-ACNSs. The scanning electron microscope (SEM) images of ACNSs and K-ACNSs explored with and without pores respectively. The SEM micrographs also explored 3D-porous microstructure sheets with thickness around 18-65 nm. Raman spectroscopy explored crystallinity, SP2 order and graphitization at 1577-1589 cm-1. The major functional groups were also observed. The photoluminescence (PL) was analyzed for K-ACNSs materials and revealed carbon emission broad peak value at 521.3 nm. As prepared ACNSs and K-ACNSs active materials was applied for three-electrode materials of energy storage supercapacitor analysis of cyclic voltammeter for -0.4 - 0.15 V at scan rates of 10-100 mV/s. The electrochemical impedance spectroscopy (EIS) was performed with low Rct values of K-ACNSs as 0.65Ω when compared to pure ACNSs as 5.03Ω. Mainly, the galvanostatic charge-discharge test carried out in ACNSs and KCNSs materials was corresponded to 77 and 245.03 F/g respectively, with respect to 1 A/g current density. Finally, we promise that this reported novel tamarind bio-waste into conductive porous carbon nanosheets could develop future energy storage applications of biomass-derived carbons.
Collapse
Affiliation(s)
- V Thirumal
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - K Dhamodharan
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - B Saravanakumar
- SARP, Central Institute of Plastics Engineering & Technology (CIPET), Bhubaneswar, 751024, Odisha, India
| | - M Thambidurai
- COEB, School of Electrical and Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Cuong Dang
- COEB, School of Electrical and Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
18
|
Osajima JA, Silva LAL, Silva AAL, Rios MAS, De Carvalho TAF, Araújo AR, Silva DA, Magalhães JL, Matos JME, Silva-Filho EC. Facile synthesis of H-CoMoO4 nanosheets for antibacterial approaches. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Velmurugan S, Yang TCK, Chen JN, Zhi-Xiang L. In-situ preparation of CuO nanoparticles decorated In 2O 3 pn heterojunction composite for the photoelectrochemical detection of ornidazole. Mikrochim Acta 2021; 188:372. [PMID: 34625823 DOI: 10.1007/s00604-021-05036-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
The eco-friendly synthesis of metal oxides pn junction composite with high visible light absorption and its photoelectrochemical monitoring on antibiotics is reported. The In2O3-CuO pn heterojunction composite was successfully prepared by in-situ hydrothermal decoration of CuO on the prepared In2O3 using a simple reflux method. The obtained nanorods like In2O3-CuO pn heterojunction exhibited high conductivity with excellent stability for the facilitated photoelectrochemical detection of ornidazole (ONZ) that plays a role in aquatic toxicology. The photo-stability and optical characteristics of the In2O3-CuO heterojunction composite were analyzed through photocurrent and UV-visible studies. Mechanism of ONZ signaling has been proposed with appropriate band levels derived by Mott-Schottky analysis. An optimized In2O3-CuO heterojunction detects ONZ in the range 0.05-65.3 nM with 0.0092 nM as the limit of detection at - 0.45 V (vs. Ag/AgCl) working potential. The practical applicability of the sensor device was tested in chicken meat, human urine, and lake water samples containing ONZ. The recoveries of real samples were above 95% and results obtained were compared with electrochemical methods.
Collapse
Affiliation(s)
- Sethupathi Velmurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| | - Thomas C-K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, Republic of China.
- Precision and Materials Research Centre, National Taipei University of Technology, Taipei, Taiwan, Republic of China.
| | - Jyy-Ning Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| | - Liu Zhi-Xiang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| |
Collapse
|