1
|
Sunday NU, Honeychurch KC, Newton L, Chidugu-Ogborigbo RU. An anodic stripping voltammetric approach for total mercury determination in sea sponges from the Niger Delta region of Nigeria. MARINE POLLUTION BULLETIN 2024; 208:117008. [PMID: 39299188 DOI: 10.1016/j.marpolbul.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Mercury pollution from ongoing crude oil refining and waste disposal activities threatens aquatic ecosystems and human health in the Niger Delta. Mercury monitoring exercise in this region is challenging due to the high cost of traditional instruments and the complexity of marine samples. This research presents a novel analytical method using differential pulse anodic stripping voltammetry (DPASV) with a glassy carbon electrode (GCE) to determine mercury levels in sea sponges from the Niger Delta. Using a 2.36 M HCl + 2.4 M NaCl supporting electrolyte, -0.6 V deposition potential, and 300 s deposition time, average mercury levels were found to be 0.98 mg kg-1, 0.63 mg kg-1 and 0.42 mg kg-1 for Ibiotirem, Kaa and Samanga, respectively. The result showed that the Niger Delta is polluted, and remediation efforts are necessary. Furthermore, the DPASV method could be used for routine mercury monitoring as it is cost-effective, user-friendly, and highly sensitive.
Collapse
Affiliation(s)
- N U Sunday
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - K C Honeychurch
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - L Newton
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - R U Chidugu-Ogborigbo
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
2
|
Kim YG, Kwon SY, Washburn SJ, Hong Y, Han SH, Lee M, Park JH. Environmental forensics approach to source investigation in a mercury contaminated river: Insights from mercury stable isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132559. [PMID: 37729710 DOI: 10.1016/j.jhazmat.2023.132559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Environmental forensics approach was applied to assess the efficacy of mercury (Hg) stable isotopes for source screening and decision-making in the Hyeongsan River, South Korea. Four Hg contamination scenarios were identified- atmospheric Hg emissions from a steel manufacturing industry, upstream riverine Hg transport, and industrial Hg releases and historical landfill collapse from Gumu Creek. The absence of significant Hg isotope difference between the Hyeongsan River sediments (δ202Hg; -0.46 ± 0.17‰, Δ199Hg; -0.04 ± 0.06‰) and the Gumu Creek sediment (δ202Hg; -0.39 ± 0.26‰, Δ199Hg; -0.04 ± 0.03‰) confirm that Hg source is originated from Gumu Creek. The heterogeneous Hg distribution throughout Gumu Creek and statistically similar Hg isotope ratios between Gumu Creek and solid waste cores from the landfill suggests that the landfill collapse is the dominant source to the Hyeongsan-Gumu system. Present Hg releases is also possible given the elevated and matching Δ199Hg between some riverine sediments and wastewater sampled from the landfill. The ternary mixing model estimates that the landfill collapse and wastewater releases contribute 61 ± 25 % and 22 ± 11 %, and the regional background, reflecting terrestrial runoff using deep sediment cores, explain 17 ± 24 % of Hg to the riverine sediment. We suggest that Hg isotopes can be used for routine source screening in areas where Hg sources are unknown.
Collapse
Affiliation(s)
- Young Gwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, South Korea.
| | - Spencer J Washburn
- Geosyntec Consultants, Inc., 100 Washington Ave. S, Suite 1590, Minneapolis, MN 55401, USA
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-Ro, Sejong City 30019, South Korea
| | - Seung Hee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju 61005, South Korea
| | - Mikyung Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research, 42 Hwangyeong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Ji Hyoung Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, 42 Hwangyeong-Ro, Seo-Gu, Incheon 22689, South Korea
| |
Collapse
|
3
|
Kuznetsova OV. Current trends and challenges in the analysis of marine environmental contaminants by isotope ratio mass spectrometry. Anal Bioanal Chem 2024; 416:71-85. [PMID: 37979060 DOI: 10.1007/s00216-023-05029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
An increasing number of organic and inorganic pollutants are being detected in the marine environment, posing a severe threat to the ecosystem and human health, even in trace concentrations. Isotope ratio mass spectrometry (IRMS) is one of the critical methods for determining the origin and fate of environmental pollutants and characterising their transformation processes. It has been used for a relatively long time for ecological monitoring of some well-studied industrial hydrocarbons at contaminated sites. However, the method still faces many analytical challenges. This review provides a comprehensive overview of recent technical advances concerning IRMS analysis of various contaminants and discusses typical pitfalls encountered in marine environment analysis. Particular attention is given to the study of sampling techniques and sample preparation for examination, often the keys to successful research given the complexity of marine matrices and the diverse and numerous nature of contaminants. Prospects for developing IRMS to monitor pollution sources and pollutant transformation in the marine environment are outlined.
