1
|
Masliha M, Padnekar M, De Micco J, Ponnupandian S, Mondal K, Padamati RB. Functionalized organosolv lignin grafted with 3-aminopropyltriethoxysilane: A bio-based adsorbent for phosphate recovery from dairy wastewater. Heliyon 2025; 11:e42559. [PMID: 40028525 PMCID: PMC11870260 DOI: 10.1016/j.heliyon.2025.e42559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Wastewater rich in phosphates and nitrates causes eutrophication and leads to the impairment of freshwater resources. Out of various methods used, adsorption is the immaculate and economical for removing and recovering phosphates and nitrates from wastewater streams in a single-step process. This study explores the potential of bio-based adsorbent, functionalized organosolv lignin [OL], chemically modified by grafting with 3-aminopropyltriethoxysilane [APTES], as an effective bio-based adsorbent [OL-APTES-H+] for phosphate recovery from aqueous solutions and industrial wastewater. The characterization of OL-APTES-H+ was performed using multiple analytical techniques, providing comprehensive information on the material morphology, elemental composition, functional groups, thermal stability, surface charge, and electrokinetic behavior. The adsorption efficiency of OL-APTES-H+ was assessed under varying experimental conditions, including pH, contact time, and initial phosphate concentration. The adsorption capacity of OL-APTES-H+ depended on pH, with different forms of phosphate species being preferentially adsorbed at different pH values. A maximum adsorption capacity of 21.12 mg/g was achieved at pH 5. Kinetic studies indicated that the adsorption process followed a combination of electrostatic interactions, chemisorption and surface interaction, as evidenced by SEM and EDS analyses. XPS results confirm phosphorus incorporation on the adsorbent surface, reinforcing chemisorption. Adsorption isotherm analysis revealed that the data fitted well to the Langmuir isotherm model, suggesting a monolayer adsorption mechanism. The adsorption performance of OL-APTES-H+ was enhanced in the presence of monovalent ions, while a slight reduction in efficiency was observed in the presence of divalent anions. When applied to industrial dairy wastewater, OL-APTES-H+ exhibited phosphate removal efficiencies ranging from 30 % to 58 %. Overall, OL-APTES-H+ demonstrates considerable potential as a bio-based adsorbent for phosphate recovery, effectively mitigating environmental pollution in wastewater bodies and providing an eco-friendly source of phosphates for sustainable agricultural practices.
Collapse
Affiliation(s)
- Minu Masliha
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Mukesh Padnekar
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
- School of Physics, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- Dairy Processing Technology Centre (DPTC), University of Limerick, V94 T9PX, Limerick, Ireland
| | - Jessica De Micco
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Siva Ponnupandian
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Kona Mondal
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Ramesh Babu Padamati
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
- Dairy Processing Technology Centre (DPTC), University of Limerick, V94 T9PX, Limerick, Ireland
| |
Collapse
|
2
|
Xavier GTM, Nunes RS, Urzedo AL, Tng KH, Le-Clech P, Araújo GCL, Mandelli D, Fadini PS, Carvalho WA. Removal of phosphorus by modified bentonite:polyvinylidene fluoride membrane-study of adsorption performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53718-53728. [PMID: 38270764 DOI: 10.1007/s11356-024-32157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Enhanced phosphorus management, geared towards sustainability, is imperative due to its indispensability for all life forms and its close association with water bodies' eutrophication, primarily stemming from anthropogenic activities. In response to this concern, innovative technologies rooted in the circular economy are emerging, to remove and recover this vital nutrient to global food production. This research undertakes an evaluation of the dead-end filtration performance of a mixed matrix membrane composed of modified bentonite (MB) and polyvinylidene fluoride (PVDF) for efficient phosphorus removal from water media. The MB:PVDF membrane exhibited higher permeability and surface roughness compared to the pristine membrane, showcasing an adsorption capacity (Q) of 23.2 mgP·m-2. Increasing the adsorbent concentration resulted in a higher removal capacity (from 16.9 to 23.2 mgP·m-2) and increased solution flux (from 0.5 to 16.5 L·m-2·h-1) through the membrane. The initial phosphorus concentration demonstrates a positive correlation with the adsorption capacity of the material, while the system pressure positively influences the observed flux. Conversely, the presence of humic acid exerts an adverse impact on both factors. Additionally, the primary mechanism involved in the adsorption process is identified as the formation of inner-sphere complexes.
Collapse
Affiliation(s)
- Gabriela Tuono Martins Xavier
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | - Renan Silva Nunes
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
| | | | - Keng Han Tng
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | | | - Dalmo Mandelli
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
| | - Pedro Sergio Fadini
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Wagner Alves Carvalho
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
3
|
Xu Z, Guo H, Gan J, Ahmed T, Wang T, Liu J, Mei M, Chen S, Li J. Simultaneous removal of phosphate and tetracycline using LaFeO 3 functionalised magnetic biochar by obtained ultrasound-assisted sol-gel pyrolysis: Mechanisms and characterisation. ENVIRONMENTAL RESEARCH 2023; 239:117227. [PMID: 37778609 DOI: 10.1016/j.envres.2023.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Excessive phosphate and tetracycline (TC) contaminants pose a serious risk to human health and the ecological environment. As such exploring the simultaneous adsorption of phosphate and TC is garnering increasing attention. In this study, an efficient lanthanum ferrate magnetic biochar (FLBC) was synthesised from crab shells using an ultrasound-assisted sol-gel method to study its performance and mechanisms for phosphate and TC adsorption in aqueous solutions in mono/bis systems. According to the Langmuir model, the developed exhibited a maximum adsorption capacity of 65.62 mg/g for phosphate and 234.1 mg/g for TC (pH:7.0 ± 0.1, and 25 °C). Further, it exhibited high resistance to interference and pH suitability. In practical swine wastewater applications, whereby the concentrations of phosphate and TC are 37 and 19.97 mg/L, respectively, the proposed material demonstrated excellent performance. In addition, electrostatic adsorption, chemical precipitation and ligand exchange were noted to be the main mechanisms for phosphate adsorption by FLBC, whereas hydrogen bonding and π-π interaction were the main adsorption mechanisms for TC adsorption. Therefore, this study successfully prepared a novel and efficient adsorbent for phosphate and TC.
