1
|
Camargos CM, Yang L, Jackson JC, Tanganini IC, Francisco KR, Ceccato-Antonini SR, Rezende CA, Faria AF. Lignin and Nanolignin: Next-Generation Sustainable Materials for Water Treatment. ACS APPLIED BIO MATERIALS 2025; 8:2632-2673. [PMID: 39933070 PMCID: PMC12015965 DOI: 10.1021/acsabm.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Water scarcity, contamination, and lack of sanitation are global issues that require innovations in chemistry, engineering, and materials science. To tackle the challenge of providing high-quality drinking water for a growing population, we need to develop high-performance and multifunctional materials to treat water on both small and large scales. As modern society and science prioritize more sustainable engineering practices, water treatment processes will need to use materials produced from sustainable resources via green chemical routes, combining multiple advanced properties such as high surface area and great affinity for contaminants. Lignin, one of the major components of plants and an abundant byproduct of the cellulose and bioethanol industries, offers a cost-effective and scalable platform for developing such materials, with a wide range of physicochemical properties that can be tailored to improve their performance for target water treatment applications. This review aims to bridge the current gap in the literature by exploring the use of lignin, both as solid bulk or solubilized macromolecules and nanolignin as multifunctional (nano)materials for sustainable water treatment processes. We address the application of lignin-based macro-, micro-, and nanostructured materials in adsorption, catalysis, flocculation, membrane filtration processes, and antimicrobial coatings and composites. Throughout the exploration of recent progress and trends in this field, we emphasize the importance of integrating principles of green chemistry and materials sustainability to advance sustainable water treatment technologies.
Collapse
Affiliation(s)
- Camilla
H. M. Camargos
- Departamento
de Artes Plásticas, Escola de Belas Artes, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Liu Yang
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Jennifer C. Jackson
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Isabella C. Tanganini
- Departamento
de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Kelly R. Francisco
- Departamento
de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Sandra R. Ceccato-Antonini
- Departamento
de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Camila A. Rezende
- Departamento
de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Andreia F. Faria
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| |
Collapse
|
2
|
Zhang Y, Xuan B, Wang J, Chen X, Zhao C, Zhao L, Kang J. Synergistic Mechanism of Hydroxyl Regulation and a Polyvinylpyrrolidone Surfactant in Enhancing the Catalytic Oxidation Abilities of BiOBr. Molecules 2025; 30:1286. [PMID: 40142063 PMCID: PMC11945476 DOI: 10.3390/molecules30061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The rational design of BiOBr photocatalysts with optimized surface properties and enhanced photooxidative capacities is crucial. This study proposes a synergistic strategy combining hydroxyl-rich solvents with polyvinylpyrrolidone (PVP) surfactants to modulate the structural and electronic properties of BiOBr through a solvothermal approach. The resulting self-assembled microspheres demonstrated exceptional efficiency in degrading ciprofloxacin (CIP), methyl orange (MO), and rhodamine B (RhB). Among the synthesized variants, BiOBr-EG-PVP (fabricated with ethylene glycol and PVP) exhibited the highest photocatalytic activity, achieving near-complete removal of 20 mg/L CIP and RhB within 10 min under visible light irradiation, with degradation rates 60.12-101.73 times higher than pristine BiOBr. The structural characterization revealed that ethylene glycol (EG) not only induced the formation of self-assembled microspheres but also introduced abundant surface hydroxyl groups, which simultaneously enhanced the hole-mediated oxidation capabilities. The incorporation of PVP further promoted the development of hierarchical honeycomb-like microspheres and synergistically enhanced both the hydroxyl group density and photooxidative potential through interfacial engineering. Density functional theory (DFT) calculations confirmed that the enhanced photooxidative performance originated from an increased surface oxygen content. This work elucidates the synergistic effects of hydroxyl-rich solvents and surfactant modification in the fabrication of advanced BiOBr-based photocatalysts, providing new insights for high-performance photocatalysis for environmental remediation.
Collapse
Affiliation(s)
- Yiran Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (B.X.); (J.W.)
| | - Boyuan Xuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (B.X.); (J.W.)
| | - Jiekai Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (B.X.); (J.W.)
| | - Xiang Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Changwei Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.Z.); (B.X.); (J.W.)