Collapse
Affiliation(s)
- Olga V Kuznetsova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation.
| |
Collapse
|
4
|
Kim YG, Kwon SY, Washburn SJ, Brooks SC, Yoon JW, Besnard L. Reconsidering mercury sources and exposure pathways to bivalves: Insights from mercury stable isotopes. WATER RESEARCH 2024; 248:120843. [PMID: 37976947 DOI: 10.1016/j.watres.2023.120843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Identifying mercury (Hg) sources and exposure pathways to bivalves, particularly in relation to sediment, is important for expanding the utility of bivalves as a monitoring organism for sediment quality. Here we use Hg isotope ratios to decipher Hg sources accumulated into bivalves by conducting field studies and in situ experiments. In the first part of this study, we characterized Hg isotope ratios in individual geochemical fractions of riverine sediment, contaminated by liquid Hg in South Korea (Hyeongsan River; HS). Asian clams (Corbicula fluminea) were then deployed at the contaminated sites to evaluate the isotopic turnover. Over the two-month period, the isotope ratios of the clams shifted toward the labile/exchangeable Hg pools (F1, F2 fractions) of the sediment. Conversely, in the control site where sediment Hg is low, we observed similar Hg isotope ratios between Asian clams and the samples of precipitation and dissolved phase of water column. In East Fork Poplar Creek, (Oak Ridge) U.S., Asian clams also displayed similar Hg isotope ratios with the dissolved phase of water column, which have undergone substantial in-stream processing or input from Hg-contaminated groundwater from the hyporheic zones and riparian tributary during high hydrologic flow seasons. Our study demonstrates that the dissolved Hg phases within the water column, whether originating via sediment diffusion or derived externally, act as the primary source and exposure pathways to bivalves. The results of our study also shed new light to the prior Hg isotope measurement in bivalves collected from estuarine, lake, and coastal systems, which showed significant isotopic deviation from bulk sediment. The fact that bivalves are sensitive to in situ and external dissolved Hg phases provides additional insight into the existing biomonitoring program, which uses bivalves as a bioindicator for sediment quality.
Collapse
Affiliation(s)
- Young Gwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, Republic of Korea.
| | - Spencer J Washburn
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
| | - Scott C Brooks
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
| | - Ji Won Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Kumar Chaudhary D, Bajagain R, Seo D, Hong Y, Han S. Depth-dependent microbial communities potentially mediating mercury methylation and various geochemical processes in anthropogenically affected sediments. ENVIRONMENTAL RESEARCH 2023; 237:116888. [PMID: 37586452 DOI: 10.1016/j.envres.2023.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Metal contamination and other geochemical alterations affect microbial composition and functional activities, disturbing natural biogeochemical cycles. Therefore, it is essential to understand the influences of multi-metal and geochemical interactions on microbial communities. This work investigated the distributions of total mercury (THg), methylmercury (MeHg), and trace metals in the anthropogenically affected sediment. The microbial communities and functional genes profiles were further determined to explore their association with Hg-methylation and geochemical features. The levels of THg and MeHg in sediment cores ranged between 10 and 40 mg/kg and 0.01-0.16 mg/kg, respectively, with an increasing trend toward bottom horizons. The major metals present at all depths were Al, Fe, Mn, and Zn. The enrichment and contamination indices confirmed that the trace metals were highly enriched in the anthropogenically affected sediment. Various functional genes were detected in all strata, indicating the presence of active microbial metabolic processes. The microbial community profiles revealed that the phyla Proteobacteria, Bacteroidetes, Bathyarchaeota, and Euryarchaeota, and the genera Thauera, Woeseia, Methanomethylovorans, and Methanosarcina were the dominant microbes. Correlating major taxa with geochemical variables inferred that sediment geochemistry substantially affects microbial community and biogeochemical cycles. Furthermore, archaeal methanogens and the bacterial phyla Chloroflexi and Firmicutes may play crucial roles in enhancing MeHg levels. Overall, these findings shed new light on the microbial communities potentially involved in Hg-methylation process and other biogeochemical cycles.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - DongGyun Seo
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea.