Collapse
Affiliation(s)
- Zhichao Xu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Hongyang Guo
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Taosif Ahmed
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Teng Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Meng Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Si Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China.
| |
Collapse
|
4
|
Peng Q, Lü X, Ou J, Zhou Y, Xu T, Hu B, Yu G, Zhu C, Xie Z. Study on removal of phosphorus and COD in wastewater by sinusoidal AC Fenton oxidation-coagulation. ENVIRONMENTAL TECHNOLOGY 2023; 44:3382-3392. [PMID: 35332842 DOI: 10.1080/09593330.2022.2058423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In order to treat domestic wastewater containing phosphorus and chemical oxygen demand (COD), the new technology of Sinusoidal Alternating Current (AC) Fenton Oxidation-Coagulation (SACFOC) was used to improve the removal efficiency (Re) and reduce energy consumption (EEC). The morphology, elemental composition, crystal structure and functional groups of the sludge were characterised by Scanning Electron Microscope (SEM), Energy-dispersive X-ray Spectroscopy (EDS), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The results show that total phosphorus removal efficiency {Re(TP)} and removal efficiency of organic matter {Re(COD)} can reach 97.56% and 87.77%, respectively, but EEC is only 0.09 kWh·m-3 under the optimum conditions of pH0 = 3, current density (j) = 0.5 A·m-2, c0(TP) = 18 mg·dm-3, c0(COD) = 300 mg·dm-3, c0(H2O2) = 0.06 mol·dm-3, t = 45 min. As compared with direct current (DC) Fenton Oxidation-Coagulation (DCFOC), the COD removal efficiency of SACFOC treatment was improved by 37%, but the energy consumption was reduced by 45%. The degradation process of total phosphorus and COD by SACFOC abides by the quasi-first-order kinetic model. The process of SACFOC includes double effects of electrocoagulation of iron sol by electrolysis and degrade COD by oxidation of formed hydroxyl radicals (·OH) in wastewater, which improves removal efficiency of total phosphorus and COD in wastewater. Our research findings will provide technical guidance and a theoretical basis for the simultaneous treatment of wastewater containing phosphorus and COD applying SACFOC process.
Collapse
Affiliation(s)
- Qingjuan Peng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Xiaoliu Lü
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Jinhua Ou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, People's Republic of China
| | - Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Bonian Hu
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, People's Republic of China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Chunyou Zhu
- Aerospace kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Zhihui Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People's Republic of China
| |
Collapse
|
5
|
Zhang X, Han X, Liu Y, Han R, Wang R, Qu L. Remediation of water tainted with noxious aspirin and fluoride ion using UiO-66-NH 2 loaded peanut shell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93877-93891. [PMID: 37525078 DOI: 10.1007/s11356-023-28906-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
One green adsorbent, UiO-66-NH2 modified peanut shell (c-PS-MOF), was prepared in a green synthetic route for improving the capture level of aspirin (ASP) and fluoride ion (F-). The adsorption properties of c-PS-MOF were evaluated by batch experiments and its physicochemical properties were explored by various characterization methods. The results showed that c-PS-MOF exhibited a wide range of pH applications (ASP: 2-10; F-: 3-12) and high salt resistance in the capturing processes of ASP and F-. The unit adsorption capacity of c-PS-MOF was as high as 84.7 mg·g-1 for ASP as pH = 3 and 11.2 mg·g-1 for F- under pH = 6 at 303 K from Langmuir model, respectively. When the solid-liquid ratio was 2 g·L-1, the content of ASP (C0 = 100 mg·L-1) and F- (C0 = 20 mg·L-1) in solution can be reduced to 0.48 mg·L-1 and 1.05 mg·L-1 separately. The recycling of c-PS-MOF can be realized with 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples showed that c-PS-MOF could be used to remove ASP and F- from actual water. The c-PS-MOF is promising to bind ASP and F- from rivers, lakes, etc.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Xiaoyu Han
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Yang Liu
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China.
| | - Rong Wang
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
6
|
Cui R, Ma J, Jiao G, Sun R. Efficient removal of phosphate from aqueous media using magnetic bimetallic lanthanum‑iron-modified sulfonylmethylated lignin biochar. Int J Biol Macromol 2023; 247:125809. [PMID: 37453645 DOI: 10.1016/j.ijbiomac.2023.125809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The use of lignin carbon as an adsorbent for the adsorption of phosphates from wastewater is a promising technology. However, most lignin carbon-based adsorbents still suffer from low adsorption efficiency and poor selectivity. Herein, a novel FeLaO3-modified sulfomethylated lignin (SL) biochar adsorbent (FLO@CSL) was prepared for phosphate removal. The development of this adsorbent took into consideration the strong affinity of lanthanum (La) and iron (Fe) (hydro) oxides for phosphate and the excellent carrier properties of lignin-based biochar. As the core of FLO@CSL, FeLaO3 active sites are highly dispersed on the surface of SL biochar. Besides, doping of Fe(III) not only imparts magnetic properties to FLO@CSL, thereby effectively improving the separation efficiency of the adsorbent, but also enhances the phosphate adsorption performance. Performance studies revealed that FLO@CSL exhibits remarkable adsorption selectivity and substantial phosphate-adsorption capacity. Notably, the maximum adsorption capacity was found to be 137.14 mg P g-1. Phosphate adsorption on the FLO@CSL surfaces proceeds via chemisorption in a single layer, and ligand exchange plays an important role in determining the adsorption behaviour. Because of its exceptional selectivity, remarkable adsorption capacity and outstanding magnetic separation efficiency, FLO@CSL is a highly promising adsorbent material for effectively treating phosphates in wastewater.
