1
|
Sawunyama L, Oyewo OA, Makgato SS, Bopape MF, Onwudiwe DC. TiO 2-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light. DISCOVER NANO 2025; 20:1. [PMID: 39751693 PMCID: PMC11698709 DOI: 10.1186/s11671-024-04178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO2-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method. The intrinsic properties of the functionalized membranes were characterized and their chemical and physical properties such as chemical stability, mechanical stability, water absorption, and porosity were established. The shape, crystallinity, thermal characteristics, and functional groups present were also determined using SEM, XRD, TGA, and FTIR studies, respectively. The results showed that the ceramic membrane functionalized with 0.5 g of TiO2-ZnO and sintered at 850 °C exhibited the best thermal, and chemical stability, and possessed the required porosity for ultrafiltration applications. Photocatalytic degradation of tetracycline (TC) as a model pollutant was examined and the optimum efficiency of 77% was achieved within 100 min of visible irradiation using the functionalized membrane. Moreso, the functionalized membrane was found to be stable with 73% degradation efficiency after 5 consecutive cycles of reusability study, showing negligible loss of efficiency. The scale-up of photocatalytic ceramic membranes and their utilization in real industrial applications will confirm their robustness.
Collapse
Affiliation(s)
- Lawrence Sawunyama
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Opeyemi A Oyewo
- Department of Chemical & Materials Engineering, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Seshibe S Makgato
- Department of Chemical & Materials Engineering, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Mokgadi F Bopape
- Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa
| | - Damian C Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
2
|
Guo Y, Han M, Song Z, Li J, Wang J, Zhao N, Zhao Q, Chen L. Synthesis of Titanium Silicon Composite Oxide Supported Cobalt Oxide Catalyst and Its Catalytic Performance for p-Diethylbenzene Oxidation. Chem Asian J 2024:e202401280. [PMID: 39639709 DOI: 10.1002/asia.202401280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
TiO2-SiO2 composite oxides with different Ti/Si ratios were synthesized by [sol-gel] method. The highest catalytic activity was obtained over T+S-0.75 loaded with 5 % Co3O4 by in-situ method using cobalt stearate as precursor. XPS, XRD, SEM, TEM, N2 adsorption-desorption were used to characterize the state of titanium and cobalt species and the specific pore structure of catalyst. The characterization results combined with catalytic activity of p-Diethylbenzene (PDEB) oxidation show that the short-range mesoporous pore structure of T+S-0.75-C catalyst can facilitate the diffusion of large-volume reactants, intermediates and products. Meanwhile, the synergetic effect of Ti4+, Co3+ and Co2+ can promote the decomposition of H2O2 and the generation of bromonium ions, which proceeds towards the target product during the reaction. Under the preferred reaction conditions, the oxidative conversion of PDEB in H2O2 system is 31.1 %, and total selectivity of the target product reaches 85 %.
Collapse
Affiliation(s)
- Ying Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, PR China
- Chaoyang Normal University, Department of Biochemical Engineering, Chaoyang, 122000, Liaoning, P R China
| | - Mei Han
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, PR China
| | - Zhimei Song
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, PR China
| | - Jinhong Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, PR China
| | - Jinge Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, PR China
| | - Nan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, PR China
| | - Qi Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, PR China
| | - Lidong Chen
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, PR China
| |
Collapse
|
3
|
Wang Y, Zhang Y, Liang L, Tu F, Li Z, Tang X, Dai L, Li L. Research Progress on Membrane Separation Technology for Oily Wastewater Treatment. TOXICS 2024; 12:794. [PMID: 39590977 PMCID: PMC11598286 DOI: 10.3390/toxics12110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
This paper presents the research progress and future prospects of membrane separation technology for treating oily wastewater. It discusses various treatment methods tailored to different sources and characteristics of oily wastewater, summarizing the features of different membrane separation technologies and the latest advancements in their application. The paper concludes by emphasizing the need for future research to focus on developing environmentally friendly and efficient coupled membrane treatment technologies, optimizing membrane material design and enhancing the environmental benefits of oily wastewater treatment.