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
6
|
Mao L, Ren W, Liu X, He M, Lin C, Zhong Y, Tang Y, Ouyang W. Tracking the multiple Hg sources in sediments in a typical river-lake basin by isotope compositions and mixing models. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132166. [PMID: 37531762 DOI: 10.1016/j.jhazmat.2023.132166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
In this study, total mercury (THg) contents and Hg isotope compositions in sediments were investigated in the Lianxi River, Zijiang River and South Dongting Lake to identify and quantify multiple Hg sources and evaluate the Hg environmental processes. The THg contents, δ202Hg and Δ199Hg values in sediments were 48.22 ∼ 4284.32 µg/kg, - 1.33 ∼ 0.04‰ and - 0.25 ∼ 0.03‰, respectively. Relatively distinct Hg isotope characteristics of sediments were presented in the Lianxi River, Zijiang River and South Dongting Lake, indicating the dominant Hg sources considerably varied in these regions. Source apportionment based on MixSIAR proved that Hg in sediments mainly originated from industrial activities, and the ternary mixing model concluded non-ferrous metal smelting was the dominant industrial Hg contributor in the Lianxi River. Compared with the Lianxi River, the relative contribution of Hg in sediments from industrial activities significantly decreased, while the relative contributions of Hg from background releases significantly increased in the Zijiang River and South Dongting Lake. Nonetheless, the contribution of industrial Hg in this study area deserves more attention. These results are conducive to further manage Hg pollution.
Collapse
Affiliation(s)
- Lulu Mao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Zhong
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Yang Tang
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
7
|
Zhou Z, Wang H, Li Y. Mercury stable isotopes in the ocean: Analytical methods, cycling, and application as tracers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162485. [PMID: 36858226 DOI: 10.1016/j.scitotenv.2023.162485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) has seven stable isotopes that can be utilized to trace the sources of Hg and evaluate the importance of transport and transformation processes in the cycling of Hg in the environment. The ocean is an integral part of the Earth and plays an important role in the global mercury cycle. However, there is a lack of a systematic review of Hg stable isotopes in marine environments. This review is divided into four sections: a) advances in Hg stable isotope analysis, b) the isotope ratios of Hg in various marine environmental matrices (seawater, sediment, and organisms), c) processes governing stable Hg isotope ratios in the ocean, and d) application of Hg stable isotopes to understand biotic uptake and migration. Mercury isotopes have provided much useful information on marine Hg cycling that cannot be given by Hg concentrations alone. This includes (i) sources of Hg in coastal or estuarine environments, (ii) transformation pathways and mechanisms of different forms of Hg in marine environments, (iii) trophic levels and feeding guilds of marine fish, and (iv) migration/habitat changes of marine fish. With the improvement of methods for seawater Hg isotope analysis (especially species-specific methods) and the measurement of Hg isotope fractionation during natural biogeochemical processes in the ocean, Hg stable isotopes will advance our understanding of the marine Hg cycle in the future, e.g., mercury exchange at the sea-atmosphere interface and seawater-sediment interface, contributions of different water masses to Hg in the ocean, fractionation mechanisms of Hg and MeHg transformation in seawater.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huiling Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
Joe DJ, Choi MS, Um IK, Choi SH, Park SJ. Mercury contamination of sediments in an open coastal area of the Hupo Basin, East Sea, Korea. MARINE POLLUTION BULLETIN 2022; 182:113980. [PMID: 35932726 DOI: 10.1016/j.marpolbul.2022.113980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) contamination in open coastal areas has attracted public concern regarding safe fish consumption and management of the coastal environment, especially in areas of accidental Hg spills on inland coasts. This study investigated the temporal and spatial distribution of Hg in sediments of Youngil Bay and the Hupo Basin, East Sea, Korea; it also discussed the sources and transport of anthropogenic Hg. Hg hot spots were found in the northern Hupo Basin (elevated by 2-3×) and the river mouth area in Youngil Bay (elevated by approximately 70×). The river mouth contamination resulted from the destruction of a dam impounding landfill waste, while the basin contamination was attributed to atmospheric deposition and Hg enrichment associated with increased organic carbon concentrations driven by high biological production in the coastal upwelling area. Spilled Hg was transported to open coastal areas up to 36.6°N.