Collapse
Affiliation(s)
- Rui Cui
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gaojie Jiao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Cui C, Zhang Y, Wladyka MA, Wang T, Song W, Niu K. Ultrasound-Assisted Adsorption of Perchlorate Using Calcined Hydrotalcites and the Thermal Stabilization Effect of Recycled Adsorbents on Poly(vinyl chloride). ACS OMEGA 2023; 8:17689-17698. [PMID: 37251198 PMCID: PMC10210281 DOI: 10.1021/acsomega.3c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 05/31/2023]
Abstract
Due to their high anion exchange and memory effect, the layered double hydroxides (LHDs) have wide applications for some areas. In this work, an efficient and green recycling route for layered double hydroxide based adsorbents is proposed specifically for application as a poly(vinyl chloride) (PVC) heat stabilizer without requiring secondary calcination. Conventional magnesium-aluminum hydrotalcite was synthesized using the hydrothermal method followed by removal of carbonate anion (CO32-) between LDH layers by calcination. The adsorption of perchlorate anion (ClO4-) by the memory effect of calcined LDHs with and without ultrasound assistance was compared. Using ultrasound assistance, the maximum adsorption capacity of the adsorbents (291.89 mg/g) was increased, and the adsorption process was fitted using the kinetic Elovich rate equation (R2 = 0.992) and Langmuir adsorption model (R2 = 0.996). This material was characterized using XRD, FT-IR, EDS, and TGA which demonstrated that ClO4- was intercalated into the hydrotalcite layer successfully. The recycled adsorbents were used to augment a commercial calcium-zinc-based PVC stabilizer package applied in a epoxidized soybean oil plasticized cast sheet which is based on an emulsion type PVC homopolymer resin. Use of perchlorate intercalated LDH augmentation yielded significant improvement to static heat resistance as indicated by the degree of discoloration with a life extension of approximately 60 min. The improved stability was corroborated by evaluation of HCl gas evolved during thermal degradation using conductivity change curves and the Congo red test.
Collapse
Affiliation(s)
- Changwei Cui
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, PR China
- Global
Innovation Center, Canadian General Tower
Changshu Co. Ltd., Suzhou 215500, PR China
| | - Youhao Zhang
- Global
Innovation Center, Canadian General Tower
Changshu Co. Ltd., Suzhou 215500, PR China
| | - Michael A. Wladyka
- Global
Innovation Center, Canadian General Tower
Changshu Co. Ltd., Suzhou 215500, PR China
| | - Tianyu Wang
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, PR China
- Global
Innovation Center, Canadian General Tower
Changshu Co. Ltd., Suzhou 215500, PR China
| | - Weifeng Song
- Global
Innovation Center, Canadian General Tower
Changshu Co. Ltd., Suzhou 215500, PR China
| | - Kangmin Niu
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
8
|
Wang Z, Abbas A, Sun H, Jin H, Jia T, Liu J, She D. Amination-modified lignin recovery of aqueous phosphate for use as binary slow-release fertilizer. Int J Biol Macromol 2023; 242:124862. [PMID: 37210049 DOI: 10.1016/j.ijbiomac.2023.124862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
To address the global phosphorus crisis and solve the problem of eutrophication in water bodies, the recovery of phosphate from wastewater for use as a slow-release fertilizer and to improve the slow-release performance of fertilizers is considered an effective way. In this study, amine-modified lignin (AL) was prepared from industrial alkali lignin (L) for phosphate recovery from water bodies, and then the recovered phosphorus-rich aminated lignin (AL-P) was used as a slow-release N and P fertilizer. Batch adsorption experiments showed that the adsorption process was consistent with the Pseudo-second-order kinetics and Langmuir model. In addition, ion competition and actual aqueous adsorption experiments showed that AL had good adsorption selectivity and removal capacity. The adsorption mechanism included electrostatic adsorption, ionic ligand exchange and cross-linked addition reaction. In the aqueous release experiments, the rate of nitrogen release was constant and the release of phosphorus followed a Fickian diffusion mechanism. Soil column leaching experiments showed that the release of N and P from AL-P in soil followed the Fickian diffusion mechanism. Therefore, AL recovery of aqueous phosphate for use as a binary slow-release fertilizer has great potential to improve the environment of water bodies, enhance nutrient utilization and address the global phosphorus crisis.
