1
|
Huong Nguyen T, Thong Vo T, Watari T, Hatamoto M, Setiadi T, Yamaguchi T. Azo dye anaerobic treatment in anaerobic reactors coupled with PVA/Fe/Starch gel bead. BIORESOURCE TECHNOLOGY 2024; 407:131102. [PMID: 39019198 DOI: 10.1016/j.biortech.2024.131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
A novel bio-carrier, PVA/Fe/starch gel bead, was fabricated and developed to enhance the anaerobic treatment performance of synthetic azo dye-containing wastewater. PVA-gel beads with 5 % magnetite and 0.5 % starch were optimal for physical strength and treatment performance. A pair of 2 L-up-flow anaerobic sludge blankets (UASB), one with the bead (UB) and another without (U) as a controller, operated continuously at 30 °C and an HRT of 11-24 h for 302 days. UB showed better performance than U in most phases, especially with influent dye of 200 mg·L-1, suggesting a greater tolerance to dye toxicity of UB than U. Microbial analysis revealed that the PVA/Fe/starch gel beads successfully captured the dye degrader Clostridium. Diversity indices indicated that PVA/Fe/Starch gel beads effectively support microbial diversity and resilience under varying dye concentrations. Overall, these findings demonstrate the potential of PVA/Fe/Starch gel beads to improve the stability and efficiency of the dye treatment system.
Collapse
Affiliation(s)
- Thu Huong Nguyen
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Tien Thong Vo
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan; School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Tjandra Setiadi
- Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, 40132, Indonesia
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan
| |
Collapse
|
2
|
Dong H, Tian Y, Lu J, Zhao J, Tong Y, Niu J. Bioaugmented biological contact oxidation reactor for treating simulated textile dyeing wastewater. BIORESOURCE TECHNOLOGY 2024; 404:130916. [PMID: 38823560 DOI: 10.1016/j.biortech.2024.130916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
In this study, modified polyamide fibers were used as biocarriers to enrich dense biofilms in a multi-stage biological contact oxidation reactor (MBCOR) in which partitioned wastewater treatment zone (WTZ) and bioaugmentation zone (BAZ) were established to enhance the removal of methyl orange (MO) and its metabolites while minimizing sludge yields. WTZ exhibited high biomass loading capacity (5.75 ± 0.31 g/g filler), achieving MO removal rate ranging from 68 % to 86 % under different aeration condition within 8 h in which the most dominant genus Chlorobium played an important role. In the BAZ, Pseudoxanthomonas was the dominant genus while carbon starvation stimulated the enrichment of chemoheterotrophy and aerobic_chemoheterotrophy genes thereby enhanced the microbial utilization of cell-released substrates, MO as well as its metabolic intermediates. These results revealed the mechanism bioaugmentation on MBCOR in effectively eliminating both MO and its metabolites.
Collapse
Affiliation(s)
- Hongyu Dong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China.
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
3
|
Yi L, Jiang H, Ma Y, Zhu R, Zhang G, Ren Z. Highly efficient visible-light driven dye degradation via 0D BiVO 4 nanoparticles/2D BiOCl nanosheets p-n heterojunctions. CHEMOSPHERE 2024; 354:141658. [PMID: 38484995 DOI: 10.1016/j.chemosphere.2024.141658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The construction of hybrid heterojunction photocatalysts is an effective strategy to improve the utilization of photogenerated carriers and photocatalytic activity. To enhance the separation distance of photogenerated carriers and accelerate the effective separation at the heterojunction of the interface, a unique 0D-2D hierarchical nanostructured p-n heterojunction was successfully fabricated in this work. BiOCl (BOC) nanosheets (p-type) were in situ grown on BiVO4 (BVO) nanoparticles (n-type) using the microemulsion-calcination method for highly efficient visible-light-driven organic dye degradation. Compared with pure BVO (the degradation rate of rhodamine B (RhB): about 32.0% in 55 min, the mineralization rate: 24.9% in 120 min), the RhB degradation rate can reach about 99.5% in 55 min and the mineralization rate of 62.1% in 120 min by utilizing BVO/25%BOC heterojunction photocatalyst under visible light irradiation. Various characterizations demonstrate that the formation of BVO/BOC p-n heterojunction greatly facilitates photogenerated carriers separation efficiency. Meanwhile, the results of the scavenging experiments and electron spin resonance tests indicate that ·O2- and h+ are the prominent active species for Rh B degradation. In addition, possible degradation pathways for Rh B were proposed using LC-MS tests. This work proves that building low dimensional p-n heterojunction photocatalysts is a promising strategy for developing photocatalysts with high efficiency.