Collapse
Affiliation(s)
- Yichang Wang
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Yu Zhang
- Institute of Soil and Water Resources and Environment Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310012, China; (Y.Z.); (X.T.)
| | - Liang Liang
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Feng Tu
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Zhongjian Li
- Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, China;
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environment Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310012, China; (Y.Z.); (X.T.)
| | - Li Dai
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Lingli Li
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| |
Collapse
|
4
|
Song D, Wang L, Sun W, Zhang Y, Xie B, Zhao Y, Wang W, Wang P, Ma J, Cheng W. Tourmaline triggered biofilm transformation: Boosting ultrafiltration efficiency and fouling resistance. WATER RESEARCH 2024; 264:122212. [PMID: 39126743 DOI: 10.1016/j.watres.2024.122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Ultralow pressure filtration system, which integrates the dual functionalities of biofilm degradation and membrane filtration, has gained significant attention in water treatment due to its superior contaminant removal efficiency. However, it is a challenge to mitigate membrane biofouling while maintaining the high activity of biofilm. This study presents a novel ceramic-based ultrafiltration membrane functionalized with tourmaline nanoparticles to address this challenge. The incorporation of tourmaline nanoparticles enables the release of nutrient elements and the generation of an electric field, which enhances the biofilm activity on the membrane surface and simultaneously alleviates intrapore biofouling. The tourmaline-modified ceramic membrane (TCM) demonstrated a significant antifouling effect, with a substantial increase in water flux by 60 %. Additionally, the TCM achieved high removal efficiencies for contaminants (48.78 % in TOC, 22.28 % in UV254, and 24.42 % in TN) after 30 days of continuous operation. The fouling resistance by various constituents in natural water was individually analyzed using model compounds. The TCM with improved electronegativity and hydrophilicity exhibited superior resistance to irreversible fouling through increased electrostatic repulsion and reduced adhesion to foulants. Comprehensive characterizations and analyses, including interfacial interaction energies, redox reaction processes, and biofilm evolutions, demonstrated that the TCM can release nutrient elements to facilitate the development of functional microbial community within the biofilm, and generate reactive oxygen species (ROS) on the membrane surface to the degrade contaminants and mitigate membrane biofouling. The electric field generated by tourmaline nanoparticles can promote electron transfer in the Fe(III)/Fe(II) cycle, ensuring a stable and sustainable generation of ROS and bactericidal negative ions. These synergistic functions enhance contaminant removal and reduce irreversible fouling of the TCM. This study provides fundamental insights into the role of tourmaline-modified surfaces in enhancing membrane filtration performance and fouling resistance, inspiring the development of high-performance, anti-fouling membranes.
Collapse
Affiliation(s)
- Dan Song
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lu Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Weikai Sun
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingjie Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ying Zhao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
5
|
Zango ZU, Khoo KS, Ali AF, Abidin AZ, Zango MU, Lim JW, Wadi IA, Eisa MH, Alhathlool R, Abu Alrub S, Aldaghri O, Suresh S, Ibnaouf KH. Development of inorganic and mixed matrix membranes for application in toxic dyes-contaminated industrial effluents with in-situ treatments. ENVIRONMENTAL RESEARCH 2024; 256:119235. [PMID: 38810826 DOI: 10.1016/j.envres.2024.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ahmed Fate Ali
- Department of Environmental Management, Bayero University, 3011, Kano State, Nigeria
| | - Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ismael A Wadi
- Prince Sattam Bin Abdulaziz University, Basic Science Unit, Alkharj, 16278, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Raed Alhathlool
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - S Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Mohamad Esham MI, Ahmad AL, Othman MHD, Adam MR. Remediation of oily-produced water from high-salinity oilfield using a low-cost, high-alumina calcium bentonite hollow fiber membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120894. [PMID: 38643621 DOI: 10.1016/j.jenvman.2024.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Discharging improperly treated oily-produced water (OPW) into the environment can have significant negative impacts on environmental sustainability. It can lead to pollution of water sources, damage to aquatic ecosystems and potential health hazards for individuals living in the affected areas. Ceramic hollow fiber membrane (CHFM) technology is one of the most effective OPW treatment methods for achieving high oil removal efficiency while maintaining membrane water permeability. In this study, low-cost calcium bentonite hollow fiber membranes (CaB-HFMs) were prepared from high-alumina calcium bentonite clay with various preparation parameters, including calcium bentonite content, sintering temperature, air gap distance and bore fluid rate. The prepared CaB-HFMs were then subjected to characterization using scanning electron microscopy (SEM), a three-point bending test, porosity, average pore size, hydraulic resistance and flux recovery ratio (FRR) analysis. Statistical analysis employing central composite design (CCD) assessed the interaction between the parameters and their effect on CaB-HFM water permeability and oil removal efficiency. Higher ceramic content and sintering temperature led to reduced porosity, smaller pore size and higher mechanical strength. In contrast, increasing the air gap distance and bore fluid rate exhibit different trends, resulting in higher porosity and pore size, along with weaker mechanical strength. Other than that, all of the CaB-HFMs displayed low hydraulic resistance (<0.01 m2 h.bar/L) and high FRR value (up to 95.2%). Based on CCD, optimal conditions for CaB-HFM were determined as follows: a calcium bentonite content of 50 wt.%, a sintering temperature of 1096 °C, an air gap distance of 5 cm and a bore fluid rate of 10 mL/min, with the desirability value of 0.937. Notably, the optimized CaB-HFMs demonstrated high oil removal efficiency of up to 99.7% with exceptional water permeability up to 535.2 L/m2.h.bar. The long-term permeation study also revealed it was capable of achieving a high average water permeation and a stable oil rejection performance of 522.15 L/m2.h.bar and 99.8%, respectively, due to their inherent hydrophilic and antifouling characteristics, making it practical for OPW treatment application.