Collapse
Affiliation(s)
- Zheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Aown Abbas
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hao Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoting Jin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, China.
| |
Collapse
|
9
|
Lin S, Xu Y, Fu C, Zhang H, Kong Q, He H, Liu S, Shi X, Zhao D. Novel Y 2O 3 based calcium-alginate beads for highly selective adsorption of phosphate from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27278-6. [PMID: 37191749 DOI: 10.1007/s11356-023-27278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Recently, selective phosphorus removal from aqueous solution has been a highly desirable strategy to combat eutrophication due to the increasingly stringent phosphorous emission standards. However, conventional adsorbents pose the limitations in phosphate removal suffering from lack of selectivity and stability under complicated condition and poor separation. In this study, novel Y2O3 based calcium-alginate (Y2O3/SA) beads of feasible stability and highly selectivity towards phosphate by encapsulating Y2O3 nanoparticles inside calcium-alginate beads via Ca2+ controlled gelation process was synthesized and characterized. The phosphate adsorption performance and mechanism were investigated. In general, a high selectivity among co-existing anions was found with co-existing anion concentration up to 62.5 times of the phosphate concentration. Additionally, phosphate adsorption by Y2O3/SA beads exhibited stable performance over a wide pH range between 2 and 10, while reaching the maximum adsorption capacity at pH 3 (48.54 mg-P/g). The value of point of zero charge (pHpzc) of Y2O3/SA beads was approximately 3.45. Pseudo-second-order and Freundlich isotherm models can well accord with kinetics and isotherms data. The FTIR and XPS characterizations analyzed that inner-sphere complexes were proposed to be the major contributor of Y2O3/SA beads for phosphate removal. In conclusion, Y2O3/SA beads as the mesoporous material exhibited excellent stability and selectivity towards phosphate removal.
Collapse
Affiliation(s)
- Sudan Lin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Yongzhi Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Chen Fu
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Haifeng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Haoran He
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Siyuan Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Dandan Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China.
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Sichuan, 611756, China.
| |
Collapse
|
10
|
Cheng F, Wang Y, Fan Y, Huang D, Pan J, Li W. Optimized Ca-Al-La modified biochar with rapid and efficient phosphate removal performance and excellent pH stability. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
11
|
Albert Aryee A, Gao C, Han R, Qu L. Synthesis of a novel magnetic biomass-MOF composite for the efficient removal of phosphates: Adsorption mechanism and characterization study. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Qian J, Zhou X, Cai Q, Zhao J, Huang X. The Study of Optimal Adsorption Conditions of Phosphate on Fe-Modified Biochar by Response Surface Methodology. Molecules 2023; 28:molecules28052323. [PMID: 36903566 PMCID: PMC10005502 DOI: 10.3390/molecules28052323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
A batch of Fe-modified biochars MS (for soybean straw), MR (for rape straw), and MP (for peanut shell) were prepared by impregnating biochars pyrolyzed from three different raw biomass materials, i.e., peanut shell, soybean straw, and rape straw, with FeCl3 solution in different Fe/C impregnation ratios (0, 0.112, 0.224, 0.448, 0.560, 0.672, and 0.896) in this research. Their characteristics (pH, porosities, surface morphologies, crystal structures, and interfacial chemical behaviors) and phosphate adsorption capacities and mechanisms were evaluated. The optimization of their phosphate removal efficiency (Y%) was analyzed using the response surface method. Our results indicated that MR, MP, and MS showed their best phosphate adsorption capacity at Fe/C ratios of 0.672, 0.672, and 0.560, respectively. Rapid phosphate removal was observed within the first few minutes and the equilibrium was attained by 12 h in all treatment. The optimal conditions for phosphorus removal were pH = 7.0, initial phosphate concentration = 132.64 mg L-1, and ambient temperature = 25 °C, where the Y% values were 97.76, 90.23, and 86.23% of MS, MP, and MR, respectively. Among the three biochars, the maximum phosphate removal efficiency determined was 97.80%. The phosphate adsorption process of three modified biochars followed a pseudo-second-order adsorption kinetic model, indicating monolayer adsorption based on electrostatic adsorption or ion exchange. Thus, this study clarified the mechanism of phosphate adsorption by three Fe-modified biochar composites, which present as low-cost soil conditioners for rapid and sustainable phosphate removal.
Collapse
Affiliation(s)
- Jing Qian
- School of Environment and Energy Engineering, Anhui JianZhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
| | - Xiaoyu Zhou
- Plant Protection & Quarantine and Tillage & Fertilizer Management Station of Huzhou, Huzhou 313000, China
| | - Qingsong Cai
- School of Environment and Energy Engineering, Anhui JianZhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
| | - Jinjin Zhao
- School of Environment and Energy Engineering, Anhui JianZhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
| | - Xianhuai Huang
- School of Environment and Energy Engineering, Anhui JianZhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Correspondence:
| |
Collapse
|
13
|
Rivadeneira-Mendoza BF, Estrela Filho OA, Fernández-Andrade KJ, Curbelo F, Fred da Silva F, Luque R, Rodríguez-Díaz JM. MOF@biomass hybrids: Trends on advanced functional materials for adsorption. ENVIRONMENTAL RESEARCH 2023; 216:114424. [PMID: 36162474 DOI: 10.1016/j.envres.2022.114424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This contribution aims to demonstrate the scope of new hybrids between biomass and metal-organic frameworks (MOF@biomass) used in the adsorption process of pollutants. After a brief presentation of the use of the main series of MOFs as efficient adsorbents for different types of pollutants, the limitations of these structures related to particle size and hydrodynamic problems during their application are highlighted. Lignocellulosic biomasses are also recognized as an alternative adsorbent, mainly due to their high natural abundance and their low environmental impact during and after their application. The limited capacity of bioadsorbents becomes important in this research. Consequently, the largest amount of information existing in the last ten years on MOF-Biomass functionalization as a hybrid and improvement technology for adsorption processes is compiled, analyzed, compared and contrasted. So far, there is no evidence of works that exploit the concept of functionalization of adsorbents of different nature to give rise to new hybrid materials. Through this review it was found that the hybrids obtained show a higher adsorption capacity (Qe) compared to their precursors, due to the increase of organic functional groups provided by the biomass. Thus, for heavy metals, dyes, Arsenium anions and other organic and pharmaceutical compounds, there are increases in Qe of about 100 mg g-1. The possibility of the new hybrid being studied for desorption and reuse processes is also raised, resulting in a new line of research that is attractive for the industry from an economic and environmental point of view. The functionalization methods and techniques used in the studies cited in this article are outlined. In conclusion, this research brings a new horizon of study in the field of adsorption and mentions the main future challenges related to new sustainable applications.
