1
|
Nicolás de Francisco O, Ewbank AC, de la Torre A, Sacristán I, Afonso Jordana I, Planella A, Grau O, Garcia Ferré D, Olmo-Vidal JM, García-Fernández AJ, Navas I, Margalida A, Sacristán C. Environmental contamination by veterinary medicinal products and their implications in the conservation of the endangered Pyrenean Capercaillie (Tetrao urogallus aquitanicus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117299. [PMID: 39549568 DOI: 10.1016/j.ecoenv.2024.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
The endangered Pyrenean Capercaillie (Tetrao urogallus aquitanicus) inhabits perennial forests of the Pyrenees (Spain, France and Andorre). Feces of domestic animals (e.g., horses and cattle) are often found in this species' habitat as evidence of land use overlapping, especially during spring and summer. As a result, pharmaceutical residues found in feces of these domestic ungulates may be absorbed by plants and insects that are part of the diet of Pyrenean Capercaillies (e.g., blueberries [Vaccinium uliginosum, Vaccinium myrtillus], red wood ants [Formica rufa]). Based on the absence of data regarding the exposure of Pyrenean Capercaillie to residues of veterinary medicinal products (VMP), we selected 71 compounds as indicators of anthropogenically-related environmental contamination, analyzed in 90 samples collected in several subalpine forests, northwestern Spain. Residues of several VMP were detected in feces (capercaillie [ciprofloxacin, enrofloxacin, tetracycline and florfenicol], horse [ciprofloxacin, enrofloxacin, tetracycline and ivermectin], and cattle [ciprofloxacin and enrofloxacin]), and in entomofauna (ciprofloxacin and ivermectin). No VMP residues were detected in blueberry plants. Herein, we present novel data about the presence of VMP residues in the Pyrenean Capercaillie's environment, and identify potential VMP sources (i.e., livestock feces and entomofauna) and an exposure route (i.e., food chain) for Capercaillie chicks. Further studies are necessary to investigate the potential indirect or chronic effects of VMP residues in the species' breeding success and adult fitness, which must be taken into account by managers and policy makers to improve management and conservation actions.
Collapse
Affiliation(s)
- Olga Nicolás de Francisco
- Department of Forest Management and Natural Environment, School of Veterinary Medicine, University of Lleida, Lleida 25002, Spain.
| | - Ana Carolina Ewbank
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain.
| | - Ana de la Torre
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain.
| | - Irene Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain.
| | - Ivan Afonso Jordana
- Natural Environment Department, Conselh Generau d'Aran, Vielha 25530, Spain.
| | - Anna Planella
- Parc Natural de les Capçaleres del Ter i del Freser, Ribes de Freser, Girona 17574, Spain.
| | - Oriol Grau
- Parc Natural de l'Alt Pirineu, Llavorsí, Lleida 25595, Spain.
| | - Diego Garcia Ferré
- Flora and Fauna Service, Department of Climatic Action, Food and Rural Agenda (Government of Catalonia), Barcelona 08038, Spain.
| | - Josep Maria Olmo-Vidal
- Flora and Fauna Service, Department of Climatic Action, Food and Rural Agenda (Government of Catalonia), Barcelona 08038, Spain.
| | - Antonio J García-Fernández
- Toxicology Area, Department of Health Sciences, School of Veterinary Medicine, University of Murcia, IMIB-Pascual Parrilla, Murcia, 30100, Spain.
| | - Isabel Navas
- Toxicology Area, Department of Health Sciences, School of Veterinary Medicine, University of Murcia, IMIB-Pascual Parrilla, Murcia, 30100, Spain.
| | | | - Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain.