Collapse
Affiliation(s)
- Mohamad Izrin Mohamad Esham
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia.
| | - Mohd Ridhwan Adam
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
7
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Avornyo A, Thanigaivelan A, Krishnamoorthy R, Hassan SW, Banat F. Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. MEMBRANES 2023; 13:176. [PMID: 36837679 PMCID: PMC9967170 DOI: 10.3390/membranes13020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles are reported for the improved separation performance of emulsified oil. Ag-CuO nanoparticles were synthesized via hydrothermal technique and dip-coated onto commercial membranes at varying concentrations (0.1, 0.5, and 1.0 wt.%). The prepared membranes were further examined to understand the improvements in oil-water separation due to Ag-CuO coating. All modified ceramic membranes exhibited higher hydrophilicity and decreased porosity. Additionally, the permeate flux, oil rejection, and antifouling performance of the Ag-CuO-coated membranes were more significantly improved than the pristine commercial membrane. The 0.5 wt.% modified membrane exhibited a 30% higher water flux (303.63 L m-2 h-1) and better oil rejection efficiency (97.8%) for oil/water separation among the modified membranes. After several separation cycles, the 0.5 wt.% Ag-CuO-modified membranes showed a constant permeate flux with an excellent oil rejection of >95% compared with the unmodified membrane. Moreover, the corrosion resistance of the coated membrane against acid, alkali, actual seawater, and oily wastewater was remarkable. Thus, the Ag-CuO-modified ceramic membranes are promising for oil separation applications due to their high flux, enhanced oil rejection, better antifouling characteristics, and good stability.
Collapse
Affiliation(s)
- Amos Avornyo
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Arumugham Thanigaivelan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shadi W. Hassan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
9
|
Xu Y, Zeng X, Qiu L, Yang F. 2D nanoneedle-like ZnO/SiO2 Janus membrane with asymmetric wettability for highly efficient separation of various oil/water mixtures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Salimiyan rizi K. MXene nanosheets as a novel nanomaterial with antimicrobial applications: A literature review. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Photocatalytic antifouling nanohybrid polysulfone membrane using the synergetic effect of graphene oxide and SiO2 for effective treatment of natural rubber-laden wastewater. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Baig N, Salhi B, Sajid M, Aljundi IH. Recent Progress in Microfiltration/Ultrafiltration Membranes for Separation of Oil and Water Emulsions. CHEM REC 2022; 22:e202100320. [PMID: 35189025 DOI: 10.1002/tcr.202100320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/08/2022] [Indexed: 01/18/2023]
Abstract
Oily wastewater has become one of the leading causes of environmental pollution. A massive quantity of oily wastewater is released from industries, oil spills, and routine activities, endangering the ecosystem's sustainability. Due to the enormous negative impact, researchers put strenuous efforts into developing a sustainable solution to treat oily wastewater. Microfiltration/ultrafiltration membranes are considered an efficient solution to treat oily wastewater due to their low cost, small footprint, facile operation, and high separation efficiencies. However, membranes severely fouled during the separation process due to oil's adsorption and cake layer formation, which shortens the membranes' life. This review has critically discussed the microfiltration/ultrafiltration membrane synthesizing methods and their emulsion's separation performance. In the end, key challenges and their possible solutions are highlighted to provide future direction to synthesize next-generation membranes.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.,Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
13
|
Amakiri KT, Angelis-Dimakis A, Ramirez Canon A. Recent advances, influencing factors, and future research prospects using photocatalytic process for produced water treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:769-788. [PMID: 35166699 DOI: 10.2166/wst.2021.641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oilfield-produced water is the primary by-product generated during oil and gas extraction operations. Oilfield-produced water is often severely toxic and poses substantial health, safety, and environmental issues; adequate treatment technologies can bring these streams to a quality level. Photocatalysis is a photochemical catalytic reaction that is a highly promising tool for environmental remediation due to its efficiency in mineralizing persistent and potentially toxic contaminants. However, there is limited understanding of its application to treat oilfield-produced water with a complex and highly variable water composition. This review article discusses the mechanisms and current state of heterogeneous photocatalytic systems for oilfield-produced water treatment, highlighting impediments to knowledge transfer, including the feasibility of practical applications and the identification of essential research requirements. Additionally, the effects of significant variables such as catalyst quantity, pH, organic compound concentration, light intensity, and wavelength are discussed in detail. Some solutions are proposed for scientists and engineers interested in advancing the development of industrial-scale photocatalytic water treatment technologies.