Collapse
Affiliation(s)
| | - Otoniel Anacleto Estrela Filho
- Programa de Pós-Graduação Em Engenharia Química, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Kevin Jhon Fernández-Andrade
- Instituto de Posgrado, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Fabiola Curbelo
- Programa de Pós-Graduação Em Engenharia Química, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, 58051-900, Brazil; Department of Chemical Engineering, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Fausthon Fred da Silva
- Departamento de Química, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa - PB, Brazil; Biomaterials Engineering, Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation.
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador.
| |
Collapse
|
14
|
Boulett A, Roa K, Oyarce E, Xiao LP, Sun RC, Pizarro GDC, Sánchez J. Reusable hydrogels based on lignosulfonate and cationic polymer for the removal of Cr(VI) from wastewater. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Egg White-Mediated Fabrication of Mg/Al-LDH-Hard Biochar Composite for Phosphate Adsorption. Molecules 2022; 27:molecules27248951. [PMID: 36558084 PMCID: PMC9781947 DOI: 10.3390/molecules27248951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Phosphorus is one of the main causes of water eutrophication. Hard biochar is considered a promising phosphate adsorbent, but its application is limited by its textural properties and low adsorption capacity. Here, an adhesion approach in a mixed suspension containing egg white is proposed for preparing the hybrid material of Mg/Al-layered double hydroxide (LDH) and almond shell biochar (ASB), named L-AE or L-A (with or without egg white). Several techniques, including XRD, SEM/EDS, FTIR and N2 adsorption/desorption, were used to characterize the structure and adsorption behavior of the modified adsorbents. The filament-like material contained nitrogen elements at a noticed level, indicating that egg white was the crosslinker that mediated the formation of the L-AE hybrid material. The L-AE had a higher phosphate adsorption rate with a higher equilibrium adsorption capacity than the L-A. The saturation phosphate adsorption capacity of L-AE was nearly three times higher than that of L-A. Furthermore, the number of surface groups and the density of the positively charged surface sites follow the ASB < L-A < L-AE order, which is consistent with their phosphate adsorption performance. The study may offer an efficient approach to improving hard biochar’s adsorption performance in wastewater treatment.
Collapse
|
16
|
Xiao H, Wang Y, Hao B, Cao Y, Cui Y, Huang X, Shi B. Collagen Fiber-Based Advanced Separation Materials: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107891. [PMID: 34894376 DOI: 10.1002/adma.202107891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.
Collapse
Affiliation(s)
- Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Baicun Hao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiran Cao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiwen Cui
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
17
|
Rezania S, Kadi A, Kamyab H, Ghfar AA, Rashidi Nodeh H, Wan Ibrahim WN. Lanthanum doped magnetic polyaniline for removal of phosphate ions from water. CHEMOSPHERE 2022; 307:135809. [PMID: 35934100 DOI: 10.1016/j.chemosphere.2022.135809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Herein, magnetic polyaniline was modified with lanthanum nanoparticles (MPANI@La) as adsorbent, aiming to the treatment of high phosphate-containing aquatic solutions. High valent lanthanum doped with polyaniline was a promising adsorbent to uptake phosphate ions with possible electrostatic interaction and cation exchange process. The functional groups, composition, surface morphology, and magnetic property of the adsorbent were investigated using Fourier Transform-Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Scanning Electron Microscopic (SEM), and Vibrating Sample Magnetometer (VSM), respectively. During the experimental process, MPANI@La has removed phosphate ions from water >90%, with 80 mg adsorbent, and shaking for 150 min at room temperature. In this regard, the process was fitted with the Pseudo-second-order kinetic model (R2 > 0.999) and the Langmuir isotherm (R2 > 0.99). The proposed nanoparticles provided an appropriate adsorption capacity (qm) of 45.24 mg.g-1 at pH 4 for phosphate ions. Besides, the adsorbent can be used with an efficiency of 92.49% up to three times that reduced to 52.89% after ten times. In addition, the adsorption process was justified by thermodynamics which confirmed the proposed adsorption mechanism. Hence, the models were provided surface adsorption, monolayer pattern, and the physical mechanism of the phosphate removal process using MPANI@La. Hence the proposed adsorbent can be used as an alternative adsorbent in environmental water remediation.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, Russia.