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ec-Toxicology, Research Center for Eco-Envronmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Jing Kang
- China Institute for Radiation Protection, Taiyuan 030006, China;
| |
Collapse
|
3
|
Li S, Li X, Li S, Xu P, Liu Z, Yu S. In-situ preparation of lignin/Fe 3O 4 magnetic spheres as bifunctional material for the efficient removal of metal ions and methylene blue. Int J Biol Macromol 2024; 259:128971. [PMID: 38161011 DOI: 10.1016/j.ijbiomac.2023.128971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In this paper, magnetic composite of lignin/Fe3O4 spheres were synthesized via a straightforward one-step in-situ solvothermal method showing good capacity for adsorbing heavy metal ions and dyes. The physicochemical properties of lignin/Fe3O4 spheres are analyzed using a range of techniques such as SEM, XRD, FTIR, VSM, TG, and BET. Lignin/Fe3O4 spheres exhibited high adsorption capacities of 100.00, 353.36 and 223.71 and 180.18 mg/g for Cu (II), Ni (II) and Cr (VI) metal ions and methylene blue (MB) with equilibrium attained within 60 min. After the recycling experiments, lignin/Fe3O4 spheres still possesses excellent superparamagnetic properties and displays high adsorption capacity. The lignin/Fe3O4 spheres are an efficient and continuous adsorbent to remove heavy metal ions of Cu (II), Ni (II), Cr (VI) and cationic dyes of methylene blue in wastewater, which proves the great potential in practical pollutants treatment applications for water systems.
Collapse
Affiliation(s)
- Suyao Li
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xiang Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Sisi Li
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ping Xu
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zhigang Liu
- Centre of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Shihua Yu
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
4
|
Lindenbeck L, Beele BB, Morsali M, Budnyk S, Frauscher M, Chen J, Sipponen MH, Slabon A, Rodrigues BVM. MoS 2 nanoflower-decorated lignin nanoparticles for superior lubricant properties. NANOSCALE 2023; 15:9014-9021. [PMID: 37017278 DOI: 10.1039/d3nr00458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lignin has been, for a long time, treated as a low-value waste product. To change this scenario, high-value applications have been recently pursued, e.g., the preparation of hybrid materials with inorganic components. Although hybrid inorganic-based materials can benefit from the reactive lignin phenolic groups at the interface, often responsible for optimizing specific properties, this is still an underexplored field. Here, we present a novel and green material based on the combination of hydroxymethylated lignin nanoparticles (HLNPs) with molybdenum disulfide (MoS2) nanoflowers grown via a hydrothermal route. By bringing together the lubricant performance of MoS2 and the structural stability of biomass-based nanoparticles, a MoS2-HLNPs hybrid is presented as a bio-derived additive for superior tribological performances. While FT-IR analysis confirmed the structural stability of lignin after the hydrothermal growth of MoS2, TEM and SEM micrographs revealed a homogeneous distribution of MoS2 nanoflowers (average size of 400 nm) on the HLNPs (average size of 100 nm). Regarding the tribological tests, considering a pure oil as reference, only HLNPs as bio-derived additives led to a reduction in the wear volume of 18%. However, the hybrid of MoS2-HLNPs led to a considerably higher reduction (71%), pointing out its superior performance. These results open a new window of opportunity for a versatile and yet underexplored field that can pave the way for a new class of biobased lubricants.
Collapse
Affiliation(s)
- Lucie Lindenbeck
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany.
| | - Björn B Beele
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany.
| | - Mohammad Morsali
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Adam Slabon
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany.
| | | |
Collapse
|
5
|
da Cruz MGA, Onwumere JN, Chen J, Beele B, Yarema M, Budnyk S, Slabon A, Rodrigues BVM. Solvent-free synthesis of photoluminescent carbon nanoparticles from lignin-derived monomers as feedstock. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2196031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Márcia G. A. da Cruz
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Joy N. Onwumere
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Björn Beele
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Maksym Yarema
- Department of Information Technology and Electrical Engineering, Institute for Electronics, ETH Zurich, Zurich, Switzerland
| | | | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Bruno V. M. Rodrigues
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
6
|
Organic-inorganic interface chemistry for sustainable materials. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
This mini-review focuses on up-to-date advances of hybrid materials consisting of organic and inorganic components and their applications in different chemical processes. The purpose of forming such hybrids is mainly to functionalize and stabilize inorganic supports by attaching an organic linker to enhance their performance towards a target application. The interface chemistry is present with the emphasis on the sustainability of their components, chemical changes in substrates during synthesis, improvements of their physical and chemical properties, and, finally, their implementation. The latter is the main sectioning feature of this review, while we present the most prosperous applications ranging from catalysis, through water purification and energy storage. Emphasis was given to materials that can be classified as green to the best in our consideration. As the summary, the current situation on developing hybrid materials as well as directions towards sustainable future using organic-inorganic hybrids are presented.