Collapse
|
14
|
|
15
|
Kim SH, Kang SW. Thermally stable and highly porous separator based on cellulose acetate by glycolic acid. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Chen M, Heijman SGJ, Rietveld LC. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. MEMBRANES 2021; 11:888. [PMID: 34832117 PMCID: PMC8625480 DOI: 10.3390/membranes11110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.
Collapse
Affiliation(s)
- Mingliang Chen
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; (S.G.J.H.); (L.C.R.)
| | | | | |
Collapse
|
17
|
Fabrication, Optimization, and Performance of a TiO 2 Coated Bentonite Membrane for Produced Water Treatment: Effect of Grafting Time. MEMBRANES 2021; 11:membranes11100739. [PMID: 34677505 PMCID: PMC8541283 DOI: 10.3390/membranes11100739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
The main problem usually faced by commercial ceramic membranes in the treatment of produced water (PW) is low water flux even though ceramic membrane was well-known with their excellent mechanical, thermal, and chemical properties. In the process of minimizing the problem faced by commercial ceramic membranes, titanium dioxide (TiO2) nanocomposites, which synthesized via a sol-gel method, were deposited on the active layer of the hydrolysed bentonite membrane. This paper studied the influence of grafting time of TiO2 nanocomposite on the properties and performance of the coated bentonite membranes. Several characterizations, which are Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray Spectroscopy (EDX), contact angle, porosity, and average pore size, were applied to both pristine and coated bentonite membranes to compare the properties of the membranes. The deposition of TiO2 nanoparticles on the surface of the coated bentonite membranes was successfully confirmed by the characterization results. The pure water flux performance showed an increment from 262.29 L h−1 m−² bar−1 (pristine bentonite membrane) to 337.05 L h−1 m−² bar−1 (Ti-Ben 30) and 438.33 L h−1 m−² bar−1 (Ti-Ben 60) as the grafting time increase but when the grafting time reached 90 min (Ti-Ben 90), the pure water flux was decreased to 214.22 L h−1 m−² bar−1 which is lower than the pristine membrane. The oil rejection performance also revealed an increase in the oil rejection performance from 95 to 99%. These findings can be a good example to further studies and exploit the advantages of modified ceramic membranes in PW treatment.
Collapse
|
18
|
Du X, Liu Y, Ma R, Xiao M, Yang W, Han X, Luo Y, Wang Z, Liang H. Gravity-driven ceramic membrane (GDCM) filtration treating manganese-contaminated surface water: Effects of ozone(O 3)-aided pre-coating and membrane pore size. CHEMOSPHERE 2021; 279:130603. [PMID: 34134412 DOI: 10.1016/j.chemosphere.2021.130603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Achieving adequate manganese removal during water treatment is a challenging process. This study aimed to assess the effectiveness of gravity driven ceramic membrane (GDCM) filtration in the elimination of manganese from surface water. The impact of membrane pre-modification with birnessite and molecular weight cut-off on long-term water treatment efficiency was investigated by assessing filtration units with 300 kDa virgin membrane (300 kDa-blank), 300 kDa membrane pre-coated with manganese oxides (300 kDa-MnOx), and 15 kDa virgin membrane (15 kDa-blank). The results of 300 kDa-blank and 300 kDa-MnOx indicated that depositing manganese oxides (produced via ozone (O3) oxidation) prior to water treatment was conducive to ripening of cake layer which played a major role in Mn removal. Reducing membrane molecular cut-off from 300 to 15 kDa also significantly reduced permeate Mn concentration, achieving a removal efficiency of 75% at the end of the trial (highest of all the units). Relative to 300 kDa-blank, the greater manganese removals in the other two systems can be attributed to 1) the long hydraulic retention times resulting from the higher membrane resistance, and 2) the higher abundance of biologically produced Birnessite materials in the cake layers for manganese oxidation. Raman analysis and X-ray diffraction analysis showed that 15 kDa-blank achieved the highest level of Birnessite production and most cake materials featured a flower-like structure and relatively small size (as shown under a scanning electron microscope and Energy Dispersive X-Ray Spectroscopy element mapping analysis), suggesting a higher surface area for Mn oxidation.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yao Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Rong Ma
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Mengyao Xiao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Wupeng Yang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Xinyi Han
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| |
Collapse
|