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Hamid Rashidi Nodeh
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia.
| | - Wan Nazihah Wan Ibrahim
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
18
|
Tai Y, Wang L, Hu Z, Dang Y, Guo Y, Ji X, Hu W, Li M. Efficient phosphorus recovery as struvite by microbial electrolysis cell with stainless steel cathode: Struvite purity and experimental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156914. [PMID: 35753464 DOI: 10.1016/j.scitotenv.2022.156914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) recovery from waste streams is an essential choice due to the coming global P crisis. One promising solution is to recover P by microbial electrolysis cell (MEC). Both the P recovery effectiveness and product quality are of critical importance for application. In this study, a two-chamber MEC was constructed and the effects of applied voltage, NaAc concentration, Mg/P molar ratio, N/P molar ratio, and initial P concentration on P recovery and product purity were explored. The maximum P recovery efficiency of 99.64 % and crystal accumulation rate over 106.49 g/m3-d were achieved. Struvite (MAP) was confirmed as the final recovered product and the purity obtained could reach up to 99.95 %. Besides, higher applied voltage, N/P molar ratio and initial P concentration could promote P recovery efficiency, while the purity of MAP showed correlation with applied voltage, Mg/P molar ratio, N/P molar ratio and initial P concentration. The correlation between NaAc concentration and both of the above was not very significant. A lower energy consumption of 4.1 kWh/kg P was observed at the maximum P recovery efficiency. In addition, the efficiency of P recovery from real wastewater also could reach nearly 88.25 %. These results highlight the promising potential of efficient phosphorus recovery from P-rich wastewater by MEC.
Collapse
Affiliation(s)
- Yanfeng Tai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lingjun Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenzhen Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Cheng P, Liu Y, Yang L, Wang X, Chi Y, Yuan H, Wang S, Ren YX. Adsorption and recovery of phosphate from aqueous solution by katoite: Performance and mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Sun Y, Gu Y, Xiao S. Adsorption behaviors and mechanisms of Al-Fe dual-decorated biochar adsorbent for phosphate removal from rural wastewater. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, China
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, China
| | - Shuying Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Si J, Chen Y, Deng T, Dai S, Tan H, Meng F, Yang G, Gu Y, Qu L. Esterified-sawdust decorated with AgNPs as solid-phase extraction membranes for enrichment and high-sensitivity detection of polychlorinated biphenyls. CHEMOSPHERE 2022; 298:134266. [PMID: 35276109 DOI: 10.1016/j.chemosphere.2022.134266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants, which cause serious harm to human health and ecological environment. Thus, a low-cost membrane was developed for highly effective removal and rapid surface-enhanced Raman scattering (SERS) detection of PCBs by filling esterified-sawdust (CA-SD) modified with silver nanoparticles (AgNPs) into solid phase extraction (SPE) column. SD was first modified by an esterification cross-linking strategy and then AgNPs were anchored on the CA-SD to prepare highly sensitive and reproducible SERS substrates (AgNPs/CA-SD). Due to the contraction of the surface area of the CA-SD caused by drying, the gap between the AgNPs could be reduced, thereby generating a large number of hot spots and driving more target molecules into them to obtain the enhanced SERS signals. The AgNPs/CA-SD-based SPE membrane showed excellent SERS activity with an enhancement factor of 5.98 × 108 for the R6G analysis. The proposed SERS-active SPE membrane with functionalization of mercapto-β-cyclodextrin was further developed for the determination of PCB-77 and PCB-1 with the LODs of 1.43 × 10-9 M and 2.12 × 10-8 M, respectively. In addition, each PCB in the mixed sample could be quickly distinguished based on the characteristic peaks. The current research exhibits great potential for the simultaneous detection of multiple environmental contaminants and can meet the needs of on-site emergency detection.
Collapse
Affiliation(s)
- Jincheng Si
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tangtang Deng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shuang Dai
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hui Tan
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Funa Meng
- School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, China.
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
22
|
Jiao GJ, Ma J, Zhang J, Zhou J, Sun R. High-efficiency capture and removal of phosphate from wastewater by 3D hierarchical functional biomass-derived carbon aerogel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154343. [PMID: 35257753 DOI: 10.1016/j.scitotenv.2022.154343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The development of functional biomass-based carbon aerogels (CAs) with excellent mechanical flexibility and ultra-high phosphate capture capacity is crucial for capture and recovery of phosphate from waste water. Herein, a functional biomass-derived CA (MgO@SL/CMC CA) with an ordered wave-shaped layered structure and excellent compressibility was fabricated with the aim of creating a material with efficient phosphate capture performance. The incorporation of sulfonomethylated lignin (SL) significantly improves the mechanical flexibility of MgO@SL/CMC CA. Numerous MgO nano-particles (NPs), which act as principal adsorption sites, were uniformly anchored on the MgO@SL/CMC CA. The prepared MgO@SL/CMC CA with high Mg content (20.34 wt%) exhibited an ultra-high phosphate capture capacity (218.51 mg P g-1 for adsorbent or 644.58 mg P g-1 for MgO), excellent adsorptive selectivity for phosphate and a wide pH range of application (2-8). Notably, more than 81.95% of the phosphate capture capacity was retained after six cyclic adsorption-desorption tests. A considerable effective treatment volume (468 BV) of actual wastewater (1.7 mg P L-1) could be achieved by the MgO@SL/CMC CA in the fixed-bed adsorption column. Research into the adsorption mechanism reveals that monolayer chemisorption of phosphate occurs on the MgO@SL/CMC CA through a ligand exchange process. The combination of favorable flexibility, green raw materials and superior phosphate capture performance endows MgO@SL/CMC CA with great application potential in the practical treatment of wastewater.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Junqiang Zhang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
23
|
Zhang M, He M, Chen Q, Huang Y, Zhang C, Yue C, Yang L, Mu J. Feasible synthesis of a novel and low-cost seawater-modified biochar and its potential application in phosphate removal/recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153833. [PMID: 35151752 DOI: 10.1016/j.scitotenv.2022.153833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, a novel and low-cost seawater-modified biochar (SBC) was fabricated via the pyrolysis of fir wood waste followed by co-precipitation modification using seawater as the Ca/Mg source. The co-precipitation pH was a vital factor during modification, and the optimal pH was 10.50 according to calculations using PHREEQC 2.5 and experiments. The characterizations indicated that Ca and Mg were loaded on the SBC as irregular CaCO3 and nanoflake-like Mg(OH)2, respectively, with the latter dominating. The SBC exhibited a high maximum adsorption capacity of 181.07 mg/g for phosphate, calculated using the Langmuir model, excellent adsorption performance under acidic and neutral conditions (pH = 3.00-7.00), and remarkable selectivity against Cl-, NO3-, and SO42-. The presence of HCO3- promoted adsorption. The mechanisms behind phosphate adsorption involved electrostatic attraction, ligand exchange, precipitation, and inner-sphere complexation. Mg, rather than Ca, was served as the main adsorptive sites for phosphate. Additionally, the feasibility of treating real-world wastewater was tested in batch (using SBC powders) and fixed-bed column (using SBC granules) experiments. The results indicate that the SBC powders could reduce the phosphate concentration from 1.26 mg P/L to below 0.5 mg P/L at a low dose of 0.50 g/L, and the SBC granules exhibited a high removal efficiency with excellent recyclability; the capacity still remained at 78.92% of the initial capacity after five adsorption-desorption runs. Furthermore, the modification process almost did not increase the production cost of the SBC, which was estimated to be 0.41 $/kg. Our results demonstrate that seawater is a low-cost and efficient modifier for biochar modification, and the resultant SBC demonstrates great potential for treating actual phosphate-containing wastewater.