| |
Collapse
|
2
|
Chen JY, Niu SH, Li HY, Liao XD, Xing SC. Multiomics analysis of the effects of manure-borne doxycycline combined with oversized fiber microplastics on pak choi growth and the risk of antibiotic resistance gene transmission. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134931. [PMID: 38889467 DOI: 10.1016/j.jhazmat.2024.134931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
In this study, oversized microplastics (OMPs) were intentionally introduced into soil containing manure-borne doxycycline (DOX). This strategic approach was used to systematically examine the effects of combined OMP and DOX pollution on the growth of pak choi, analyze alterations in soil environmental metabolites, and explore the potential migration of antibiotic resistance genes (ARGs). The results revealed a more pronounced impact of DOX than of OMPs. Slender-fiber OMPs (SF OMPs) had a more substantial influence on the growth of pak choi than did coarse-fiber OMPs (CF OMPs). Conversely, CF OMPs had a more significant effect on the migration of ARGs within the system. When DOX was combined with OMPs, the negative effects of DOX on pak choi growth were mitigated through the synthesis of indole through the adjustment of carbon metabolism and amino acid metabolism in pak choi roots. In this process, Pseudohongiellaceae and Xanthomonadaceae were key bacteria. During the migration of ARGs, the potential host bacterium Limnobacter should be considered. Additionally, the majority of potential host bacteria in the pak choi endophytic environment were associated with tetG. This study provides insights into the intricate interplay among DOX, OMPs, ARGs, plant growth, soil metabolism, and the microbiome.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hai-Yang Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Mesa-Ramos L, Palacios OA, Adame-Gallegos JR, Chávez-Flores D, Nevárez-Moorillón GV. Assessing antibiotic residues in sediments from mangrove ecosystems: A review. MARINE POLLUTION BULLETIN 2024; 204:116512. [PMID: 38810504 DOI: 10.1016/j.marpolbul.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Antibiotics' widespread and abusive use in aquaculture and livestock leads to extensive environmental dissemination and dispersion, consequently increasing antibiotic-resistant bacteria in marine ecosystems. Hence, there is an increased need for efficient methods for identifying and quantifying antibiotic residues in soils and sediments. From a review of the last 20 years, we propose and compare different chromatographic techniques for detecting and quantifying antibiotics in sediment samples from marine ecosystems, particularly in mangrove forest sediments. The methods typically include three stages: extraction of antibiotics from the solid matrix, cleaning, and concentration of samples before quantification. We address the leading causes of the occurrence of antibiotics in marine ecosystem sediments and analyze the most appropriate methods for each analytical stage. Ultimately, selecting a method for identifying antibiotic residues depends on multiple factors, ranging from the nature and physicochemical properties of the analytes to the availability of the necessary equipment and the available resources.
Collapse
Affiliation(s)
- Liber Mesa-Ramos
- Facultad de Ciencias Químicas Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua CP 31125, Mexico
| | - Oskar A Palacios
- Facultad de Ciencias Químicas Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua CP 31125, Mexico
| | - Jaime Raúl Adame-Gallegos
- Facultad de Ciencias Químicas Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua CP 31125, Mexico
| | - David Chávez-Flores
- Facultad de Ciencias Químicas Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua CP 31125, Mexico
| | | |
Collapse
|
4
|
Massaccesi L, Albini E, Massacci FR, Giusepponi D, Paoletti F, Sdogati S, Morena F, Agnelli A, Leccese A, Magistrali CF, Galarini R. Impact of Soil Fertilization with Pig Slurry on Antibiotic Residues and Resistance Genes: A Longitudinal Study. Antibiotics (Basel) 2024; 13:486. [PMID: 38927154 PMCID: PMC11200711 DOI: 10.3390/antibiotics13060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The impact of soil fertilization with animal manure on the spread and persistence of antibiotic resistance in the environment is far from being fully understood. To add knowledge about persistence and correlations between antibiotic residues and antibiotic resistance genes (ARGs) in fertilized soil, a longitudinal soil mesocosm study was conducted. Soil samples were collected from the mesocosms immediately before spreading and then afterward at fifteen time points during a 320-day observation period. Eight ARGs (ermB, sul1, tetA, tetG, tetM, cfr, fexA, and optrA) and the class 1 integron-integrase gene, intI1, were determined in both pig slurry and soil, as well as residues of 36 antibiotics. Soil chemical and biochemical parameters were also measured. Twelve antibiotics were detected in the slurry in the range of 3 µg kg-1-3605 µg kg-1, with doxycycline, lincomycin, and tiamulin being the most abundant, whereas ermB, sul1, and tetM were the predominant ARGs. Before spreading, neither antibiotic residues nor ARGs were detectable in the soil; afterwards, their concentrations mirrored those in the slurry, with a gradual decline over the duration of the experiment. After about three months, the effect of the amendment was almost over, and no further evolution was observed.
