1
|
Hu Z, He Q, Zhao H, Wang L, Cheng Y, Ji X, Guo Y, Hu W, Li M. Organic carbon compounds removal and phosphate immobilization for internal pollution control: Sediment microbial fuel cells, a prospect technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125110. [PMID: 39395732 DOI: 10.1016/j.envpol.2024.125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
As a current technology that can effectively remove organic carbon compounds and immobilize phosphorus in sediment, sediment microbial fuel cells (SMFCs) can combine sediment remediation with power generation. This review discusses the removal efficiency of SMFCs on organic carbon compounds, including sediment organic matter, antibiotics, oil-contaminated sediments, methane, persistent organic pollutants, and other organic pollutants in sediment, with more comprehensive and targeted summaries, and it also emphasizes the mitigation of phosphorus pollution in water from the perspective of controlling endogenous phosphorus. In this review, the microbial community is used as a starting point to explore more about its roles on phosphorus and organic carbon compounds under SMFCs. Electrode modification, addition of exogenous substances and combinations with other technologies to improve the performance of SMFCs are also reviewed. It is further demonstrated that SMFCs have the prospect of long-term sustainability, but more attention needs to be paid to the study of the mechanism of SMFCs and the continuous improvement of devices for further application in practice.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lingjun Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuxin Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Ahmad A, Al Senaidi AS, Mubarak MS. Microbial approach towards anode biofilm engineering enhances extracellular electron transfer for bioenergy production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122696. [PMID: 39353242 DOI: 10.1016/j.jenvman.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Applying microbial electrolysis cells (MEC) is a biological approach to enhance the growth of high amounts of electroactive biofilm for extracellular electron transfer. The electroactive biofilm degrades the organics by oxidizing them at the anode and producing electrical energy. Addition of waste-activated sludge (WAS) with fat grease oil (FOG) produces an optimal reactor environment for microbial growth to enhance the exchange of electrons between cells via microbial electrolysis. The present work aimed to investigate the microbial approach to increase the extracellular electron transfer (EET) in microbial electrolysis cells. Results revealed that metabolites in electroactive microbes (EAM) grow viable cells that initiate high EET at anode sites. At optimum WAS with FOG addition, volatile fatty acid and current generation yield production was 2.94 ± 0.19 g/L and 17.91 ± 7.23 mA, accompanied by COD removal efficiency of 89.5 ± 14.4%, respectively. This study introduces a novel approach to anode biofilm engineering that significantly enhances extracellular electron transfer, offering a fresh perspective on bioenergy production. Our approach, which demonstrates that anodic biofilm enhances intercellular electron transfer, increases NADH-NAD ratio, and increases metabolite yield-fluxes, has the potential to revolutionize bio-electricity production. Results indicated that the electrolysis highlights MEC performance in power generation of 788 mV with 200 mL of anode volume of active viable cells by utilizing WAS with 11% FOG. The achievements of this study provide critical parameters for the anode biofilm engineering, demonstrating how growth cell volume, intercellular electron transfer, and increases in NADH-NAD ratio are evidence of an increase in the EET, compelling evidence for the resilience treatment and efficient current production. These findings are significant in advancing our understanding of bioenergy production.
Collapse
Affiliation(s)
- Anwar Ahmad
- Civil and Environmental Engineering Department, College of Engineering and Architecture University of Nizwa, PO 33, Postal code 616, Nizwa, Oman.
| | - Alia Said Al Senaidi
- Civil and Environmental Engineering Department, College of Engineering and Architecture University of Nizwa, PO 33, Postal code 616, Nizwa, Oman
| | | |
Collapse
|
3
|
Liu Z, Xu Z, Zhu X, Yin L, Yin Z, Li X, Zheng W. Calculation of carbon emissions in wastewater treatment and its neutralization measures: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169356. [PMID: 38110091 DOI: 10.1016/j.scitotenv.2023.169356] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
As the pursuit of "carbon neutrality" gains momentum, the emphasis on low-carbon solutions, emphasizing energy conservation and resource reuse, has introduced fresh challenges to conventional wastewater treatment approaches. Precisely evaluating carbon emissions in urban water supply and drainage systems, wastewater treatment plants, and establishing carbon-neutral operating models has become a pivotal concern in the future of wastewater treatment. Regrettably, limited research has been devoted to carbon accounting and the development of carbon-neutral strategies for wastewater treatment. In this review, to facilitate comprehensive carbon accounting, we initially recognizes direct and indirect carbon emission sources in the wastewater treatment process. We then provide an overview of several major carbon accounting methods and propose a carbon accounting framework. Furthermore, we advocate for a systemic perspective, highlighting that achieving carbon neutrality in wastewater treatment extends beyond the boundaries of wastewater treatment plants. We assess current technical measures both within and outside the plants that contribute to achieving carbon-neutral operations. Encouraging the application of intelligent algorithms for the multifaceted monitoring and control of wastewater treatment processes is paramount. Supporting resource and energy recycling is also essential, as is recognizing the benefits of synergistic wastewater treatment technologies. We advocate a systematic, multi-level planning approach that takes into account a wide range of factors. Our goal is to offer valuable insights and support for the practical implementation of water environment management within the framework of carbon neutrality, and to advance sustainable socio-economic development and contribute to a more environmentally responsible future.