Collapse
Affiliation(s)
- Mingdong Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; Fuzhou Institute of Oceanography, Fuzhou 350108, PR China
| | - Minzhen He
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Qinpeng Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Yaling Huang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; Fuzhou Institute of Oceanography, Fuzhou 350108, PR China
| | - Chaoyue Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chen Yue
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liyang Yang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Jingli Mu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; Fuzhou Institute of Oceanography, Fuzhou 350108, PR China.
| |
Collapse
|
24
|
Adsorptive behavior of phosphorus onto recycled waste biosolids after being acid leached from wastewater sludge. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Zhang YN, Guo JZ, Wu C, Huan WW, Chen L, Li B. Enhanced removal of Cr(VI) by cation functionalized bamboo hydrochar. BIORESOURCE TECHNOLOGY 2022; 347:126703. [PMID: 35031437 DOI: 10.1016/j.biortech.2022.126703] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 05/16/2023]
Abstract
Chemical modification on hydrochars can significantly improve their ability of removing heavy metal ions from wastewater, but so far no research has focused on the chemical modification through free radical reaction. In this work, a cation functionalized hydrochar (CFHC) bearing - N+H2R was synthesized by grafting-polymerization of glycidyl methacrylate (GMA) onto bamboo hydrochar under initiation by benzoyl peroxide, followed by the amination with the introduced epoxy group and diethylenetriamine and a subsequent hydrochloric acid treatment. The resulted CFHC exhibited a superior removal capacity of 424.09 mg·g-1 for Cr(VI), and the highest sorption occurred at pH of 2. Combining a series of characterizations and tests, it was concluded that the sorption conformed to the pseudo-second-order and Freundlich equations, indicating a multilayer chemisorption process that mainly driven by electrostatic reaction, reduction, and surface complexation. This research proved that a free radical polymerization treatment could effectively transform hydrochars into super adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Yu-Nan Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Chunzheng Wu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Wei-Wei Huan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Lin Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
26
|
Jiao GJ, Ma J, Li Y, Jin D, Zhou J, Sun R. Removed heavy metal ions from wastewater reuse for chemiluminescence: Successive application of lignin-based composite hydrogels. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126722. [PMID: 34332480 DOI: 10.1016/j.jhazmat.2021.126722] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The novel sulfomethylated lignin-grafted-polyacrylic acid (SL-g-PAA) hydrogel was fabricated in this work via a facile and green synthetic strategy for the efficient removal of heavy metal ions from wastewater, and then successively reused for chemiluminescence (CL). The sulfomethylation of lignin was first performed to improve its water solubility and introduce numerous active sites for adsorption of heavy metal ions. The as-synthesized SL-g-PAA hydrogel with high content of lignin exhibited the highly efficient and rapid removal of various metal ions from simulated wastewater. More importantly, the spent hydrogel (M2+@SL-g-PAA) after adsorption was reused for the first time to develop a new CL system by an ingenious strategy, in which these metal ions adsorbed on M2+@SL-g-PAA act as heterogeneous catalytic sites to catalyze the CL reaction between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and H2O2. The resultant CL system displayed high CL intensity and long duration time, which could be observed by naked eye in the dark and lasted for > 24 h. The combination of facile fabrication process, renewable raw materials, and ingenious strategy for successive application in adsorption and CL endows this lignin-based composite hydrogel with a great potential for application in wastewater treatment, biological imaging and cold light sources.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
27
|
Zeng W, Li B, Lin X, Lv S, Yin W, Li P, Zheng X, Wu J. Enhanced phosphate removal by zero valent iron activated through oxidants from water: batch and breakthrough experiments. RSC Adv 2021; 11:39879-39887. [PMID: 35494108 PMCID: PMC9044562 DOI: 10.1039/d1ra05664f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, oxidants including hydrogen peroxide (H2O2), hypochlorite (ClO-) and persulfate (S2O8 2-) were employed to promote zero-valent iron (ZVI) corrosion and enhance phosphate (P) removal from water through batch and breakthrough experiments. Characterization results indicated that the addition of oxidant can cause large-scale corrosion of the iron surface. This subsequently generates more iron ions and active minerals, resulting in a large number of reaction-adsorption sites for P removal. Therefore, compared with the ZVI alone system (29.4%), the removal efficiency of P by oxidant/ZVI system (H2O2 : ClO- : S2O8 2- = 33.2% : 54% : 67.1%) was improved. For the oxidant/ZVI system, H2O2 can promote the corrosion of ZVI to a certain extent. However, the solution pH could be increased during the corrosion process. This leads to inhibition of P removal performance by the H2O2/ZVI system, which only increased by 12.9% to 33.2%. The reaction between NaClO and ZVI consumes less H+, and the reaction product Cl- can pierce the passivation layer on the surface of the ZVI through the pitting effect. As such, the NaClO/ZVI system attained a 54% P removal rate. Compared with H2O2 and NaClO, a better P removal effect of about 67.1% can be achieved by using Na2S2O8, since the oxidation corrosion process of Na2S2O8 does not consume H+, and it also has the strongest oxidizing properties. Furthermore, an appropriate increase in oxidant dosing (0.1-2 mM) could improve the efficiency at which of P is removed. Five batch cycle experiments showed that the oxidant/ZVI system has a higher removal capacity and longer life-span. In the long-term column running, the P removal capacity and operation life of the NaClO/ZVI column are 9.6 times and 3.2 times higher than that of the ZVI column, respectively. This work demonstrates that an oxidant/ZVI system can be an efficient method for P removal in water, which also provides a new idea for solving the problem of ZVI corrosion passivation.