Collapse
Affiliation(s)
- Luisa Massaccesi
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM-CNR), 06128 Perugia, Italy;
| | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Danilo Giusepponi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Fabiola Paoletti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Stefano Sdogati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy;
| | - Alberto Agnelli
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06124 Perugia, Italy; (A.A.); (A.L.)
| | - Angelo Leccese
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06124 Perugia, Italy; (A.A.); (A.L.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| |
Collapse
|
5
|
Patyra E, Osiński Z, Kwiatek K. The Identification and Quantification of 21 Antibacterial Substances by LC-MS/MS in Natural and Organic Liquid Fertilizer Samples. Molecules 2024; 29:1644. [PMID: 38611923 PMCID: PMC11013321 DOI: 10.3390/molecules29071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Antibiotics in animal production are widely used around the world for therapeutic and preventive purposes, and in some countries, they still serve as antibiotic growth stimulants. Regardless of the purpose of using antibiotics in livestock, they may be present in animal tissues and organs as well as in body fluids and excretions (feces and urine). Farm animal excrement in unprocessed form (natural fertilizers) or processed form (organic fertilizers) is applied to agricultural fields because it improves soil fertility. Antibiotics present in fertilizers may therefore contaminate the soil, surface, groundwater, and plants, which may pose a threat to the environment, animals, and humans. Therefore, it is important to develop analytical methods that will allow for the control of the presence of antibacterial substances in natural and organic fertilizers. Therefore, in this study, an LC-MS/MS method was developed and validated for the determination of 21 antibacterial substances in natural and organic liquid fertilizers. The developed method was used to analyze 62 samples of natural and organic liquid fertilizers, showing that over 24% of the tested samples were contaminated with antibiotics, mainly from the group of tetracyclines and fluoroquinolones. Studies of post-fermentation sludge from biogas plants have shown that the processes of anaerobic methane fermentation, pH, and temperature changes taking place in bioreactors do not lead to the complete degradation of antibiotics present in the material used for biogas production. For this reason, monitoring studies of natural and organic fertilizers should be undertaken to limit the introduction of antibiotics into the natural environment.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, 24-100 Pulawy, Poland; (Z.O.); (K.K.)
| | | | | |
Collapse
|
6
|
Lacroix MZ, Ramon-Portugal F, Huesca A, Angastiniotis K, Simitopoulou M, Kefalas G, Ferrari P, Levallois P, Fourichon C, Wolthuis-Fillerup M, De Roest K, Bousquet-Mélou A. Residues of veterinary antibiotics in manures from pig and chicken farms in a context of antimicrobial use reduction by implementation of health and welfare plans. ENVIRONMENTAL RESEARCH 2023; 238:117242. [PMID: 37769831 DOI: 10.1016/j.envres.2023.117242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The use of antibiotics in food-producing animals can induce the presence of residual substances in manure, which are then released into the environment and may contribute to soil and groundwater contamination. During the on-farm implementation of strategies to improve animal health and welfare in chicken and pig farms, the consequences of antibiotic use were evaluated in terms of the occurrence and levels of antibiotic residues in manure. A set of 35 broiler farms from Cyprus, Greece, the Netherlands and 40 pig farms from France and Italy provided a total of 350 manure samples. The primary objective was to develop a specific LC/MS/MS method capable of quantifying antibiotic residues in both types of manure. The method was able to detect fifteen antibiotics belonging to nine classes, with validated limits of quantification of 10-20 μg/kg, and accuracies ranging from 81% to 138%. With the exception of amoxicillin, which was never detected in any manure, all antibiotics used were detected in manure from treated animals with typical concentrations ranging from 10 to 99198 μg/kg for both chickens and pigs. The occurrence of residual antibiotics was higher in chicken than in pig manure, especially for fluoroquinolones and doxycycline which were detected in 89% and 100% of the chicken manure, respectively, and in 28% of the pig manure. The impact of the health plans on the antibiotic load manure was assessed by measuring for each farm the ratio of the sum of all antibiotic concentrations measured after and before the implementation of the plan. The results showed that, in addition to the frequency of treatments, the class of antibiotic used is an important factor to consider as it strongly influences the stability/instability of the compounds, i.e. their ability to persist in the manure of food-producing animals.