Collapse
Affiliation(s)
- Dong Jin Joe
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Man Sik Choi
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - In Kwon Um
- Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Seong Hu Choi
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - So Jung Park
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Yu Y, Li Z, Liu Y, Wang F, Liu Y, Zhao J, Li Y, Gao Y, Zhu N. Roles of plant-associated microorganisms in regulating the fate of Hg in croplands: A perspective on potential pathways in maintaining sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155204. [PMID: 35421489 DOI: 10.1016/j.scitotenv.2022.155204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In heavy metal-contaminated croplands, plant-associated microorganisms play important roles in the adaptation of crops to heavy metals. Plant-associated microbes can interact with Hg and stimulate plant resistance to Hg toxicity, which is crucial for impeding Hg accumulation along the food chain. The roles of rhizosphere microorganisms for the improvement of plant growth and Hg resistance have drawn great research attention. However, the interactions among plant-endophyte-Hg have been neglected although they might be important for in vivo Hg detoxification. In this study, we systematically summarized 1) the roles of plant-associated microorganisms in Hg detoxification and plant growth, 2) Hg methylation and demethylation driven by plant-associated microbes, 3) the relationships between plant-associated microbes and Hg biogeochemical cycling. The possible mechanisms underlying crop-endophyte-Hg interactions were discussed, although limited studies on this aspect are available to date. The challenges and perspectives of plant-endophytes in dampening Hg phytotoxicity and controlling Hg accumulation in croplands were proposed on the basis of the present knowledge. Taken together, this work provides evidence for further understanding the interactions between soil-plant-endophyte-Hg systems and as well as new interpretations and perspectives into regulating the fate of Hg in croplands.
Collapse
Affiliation(s)
- Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yonghua Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030000, Shanxi, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
10
|
Chen X, Zheng L, Sun R, Liu S, Li C, Chen Y, Xu Y. Mercury in sediment reflecting the intensive coal mining activities: Evidence from stable mercury isotopes and Bayesian mixing model analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113392. [PMID: 35272196 DOI: 10.1016/j.ecoenv.2022.113392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Severe environmental issues are caused by long-term coal mining activities; however, the process of mercury (Hg) response in mining subsidence area sediments (MSAS) is still unclear, and direct evidence showing the relationship between Hg accumulation mechanism in sediments and mining activities is lacking. In this study, the characteristics of total mercury (THg) content in MSAS were investigated. Moreover, Hg isotopes were obtained to determine the main sources and environmental process of mercury in MSAS, and a MixSIAR mixing model was first used to estimate the potential Hg sources. The THg content ranged from 27.5 to 113.9 ng/g, with a mean of 65.8 ± 29.4 ng/g, exceeding the local soil background value (19.7 ng/g). The Hg in MSAS was affected by clay and organic matter. The Δ199Hg and Δ201Hg in the sediments varied from - 0.05-0.05‰ (mean: -0.01 ± 0.03‰) and - 0.07-0.01‰ (mean: -0.02 ± 0.03‰), respectively, with the fitting results suggesting that a photochemical reaction occurred in some of the Hg in the sediments prior to deposition. The results of the MixSIAR mixing model revealed that the Hg in MSAS was mainly derived from gangue, soil erosion, coal, fly ash, and feed, and their corresponding percentage contribution was 51.5 ± 9.6%, 23.8 ± 13.1%, 13.9 ± 7.9%, 8.1 ± 5.4%, and 3.1 ± 1.4%, respectively. Hg isotopes can be used to trace the transport and transformation of environmental pollutants, and this may provide an important reference for the assessment and prevention of Hg pollution in typical areas such as coal mining and coal-fired.
Collapse
Affiliation(s)
- Xing Chen
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China.
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sikui Liu
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China
| | - Yongchun Chen
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan 232001, Anhui, China
| | - Yanfei Xu
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan 232001, Anhui, China
| |
Collapse
|
11
|
Irei S. Stable Isotope Ratios of Mercury in Commercially Available Thermometers and Fluorescent Tubes. ACS OMEGA 2022; 7:9291-9302. [PMID: 35350359 PMCID: PMC8945125 DOI: 10.1021/acsomega.1c06060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/25/2022] [Indexed: 05/28/2023]
Abstract
Five stable isotope ratios of mercury (199Hg/198Hg, 200Hg/198Hg, 201Hg/198Hg, 202Hg/198Hg, and 204Hg/198Hg) in commercially available thermometers and fluorescent tubes were analyzed to characterize their potential anthropogenic emission source to landfills, manufacturing factories, and our daily lives. The results for the liquid metal mercury yielded from the thermometers showed similar mass-independent fractionation values to those in the literature. The analysis of fluorescent tubes resulted in that more than 96% of mercury in the fluorescent tubes was found in the adsorbed state, and up to 3.5% of mercury was in the gas-phase. Unique mass-independent isotope fractionation values were found in the gaseous and adsorbed mercury in the fluorescent tubes. This fractionation is distinct from other emission sources and systematic; therefore, it can potentially be used to fingerprint mercury in fluorescent tubes in environmental samples.
Collapse
|