Collapse
Affiliation(s)
- Weilong Zeng
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569
| | - Bing Li
- School of Light Industry and Materials, Guangdong Polytechnic Foshan 528041 China
| | - Xueying Lin
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569
| | - Sihao Lv
- College of Chemistry and Environmental Engineering, Dongguan University of Technology Dongguan 523808 China
| | - Weizhao Yin
- School of Environment, Jinan University Guangzhou 510632 China
| | - Ping Li
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569
| | - Xiangyu Zheng
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569.,The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education Guangzhou 510006 China.,The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions Guangzhou 510006 China
| |
Collapse
|
28
|
Santucci V, Fiore S. Recovery of Waste Polyurethane from E-Waste. Part II. Investigation of the Adsorption Potential for Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7587. [PMID: 34947183 PMCID: PMC8704397 DOI: 10.3390/ma14247587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/04/2022]
Abstract
This study explored the performances of waste polyurethane foam (PUF) derived from the shredding of end-of-life refrigerators as an adsorbent for wastewater treatment. The waste PUF underwent a basic pre-treatment (e.g., sieving and washing) prior the adsorption tests. Three target pollutants were considered: methylene blue, phenol, and mercury. Adsorption batch tests were performed putting in contact waste PUF with aqueous solutions of the three pollutants at a solid/liquid ratio equal to 25 g/L. A commercial activated carbon (AC) was considered for comparison. The contact time necessary to reach the adsorption equilibrium was in the range of 60-140 min for waste PUF, while AC needed about 30 min. The results of the adsorption tests showed a better fit of the Freundlich isotherm model (R2 = 0.93 for all pollutants) compared to the Langmuir model. The adsorption capacity of waste PUF was limited for methylene blue and mercury (Kf = 0.02), and much lower for phenol (Kf = 0.001). The removal efficiency achieved by waste PUF was lower (phenol 12% and methylene blue and mercury 37-38%) compared to AC (64-99%). The preliminary results obtained in this study can support the application of additional pre-treatments aimed to overcome the adsorption limits of the waste PUF, and it could be applied for "rough-cut" wastewater treatment.
Collapse
Affiliation(s)
| | - Silvia Fiore
- Department of Engineering for Environment, Land, and Infrastructures (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
29
|
Jiao GJ, Ma J, Zhang Y, Jin D, Li Y, Hu C, Guo Y, Wang Z, Zhou J, Sun R. Nitrogen-doped lignin-derived biochar with enriched loading of CeO 2 nanoparticles for highly efficient and rapid phosphate capture. Int J Biol Macromol 2021; 182:1484-1494. [PMID: 34019923 DOI: 10.1016/j.ijbiomac.2021.05.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022]
Abstract
Development of lignin-derived carbon adsorbents with ultrahigh phosphate adsorption activity and rapid adsorption kinetics is of great importance, yet limited success has been achieved. Herein, we develop a CeO2 functionalized N-doped lignin-derived biochar (Ce@NLC) via a cooperative modification strategy for effective and fast phosphate capture. The novel modification strategy not only contributes greatly to the loading of well-dispersed CeO2 nanoparticles with a smaller size, but also significantly increases the relative concentration of Ce(III) species on Ce@NLC. Consequently, an enhanced capture capacity for phosphate (196.85 mg g-1) as well as extremely rapid adsorption kinetics were achieved in a wide operating pH range (2-10). Interestingly, Ce@NLC exhibited a strong phosphate adsorption activity at even low-concentration phosphorus-containing water. The removal efficiency and final P concentration reached 99.87% and 2.59 μg P L-1 within 1 min at the phosphate concentration of 2 mg P L-1. Experiments and characterization indicated that Ce(III) species plays a predominant role for the phosphate capture, and ligand exchange, together with electrostatic attraction, are the main adsorption mechanism. This work develops not only an efficient carbon-based adsorbent for phosphate capture, but also promotes the high-value application of industrial lignin.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Yuheng Zhang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chensheng Hu
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|