Collapse
Affiliation(s)
| | | | - Alicia Huesca
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Kyriacos Angastiniotis
- Vitatrace Nutrition Ltd., 18 Propylaion Street, Strovolos Industrial Estate, 2033, Strovolos, Cyprus
| | - Maro Simitopoulou
- Vitatrace Nutrition Ltd., 18 Propylaion Street, Strovolos Industrial Estate, 2033, Strovolos, Cyprus
| | | | - Paolo Ferrari
- Research Center for Animal Production, Viale Timavo 43/2, 42121, Reggio Emilia, Italy
| | | | | | - Maaike Wolthuis-Fillerup
- Animal Health & Welfare Group, Wageningen Livestock Research, Wageningen University & Research, the Netherlands
| | - Kees De Roest
- Research Center for Animal Production, Viale Timavo 43/2, 42121, Reggio Emilia, Italy
| | | |
Collapse
|
7
|
Dong Y, Das S, Parsons JR, Praetorius A, de Rijke E, Helmus R, Slootweg JC, Jansen B. Simultaneous detection of pesticides and pharmaceuticals in three types of bio-based fertilizers by an improved QuEChERS method coupled with UHPLC-q-ToF-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131992. [PMID: 37437483 DOI: 10.1016/j.jhazmat.2023.131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Bio-based fertilizers (BBFs) have the potential to contain both pesticides and pharmaceutical residues, which may pose a threat to soils, crops, and human health. However, no analytical screening method is available currently to simultaneously analyze a wide range of contaminants in the complex origin-dependent matrices of BBFs. To fill this gap, our study tested and improved an original QuEChERS method (OQM) for simultaneously analyzing 78 pesticides and 18 pharmaceuticals in BBFs of animal, plant, and ashed sewage sludge origin. In spiked recovery experiments, 34-58 pharmaceuticals and pesticides were well recovered (recovery of 70-120%) via OQM at spiking concentrations levels of 10 ng/g and 50 ng/g in these three different types of BBFs. To improve the extraction efficiency further, ultrasonication and end-over-end rotation were added based on OQM, resulting in the improved QuEChERS method (IQM) that could recover 57-79 pesticides and pharmaceuticals, in the range of 70-120%. The detection limits of this method were of 0.16-4.32/0.48-12.97 ng/g, 0.03-11.02/0.10-33.06 ng/g, and 0.06-5.18/0.18-15.54 ng/g for animal, plant, and ash-based BBF, respectively. Finally, the IQM was employed to screen 15 BBF samples of various origins. 15 BBFs contained at least one pesticide or pharmaceutical with ibuprofen being frequently detected in at concentration levels of 4.1-181 ng/g. No compounds were detected in ash-based BBFs.
Collapse
Affiliation(s)
- Yan Dong
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands.