Collapse
Affiliation(s)
- Zhixin Liu
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China.
| | - Ziyi Xu
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Xiaolei Zhu
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Lirong Yin
- Department of Geography and Anthropology, Louisiana State University, Baton Rouge 70803, LA, USA.
| | - Zhengtong Yin
- College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China.
| | - Xiaolu Li
- School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | - Wenfeng Zheng
- School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
4
|
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R, Saeed T, Martínez F, Yadav AK. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162757. [PMID: 36931518 DOI: 10.1016/j.scitotenv.2023.162757] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Collapse
Affiliation(s)
- Supriya Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Yamini Mittal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore- 453552, India
| | - Rupobrata Panja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain.
| |
Collapse
|
5
|
Parvin Y, Monem KM, Biria D. Application of a membrane-less air cathode microbial fuel cell to treat municipal waste composting leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116538. [PMID: 36274304 DOI: 10.1016/j.jenvman.2022.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The adverse effects of high strength wastewaters on the microbial activities have created a challenge to biological treatments. Microbial fuel cell has been considered as a promising process because the electrical potential generation can stimulate microorganisms and overcome the inhibitory effect. However, several issues (e.g., scalability, high costs and maintenance) have prevented the process from the industrial applications. Elimination of the proton exchange membrane has been suggested as a remedy to the mentioned problems. In this work, a membrane-less microbial fuel cell was modified by putting the cathode within a thin sand layer (instead of the proton exchange membrane) to treat a high strength wastewater sample. The influences of the feed organic load and time of treatment in the modified system were studied in batch and continuous operations. It was revealed that the batch operation efficiency was higher for the lower feed loadings as a 5-day batch treatment removed 66 ± 4% of the 15,000 ± 500 mg/L initial chemical oxygen demand while the continuous process efficiency with 9-day hydraulic residence time was slightly more than 50%. However, the efficiency of the continuous operation for treatment of higher initial loading values was better than the batch mode with the removal efficiency of 41 ± 2% versus 12 ± 2% for a more concentrated leachate feed (45,000 ± 1000 mg/L). Finally, it was disclosed that the modified membrane-less MFC employed in this work can be effective in treatment of high strength wastewaters in larger scales with lower costs.
Collapse
Affiliation(s)
- Y Parvin
- Department of Biotechnology, Faculty of Biological Sciences and Technologies, University of Isfahan, Iran
| | - K Moshtaghi Monem
- Department of Biotechnology, Faculty of Biological Sciences and Technologies, University of Isfahan, Iran
| | - D Biria
- Department of Biotechnology, Faculty of Biological Sciences and Technologies, University of Isfahan, Iran.
| |
Collapse
|
6
|
Li C, Mei T, Song TS, Xie J. Removal of petroleum hydrocarbon-contaminated soil using a solid-phase microbial fuel cell with a 3D corn stem carbon electrode modified with carbon nanotubes. Bioprocess Biosyst Eng 2022; 45:1137-1147. [PMID: 35624323 DOI: 10.1007/s00449-022-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
Solid-phase microbial fuel cell (SMFC) can accelerate the removal of organic pollutants through the electrons transfer between microorganisms and anodes in the process of generating electricity. Thus, the characteristics of the anode material will affect the performance of SMFCs. In this study, corn stem (CS) is first calcined into a 3D macroporous electrode, and then modified with carbon nanotubes (CNTs) through electrochemical deposition method. Scanning electron microscope analysis showed the CS/CNT anode could increase the contact area on the surface. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry analysis indicated the electrochemical double-layer capacitance of the CS/CNT anode increased while its internal resistance decreased significantly. These characteristics are crucial for increasing bacterial adhesion capability and electron transfer rate. The maximum output voltage of the SMFC with CS/CNT anode was 158.42 mV, and the removal rate of petroleum hydrocarbon (PH) reached 42.17%, 2.72 times that of unmodified CS. In conclusion, CNT-modified CS is conducive to improve electron transfer rate and microbial attachment, enhancing the removal efficiency of PH in soil.
Collapse
Affiliation(s)
- Chenrong Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ting Mei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Tian-Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, People's Republic of China.
| |
Collapse
|
7
|
Chauhan S, Sharma V, Varjani S, Sindhu R, Chaturvedi Bhargava P. Mitigation of tannery effluent with simultaneous generation of bioenergy using dual chambered microbial fuel cell. BIORESOURCE TECHNOLOGY 2022; 351:127084. [PMID: 35358671 DOI: 10.1016/j.biortech.2022.127084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, a dual chambered microbial fuel cell (MFC) was fabricated for the treatment of tannery wastewater with concurrent production of bio-energy. The tannery effluent acts as an anolyte and a synthetic electrolytic solution as the catholyte. Five electrochemically active bacteria from the biofilm were isolated that showed homology with Klebsiella quasipneumoniae, Klebsiella pneumoniae, Cloacibacterium normanese, Bacillus firmus and Pseudomonas reactans, using 16S rDNA analysis. The physiochemical studies of treated wastewater showcased the 88%, 74% and 94% reduction in COD, BOD and TDS level, respectively. The maximum voltage output and power density obtained using electroactive consortium in MFC was 940 mV and 7371 mW/cm3, respectively. The techno-economic feasibility of the bio-electrochemical system was studied for future bioprospecting. The present study reports a significant power generation with simultaneous effluent treatment up to a maximum of ∼85%, in a sustainable and eco-friendly manner.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | | | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
8
|
Jegatheesan V, Shu L, Rene ER, Lin TF. Challenges in Environmental Science/Engineering and fate and innovative treatment/remediation of emerging pollutants. CHEMOSPHERE 2022; 292:133497. [PMID: 34995630 DOI: 10.1016/j.chemosphere.2021.133497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid waste Management: There are two articles in this section. Shi et al. (2021) investigated the unbalanced status and multidimensional influences of municipal solid waste management in Africa. It was identified that economic growth, urbanization and geographical location are the most critical factors influencing the unbalanced statue of MSW management in Africa.
Collapse
Affiliation(s)
- Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Li Shu
- School of Engineering, Edith Cowan University, 70 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; LJS Environment, Parkville, VIC, 3052, Australia
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611, AX Delft, the Netherlands
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|