Collapse
Affiliation(s)
- Lian Yi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Hongyi Jiang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Yueyong Ma
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Institute of Hydrogen and Fuel Cell, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
4
|
Hong Dao NP, Nguyen TH, Watari T, Hatamoto M, Tan NM, Huong NL, Yamaguchi T. Investigate the anaerobic degradation of high-acetone latex wastewater with magnetite supplement. CHEMOSPHERE 2023; 339:139626. [PMID: 37487980 DOI: 10.1016/j.chemosphere.2023.139626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
This study evaluated the effects of acetone on the anaerobic degradation of synthetic latex wastewater, which was simulated from the wastewater of the deproteinized natural rubber production process, including latex, acetate, propionate, and acetone as the main carbon sources, at a batch scale in 5 cycles of a total of 60 days. Fe3O4 was applied to accelerate the treatment performance from cycle 3. Acetone was added in concentration ranges of 0%, 0.05%, 0.1%, 0.15%-included latex, and 0.15%-free latex (w/v). In the Fe3O4-free cycles, for latex-added vials, soluble chemical oxygen demand (sCOD) was removed at 43.20%, 43.20%, and 12.65%, corresponding to the input acetone concentrations varying from 0.05% to 0.15%, indicating the interference of acetone for COD reduction. After adding Fe3O4, all flasks reported a significant increase in COD removal efficiency, especially for acetone-only and latex-only vials, from 36.9% to 14.30%-42.95% and 83.20%, respectively. Other highlighted results of COD balance showed that Fe3O4 involvement improved the degradation process of acetate, propionate, acetone, and the other COD parts, including the intermediate products of latex reduction. Besides, during the whole batch process, the order of reduction priority of the carbon sources in the synthetic wastewater was acetate, propionate and acetone. We also found that the acetate concentration appeared to be strongly related to reducing other carbon sources in natural rubber wastewater. Microbial community analysis revealed that protein-degrading bacteria Bacteroidetes vadinHA17 and Proteinniphilum and methylotrophic methanogens might play key roles in treating simulated deproteinized-natural-rubber wastewater.
Collapse
Affiliation(s)
- Nguyen Pham Hong Dao
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Thu Huong Nguyen
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, 940-2188, Japan; School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 11600, Viet Nam.
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Nguyen Minh Tan
- Institute for R&D of Natural Products, Hanoi University of Science and Technology, Hanoi, 11600, Viet Nam
| | - Nguyen Lan Huong
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 11600, Viet Nam
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, 940-2188, Japan; School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 11600, Viet Nam
| |
Collapse
|
5
|
Wang GY, Ding J, He L, Wu T, Ding MQ, Pang JW, Liu LM, Gao XL, Zhang LY, Ren NQ, Yang SS. Enhanced anaerobic degradation of azo dyes by biofilms supported by novel functionalized carriers. BIORESOURCE TECHNOLOGY 2023; 378:129013. [PMID: 37019414 DOI: 10.1016/j.biortech.2023.129013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Azo dyes are significant organic pollutants known for their adverse effects on humans and aquatic life. In this study, anthraquinone-2-sulfonate (AQS) immobilized on biochar (BC) was employed as a novel carrier in up-flow anaerobic fixed-bed reactors to induce specific biofilm formation and promote the biotransformation efficiency of azo dyes. Novel carrier-packed reactor 1 (R1) and BC-packed reactor 2 (R2) were used to treat red reactive 2 (RR2) under continuous operation for 175 days. The decolorization rates of R1 and R2 were 96-83% and 91-73%, respectively. The physicochemical characteristics and extracellular polymeric substances (EPS) of the biofilm revealed a more stable structure in R1. Furthermore, the microbial community in R1 interacted more closely with each other and contained more keystone genera. Overall, this study provides a feasible method for improving the biotransformation of azo dyes, thus providing support for practical applications in wastewater treatment projects.