Collapse
|
7
|
Peramune D, Manatunga DC, Dassanayake RS, Premalal V, Liyanage RN, Gunathilake C, Abidi N. Recent advances in biopolymer-based advanced oxidation processes for dye removal applications: A review. ENVIRONMENTAL RESEARCH 2022; 215:114242. [PMID: 36067842 DOI: 10.1016/j.envres.2022.114242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries. The most widely employed AOPs include photocatalysis, ozonation, Fenton oxidation, electrochemical oxidation, catalytic heterogeneous oxidation, and ultrasound irradiation. These processes involve the generation of highly reactive radicals to oxidize organic dyes into innocuous minerals. However, many conventional AOPs suffer from several setbacks, including the high cost, high consumption of reagents and substrates, self-agglomeration of catalysts, limited reusability, and the requirement of light, ultrasound, or electricity. Therefore, there has been significant interest in improving the performance of conventional AOPs using biopolymers and heterogeneous catalysts such as metal oxide nanoparticles (MONPs). Biopolymers have been widely considered in developing green, sustainable, eco-friendly, and low-cost AOP-based dye removal technologies. They inherit intriguing properties like biodegradability, renewability, nontoxicity, relative abundance, and sorption. In addition, the immobilization of catalysts on biopolymer supports has been proven to possess excellent catalytic activity and turnover numbers. The current review provides comprehensive coverage of different AOPs and how efficiently biopolymers, including cellulose, chitin, chitosan, alginate, gelatin, guar gum, keratin, silk fibroin, zein, albumin, lignin, and starch, have been integrated with heterogeneous AOPs in dye removal applications. This review also discusses the general degradation mechanisms of AOPs, applications of biopolymers in AOPs and the roles of biopolymers in AOPs-based dye removal processes. Furthermore, key challenges and future perspectives of biopolymer-based AOPs have also been highlighted.
Collapse
Affiliation(s)
- Dinusha Peramune
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka.
| | - Vikum Premalal
- Department of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Chamila Gunathilake
- Department of Material and Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, 60200, Sri Lanka
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
8
|
Du B, Chai L, Li W, Wang X, Chen X, Zhou J, Sun RC. Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Zhao W, Cui Y, Zhou S, Ye J, Sun J, Liu X. Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic composites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Heo JW, An L, Chen J, Bae JH, Kim YS. Preparation of amine-functionalized lignins for the selective adsorption of Methylene blue and Congo red. CHEMOSPHERE 2022; 295:133815. [PMID: 35104546 DOI: 10.1016/j.chemosphere.2022.133815] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Research on low-cost bio-adsorbents for the removal of harmful substances from effluents has recently attracted significant attention. In this study, three types of amino-silane-modified lignins (ASLs) with primary, secondary, and tertiary amine groups were prepared, and their adsorption behavior toward cationic and anionic dyes was investigated. Chemical structural analyses indicated that the three amino-silane reagents resulted in different molecular self-assembly structures on the lignin surface. The ASLs exhibited enhanced thermal stabilities and increased surface areas with different surface charges in different pH ranges. Owing to the high density of primary, secondary, and tertiary amine groups, the ASLs exhibited excellent adsorption capacities for cationic and anionic dyes. Additionally, they selectively adsorb anionic and cationic dyes according to the pH conditions. The ASL with primary amine had the highest adsorption capacity for Methylene blue and Congo red, reaching 187.27 and 293.26 mg·g-1, respectively, followed by ASLs with the secondary amine and tertiary amine. All adsorption processes followed the Langmuir and Temkin isotherms and had pseudo-second-order kinetics. The hypothesized adsorption mechanism mainly involves electrostatic interaction, NH-π interaction, hydrogen bonding interaction and π-π interaction.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Liangliang An
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jiansong Chen
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin Ho Bae
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
11
|
Gopakumar A, Ren P, Chen J, Manzolli Rodrigues BV, Vincent Ching HY, Jaworski A, Doorslaer SV, Rokicińska A, Kuśtrowski P, Barcaro G, Monti S, Slabon A, Das S. Lignin-Supported Heterogeneous Photocatalyst for the Direct Generation of H 2O 2 from Seawater. J Am Chem Soc 2022; 144:2603-2613. [PMID: 35129333 DOI: 10.1021/jacs.1c10786] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of smart and sustainable photocatalysts is in high priority for the synthesis of H2O2 because the global demand for H2O2 is sharply rising. Currently, the global market share for H2O2 is around 4 billion US$ and is expected to grow by about 5.2 billion US$ by 2026. Traditional synthesis of H2O2 via the anthraquinone method is associated with the generation of substantial chemical waste as well as the requirement of a high energy input. In this respect, the oxidative transformation of pure water is a sustainable solution to meet the global demand. In fact, several photocatalysts have been developed to achieve this chemistry. However, 97% of the water on our planet is seawater, and it contains 3.0-5.0% of salts. The presence of salts in water deactivates the existing photocatalysts, and therefore, the existing photocatalysts have rarely shown reactivity toward seawater. Considering this, a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air. In fact, in the presence of this catalyst, we have been able to achieve 4085 μM of H2O2. Expediently, the catalyst has shown longer durability and can be recycled more than five times to generate H2O2 from seawater. Finally, full characterizations of this smart photocatalyst and a detailed mechanism have been proposed on the basis of the experimental evidence and multiscale/level calculations.