| | - Supta Das
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - Eva de Rijke
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, the Netherlands
| | - Boris Jansen
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| |
Collapse
|
8
|
Martín J, Gonkowski S, Kortas A, Sobiech P, Rytel L, Santos JL, Aparicio I, Alonso E. Multiclass method to determine emerging pollutants in bats using a non-invasive approach based on guano matrix. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Khafi M, Javadi A, Reza Afshar Mogaddam M. Combination of three-phase extraction with deep eutectic solvent-based dispersive liquid-liquid microextraction for the extraction of some antibiotics from egg samples prior to HPLC-DAD. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
10
|
Astudillo D, Pokrant E, Bravo C, Ríos A, Navarrete MJ, Maddaleno A, Maturana M, Flores A, Guzmán M, Hidalgo H, Zayas C, Lapierre L, Cornejo J. Detection of antimicrobial residues in animal manure by a microbiological screening methodology: A non-invasive tool in animal production. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Identification and Quantification of 29 Active Substances by HPLC-ESI-MS/MS in Lyophilized Swine Manure Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010216. [PMID: 36615410 PMCID: PMC9822080 DOI: 10.3390/molecules28010216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Veterinary drugs are frequently employed to treat and prevent diseases in food-producing animals to improve animal health and to avoid the introduction of microorganisms into the food chain. The analysis of the presence of pharmaceutical residues in animal manure could help to evaluate the legal and illegal practices during food production without harming the animals and to correctly manage manure when it is going to be applied as a fertilizer. This article describes a method for the simultaneous analysis of 29 active substances, mostly antibiotics and antiparasitic agents. Substances were extracted from lyophilized manure with a methanol:McIlvaine solution and analyzed with HPLC-ESI-MS/MS and a C18 HPLC column. The method was validated following European guidelines, the achieved trueness was between 63 and 128% (depending on the analytes), and the linearity was between 100 and 1500 µg/kg. The applicability of the method was demonstrated in 40 manure samples collected from pig farms where tetracycline was quantified in 7.5% of the samples. These results show the viability of this non-invasive method for the control of the legal and illegal administration of pharmaceuticals in food-producing animals.
Collapse
|
12
|
Portela-Monge C, Bolado S, López-Serna R, Jiménez JJ. Determination of contaminants of emerging concern in raw pig manure as a whole: difference with the analysis of solid and liquid phases separately. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2357-2367. [PMID: 36285718 DOI: 10.1039/d2em00323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The content of veterinary drugs in manure is usually estimated by the amount of residues determined in its solid or liquid phase, individually, which previously required a separation step. As an alternative, a multiresidue method for the analysis of 48 veterinary drugs and other contaminants of emerging concern (CECs) in swine raw manure as a whole has been developed and in-house validated in this work. The impact of several experimental factors during ultrasound assisted extraction was assessed. Hence, the use of alumina seemed to especially decrease the matrix effect and improve the overall recovery of drugs, mainly those with a high octanol-water partition coefficient. CECs in the extracts were analyzed by ultra-high performance liquid chromatography coupled to mass spectrometry in tandem. A standard addition-matrix matched calibration was used for quantification. Application of the method to two related samples (raw manure and farm centrifuged raw manure) from a facility revealed that the concentrations of CECs determined in the raw manure by the comprehensive methodology were higher than those calculated by adding the concentrations measured in the solid and liquid phases, separately. This was attributed to the loss of CECs adsorbed on fine particles in the suspension during the sample preparation procedure of the liquid-phase. Furthermore, the decrease of residues in the raw manure when this is centrifuged in the farm to yield compost is shown.
Collapse
Affiliation(s)
- Cristina Portela-Monge
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Silvia Bolado
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Rebeca López-Serna
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Juan José Jiménez
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
13
|
Tian Y, Li J, Li X, Li J, Meng J. Sample pretreatment and analytical methodology for the determination of antibiotics in swine wastewater and activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83671-83685. [PMID: 35773613 DOI: 10.1007/s11356-022-21595-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
An analytical method for the simultaneous extraction and determination of eight veterinary antibiotics in swine wastewater and activated sludge was developed and validated based on the instrumental determination by liquid chromatography tandem quadrupole mass spectrometry. Ultrasound-assisted extraction and solid-phase extraction were introduced into the pretreatment procedure of the two complex environmental matrices. The critical steps involved in the sample pretreatment procedure and the instrumental analysis conditions were optimized progressively. Recoveries of the optimized method were good with 75.3-118.2% in wastewater and 82.8-130.1% in sludge. The absolute deviations of methods were lower than 11.7%, presenting a high reproducibility and precision. The limits of quantification for the eight pharmaceuticals in wastewater and sludge were 5-15 ng·L-1 and 2-6 ng·g-1, showing high sensitivity of the methods. The developed method has been successfully applied to evaluate the actual concentration levels of tetracyclines, quinolones, and sulfonamides in actual swine wastewater (maximum detected concentration of 87.377 μg·L-1) and activated sludge (maximum detected concentration of 51242.3 ng·g-1).