Collapse
Affiliation(s)
- Guang-Yuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China
| | - Lu-Ming Liu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd., Harbin 150090, China
| | - Xin-Lei Gao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd., Harbin 150090, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Jegatheesan V, Shu L, Rene ER, Lin TF. Challenges in Environmental Science/Engineering and fate and innovative treatment/remediation of emerging pollutants. CHEMOSPHERE 2022; 292:133497. [PMID: 34995630 DOI: 10.1016/j.chemosphere.2021.133497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid waste Management: There are two articles in this section. Shi et al. (2021) investigated the unbalanced status and multidimensional influences of municipal solid waste management in Africa. It was identified that economic growth, urbanization and geographical location are the most critical factors influencing the unbalanced statue of MSW management in Africa.
Collapse
Affiliation(s)
- Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Li Shu
- School of Engineering, Edith Cowan University, 70 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; LJS Environment, Parkville, VIC, 3052, Australia
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611, AX Delft, the Netherlands
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Pilot-Scale Anaerobic Treatment of Printing and Dyeing Wastewater and Performance Prediction Based on Support Vector Regression. FERMENTATION 2022. [DOI: 10.3390/fermentation8030099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Printing and dyeing wastewater is characterized with complex water quality and poor biodegradability. In this study, a pilot-scale anaerobic baffled reactor (ABR) with packing was verified to effectively degrade the complex organic pollutants in the wastewater through the hydrolysis and acidification of anaerobic microorganisms. At a hydraulic retention time (HRT) of 12 h and an organic loading rate (OLR) of 2.0–2.5 kg COD/(m3·d), the ABR stabilized the fluctuation range of pH and achieved an average colority removal rate of 10.5%, which provided favorable conditions for subsequent aerobic treatment. During the early operation period, the reactor increased the alkalinity of the wastewater; after 97 days of operation, the volatile fatty acid (VFA) content in the wastewater decreased. To demonstrate the suitability of the support vector regression (SVR) technology in predicting the performance of the reactor, two SVR algorithms with three kernel functions were employed to relate the chemical oxygen demand (COD) removal rate to its influencing factors, and the predictions of both the training and validation groups agreed with the measurements. The results obtained from this study can contribute to the design and optimal operation of the anaerobic treatment project of the industrial wastewater treatment plant.
Collapse
|
8
|
Rational design of Aspergillus flavus A5p1-immobilized cell system to enhance the decolorization of reactive blue 4 (RB4). Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Chen YC, Pat HW. Comparing natural red soil and irons for removal of phosphorus from wastewater using the multi-soil-layering system and its economic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113252. [PMID: 34261035 DOI: 10.1016/j.jenvman.2021.113252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The study uses an emerging soil treatment technology, the Multi-Soil Layering System (MSL), which is composed of the zeolite permeability layers (PL) and the soil mixture block layers (SMB). The experimental results show that the SMBs with iron particle (SMB-I) removed more than 83% of the total phosphorus (P) pollution in the water, and the outflow sewage concentration is 9.6 mg/L. In contrast, the SMBs with red clay (SMB-R) has 23% removal rate, and the outflow sewage concentration is 46.45 mg/L. Only 0.013 mg/L Fe concentration was detected in the SMB-R system and release of Fe from red soil is hardly achieved under neutral water environment. The SMB-R and SMB-I systems reduced 108.89 mg/g and 20.93 mg/g respectively and the SMB-R had higher removal efficiency of P per gram released Fe. The chromaticity problem of the effluent water in the SMB-I is up to 225 platinum cobalt, and that of the SMB-R is 172 platinum cobalt. Adding 10 g oyster shell (slice-only) and/or 0.65 g polyglutamic acid have effectively removed up to 99% 25-mg/L Fe in the effluent water; the chromaticity problem caused by Fe effluent was successfully solved. Furthermore, the iron particle has the highest unit cost among the materials in the SMBs (US$1.47/kg in lab and US$0.12/kg in field). Removal of 1 mg/L TP in the MSL system costs US$0.036 (by lab) in terms of removal TP rate in the laboratory was 83% and is economically feasible in field development.
Collapse
Affiliation(s)
- Ying-Chu Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan, ROC.
| | - Hoi-Wing Pat
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City, 106, Taiwan, ROC
| |
Collapse
|