Collapse
Affiliation(s)
- Aswin Gopakumar
- Department of Chemistry, Universiteit Antwerpen, Antwerp 2020, Belgium
| | - Peng Ren
- Department of Chemistry, Universiteit Antwerpen, Antwerp 2020, Belgium
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | | | - H Y Vincent Ching
- Department of Chemistry, Universiteit Antwerpen, Wilrijk 2610, Belgium
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | | | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes, Area della Ricerca, via Moruzzi 1, Pisa I-56124, Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, Area della Ricerca, via Moruzzi 1, Pisa I-56124, Italy
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Shoubhik Das
- Department of Chemistry, Universiteit Antwerpen, Antwerp 2020, Belgium
| |
Collapse
|
12
|
Zhang S, Chen J, Jia Q, Jiang Q, Yan J, Yang G. A Novel and Effective Recyclable BiOCl/BiOBr Photocatalysis for Lignin Removal from Pre-Hydrolysis Liquor. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2836. [PMID: 34835600 PMCID: PMC8618783 DOI: 10.3390/nano11112836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
The presence of lignin hampers the utilization of hemicelluloses in the pre-hydrolysis liquor (PHL) from the kraft-based dissolving pulp production process. In this paper, a novel process for removing lignin from PHL was proposed by effectively recycling catalysts of BiOCl/BiOBr. During the whole process, BiOCl and BiOBr were not only adsorbents for removing lignin, but also photocatalysts for degrading lignin. The results showed that BiOCl and BiOBr treatments caused 36.3% and 33.9% lignin removal, respectively, at the optimized conditions, and the losses of hemicellulose-derived saccharides (HDS) were both 0.1%. The catalysts could be regenerated by simple photocatalytic treatment and obtain considerable CO and CO2. After 15 h of illumination, 49.9 μmol CO and 553.0 μmol CO2 were produced by BiOCl, and 38.7 μmol CO and 484.3 μmol CO2 were produced by BiOBr. Therefore, both BiOCl and BiOBr exhibit excellent adsorption and photocatalytic properties for lignin removal from pre-hydrolysis.
Collapse
Affiliation(s)
| | - Jiachuan Chen
- State Key Laboratory of Bio-Based Material and Green Papermaking/Key Laboratory of Pulp & Paper Science and Technology of Education Ministry of China, Qilu University of Technology, Jinan 250353, China; (S.Z.); (Q.J.); (J.Y.)
| | | | - Qimeng Jiang
- State Key Laboratory of Bio-Based Material and Green Papermaking/Key Laboratory of Pulp & Paper Science and Technology of Education Ministry of China, Qilu University of Technology, Jinan 250353, China; (S.Z.); (Q.J.); (J.Y.)
| | | | - Guihua Yang
- State Key Laboratory of Bio-Based Material and Green Papermaking/Key Laboratory of Pulp & Paper Science and Technology of Education Ministry of China, Qilu University of Technology, Jinan 250353, China; (S.Z.); (Q.J.); (J.Y.)
| |
Collapse
|
13
|
Moreno A, Liu J, Gueret R, Hadi SE, Bergström L, Slabon A, Sipponen MH. Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid‐ and Base‐Catalyzed Functionalization in Dispersion State. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adrian Moreno
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Jinrong Liu
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Robin Gueret
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Seyed Ehsan Hadi
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Adam Slabon
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Mika H. Sipponen
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| |
Collapse
|
14
|
Moreno A, Liu J, Gueret R, Hadi SE, Bergström L, Slabon A, Sipponen MH. Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid- and Base-Catalyzed Functionalization in Dispersion State. Angew Chem Int Ed Engl 2021; 60:20897-20905. [PMID: 34196470 PMCID: PMC8518943 DOI: 10.1002/anie.202106743] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Lignin nanoparticles (LNPs) are promising renewable nanomaterials with applications ranging from biomedicine to water purification. However, the instability of LNPs under acidic and basic conditions severely limits their functionalization for improved performance. Here, we show that controlling the degree of esterification can significantly improve the stability of lignin oleate nanoparticles (OLNPs) in acidic and basic aqueous dispersions. The high stability of OLNPs is attributed to the alkyl chains accumulated in the shell of the particle, which delays protonation/deprotonation of carboxylic acid and phenolic hydroxyl groups. Owing to the enhanced stability, acid‐ and base‐catalyzed functionalization of OLNPs at pH 2.0 and pH 12.0 via oxirane ring‐opening reactions were successfully performed. We also demonstrated these new functionalized particles as efficient pH‐switchable dye adsorbents and anticorrosive particulate coatings.
Collapse
Affiliation(s)
- Adrian Moreno
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Jinrong Liu
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Robin Gueret
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Seyed Ehsan Hadi
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| |
Collapse
|