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Xianhui Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China.
| |
Collapse
|
14
|
Ruas G, López-Serna R, Scarcelli PG, Serejo ML, Boncz MÁ, Muñoz R. Influence of the hydraulic retention time on the removal of emerging contaminants in an anoxic-aerobic algal-bacterial photobioreactor coupled with anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154262. [PMID: 35271930 DOI: 10.1016/j.scitotenv.2022.154262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
This work evaluated, for the first time, the performance of an integral microalgae-based domestic wastewater treatment system composed of an anoxic reactor and an aerobic photobioreactor, coupled with an anaerobic digester for converting the produced algal-bacterial biomass into biogas, with regards to the removal of 16 contaminants of emerging concern (CECs): penicillin G, tetracycline, enrofloxacin, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen, diclofenac, progesterone, carbamazepine, triclosan and propylparaben. The influence of the hydraulic retention time (HRT) in the anoxic-aerobic bioreactors (4 and 2.5 days) and in the anaerobic digester (30 and 10 days) on the fate of these CECs was investigated. The most biodegradable contaminants (removal efficiency >80% regardless of HRT) were tetracycline, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen and propylparaben (degraded predominantly in the anoxic-aerobic bioreactors), and tetracycline, sulfamethoxazole, tylosin, trimethoprim and naproxen (degraded predominantly in the anaerobic reactor). The anoxic-aerobic bioreactors provided removal of at least 48% for all CECs tested. The most recalcitrant contaminants in the anaerobic reactor, which were not removed at any of the HRT tested, were enrofloxacin, ciprofloxacin, progesterone and propylparaben.
Collapse
Affiliation(s)
- Graziele Ruas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil; Federal Institute of Education, Science and Technology of Mato Grosso do Sul (IFMS), Campus Jardim, 79240-000 Jardim, MS, Brazil
| | - Rebeca López-Serna
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Priscila Guenka Scarcelli
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil
| | - Mayara Leite Serejo
- Federal Institute of Education, Science and Technology of Mato Grosso do Sul (IFMS), Campus Aquidauana, 79200-000 Aquidauana, MS, Brazil
| | - Marc Árpàd Boncz
- Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
15
|
Pérez-Lemus N, López-Serna R, Pérez-Elvira S, Barrado E. Analysis of 60 pharmaceuticals and personal care products in sewage sludge by ultra-high performance liquid chromatography and tandem mass spectroscopy. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Development and validation of a highly effective analytical method for the evaluation of the exposure of migratory birds to antibiotics and their metabolites by faeces analysis. Anal Bioanal Chem 2022; 414:3373-3386. [PMID: 35165780 PMCID: PMC9018661 DOI: 10.1007/s00216-022-03953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
The widespread occurrence of antibiotics in the environment may exert a negative impact on wild organisms. In addition, they can become environmental reservoirs, through the ingestion of food or contaminated water, and vectors for antibiotic-resistant bacteria. This fact is even more important in migratory birds that can promote their dissemination across continents. In this work, a multiresidue analytical method suitable for the determination of five families of antibiotics and their main metabolites in waterbird faeces has been developed and validated. The target compounds include environmentally significant sulfonamides, macrolides, fluoroquinolones, tetracyclines and antifolates. Sample treatment involves ultrasound-assisted extraction with methanol and dispersive solid-phase extraction clean-up with C18. Analytical determination was carried out by liquid chromatography-tandem mass spectrometry. The most significant parameters affecting sample extraction and extract clean-up were optimised by means of experimental designs. Good linearity (R2 > 0.994), accuracy (from 41 to 127%), precision (relative standard deviation lower than 24%) and limits of quantification (lower than 2 ng g-1 (dry weight, dw)) were obtained for most of the compounds. The method was applied to the determination of the selected compounds in 27 faeces samples from three common migratory waterbird species. Nine antibiotics and three of their metabolites were detected in the analysed samples. Fluoroquinolones and macrolides were the antibiotics most frequently detected. The highest concentrations corresponded to norfloxacin (up to 199 ng g-1 dw).
Collapse
|
17
|
López-Serna R, Bolado S, Irusta R, Jiménez JJ. Determination of veterinary drugs in microalgae biomass from photobioreactors fed with piggery wastewater. CHEMOSPHERE 2022; 287:132076. [PMID: 34478963 DOI: 10.1016/j.chemosphere.2021.132076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Concentration data of veterinary drugs in microalgae biomass collected from photobioreactors fed with piggery wastewaters are presented for the first time in this work. To this aim, a QuEChERS methodology and an ultrasound-assisted solid-liquid extraction have been assessed as sample preparation procedures with the purpose of determining 20 veterinary drugs, mainly antibiotics of different physico-chemical properties in addition to dexamethasone, fenbendazole and progesterone. Some critical operation parameters of the QuEChERS procedure were optimized by an experimental design but tetracycline, oxytetracycline, doxycycline, marbofloxacin and ciprofloxacin were not detected by the QuEChERS sample preparation. The use of a longer and thorough approach, a solid-liquid extraction with water/methanol in presence of primary secondary amine as a clean-up agent followed by solid-phase extraction on Oasis HLB cartridges, is recommended to monitor all intended analytes. The determination in extracts is carried out by ultra-high performance liquid chromatography-tandem mass spectrometry in selected reaction monitoring mode. Limits of detection about 0.2-42 ng per g of lyophilized microalgae sample, and repeatabilities about 6-46% (n = 5, RSDs) are reached. The solid-liquid extraction method was applied to microalgae biomass samples collected from a photobioreactor. Nine drugs were detected in the samples at relatively low concentration and a proportional relationship between the found concentrations and the octanol/water partition coefficients of the drugs has been outlined. Moreover, a linear ratio between the concentrations measured in biomass and effluent has been observed for most of the drugs.
Collapse
Affiliation(s)
- Rebeca López-Serna
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain
| | - Silvia Bolado
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Rubén Irusta
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Juan J Jiménez
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain.
| |
Collapse
|
18
|
Mendieta-Pino CA, Pérez-Báez SO, Ramos-Martín A, León-Zerpa F, Brito-Espino S. Natural treatment system for wastewater (NTSW) in a livestock farm, with five years of pilot plant management and monitoring. CHEMOSPHERE 2021; 285:131529. [PMID: 34329148 DOI: 10.1016/j.chemosphere.2021.131529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
This paper reports results of a 5-year trial study of a natural treatment system for wastewater (NTSW) on a livestock pig farm on Gran Canaria (Canary Islands, Spain). The pilot plant consist of a rotary screen, a first-generation multi-chamber digester, and two horizontal subsurface flow treatment wetlands (HSFCW) with a pond installed between them. Results show that the removal efficiency of total chemical oxygen demand (CODt), total suspended solids (TSS), volatile solids (VS) and total dissolved solids (TDS) of the treatment were 91.77%, 95.99%, 82.62%, and 55.78%, respectively. Other removal values include 93.79% for total nitrogen (TN) and 93.05% for phosphorus (P2O5). The results demonstrate the suitability of NTSW solutions applied to livestock waste in pig farms and their potential application to other farms of similar size.
Collapse
Affiliation(s)
- C A Mendieta-Pino
- Institute for Environmental Studies and Natural Resource, University of Las Palmas de Gran Canaria, Canary Island, Spain.
| | - S O Pérez-Báez
- Institute for Environmental Studies and Natural Resource, University of Las Palmas de Gran Canaria, Canary Island, Spain.
| | - A Ramos-Martín
- Department of Process Engineering, University of Las Palmas de Gran Canaria, Canary Island, Spain.
| | - F León-Zerpa
- Institute for Environmental Studies and Natural Resource, University of Las Palmas de Gran Canaria, Canary Island, Spain.
| | - S Brito-Espino
- Institute for Environmental Studies and Natural Resource, University of Las Palmas de Gran Canaria, Canary Island, Spain.
| |
Collapse
|