1
|
Türk M, Dursun M, Olgun EEÖ, Güzel B, Genç N, Canlı O. Comprehensive research of some semi-volatile organic compounds (SVOCs) at very low levels in Lake and marine waters in Antarctica on-site by SBSE thermal desorption GC-MS/MS: Distribution, source apportionment, ecological and human health implication. MARINE POLLUTION BULLETIN 2025; 216:117967. [PMID: 40233579 DOI: 10.1016/j.marpolbul.2025.117967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Antarctica is not immune to pollution, and Semi-volatile organic compounds (SVOCs) in Antarctica's water systems can reach the continent through long-range atmospheric transport, ocean currents, and human activities. The aim of this study was investigated the distribution of SVOCs, including PAHs, PCBs, and OCPs, in Antarctic lake and marine waters, assesses their potential sources, and evaluates the ecological and human health risks. The collected water samples were pretreated on-site in Antarctica using the stir bar sorptive extraction (SBSE) method. Water samples (500 mL) were extracted overnight (16 h), the SVOCs retained in the stir bars were analyzed by Thermal Desorption gas chromatography-tandem mass spectrometry (GC-MS/MS) in a competent laboratory in Türkiye. The method successfully extracted compounds with log Kow values above 2. A total of 33 water samples were analyzed, revealing ΣPAH concentrations between 0.484 and 2.570 ng/L (mean: 1.168 ng/L), ΣPCB between 0.099 and 0.343 ng/L (mean: 0.219 ng/L), and ΣOCP between 0.162 and 1.338 ng/L. Naphthalene, benz(a)anthracene, phenanthrene, and fluorene were the predominant PAHs, while PCB 101, PCB 52, PCB 28, biphenyl, cypermethrin, and beta-HCH were dominant among PCBs and OCPs. Elevated concentrations were observed at M4, L4, L5, and L9. Diagnostic ratios suggest petrogenic sources, particularly fossil fuel combustion and ship transportation emissions. Risk assessment showed that RQ values for SVOCs were below 1 in all samples, indicating negligible environmental risk. Furthermore, BaPeq values confirmed no immediate carcinogenic threat. Health risk analysis suggested that exposure to these pollutants does not pose significant non-carcinogenic or carcinogenic risks to children or adults based on regulatory criteria.
Collapse
Affiliation(s)
- Merve Türk
- Climate Studies and Water Management Research Group, Climate and Life Vice Presidency, TUBITAK Marmara Research Center, 41470 Gebze, Kocaeli, Türkiye; Kocaeli University, Environmental Engineering, Umuttepe Campus, 41275 İzmit, Kocaeli, Türkiye.
| | - Mehtap Dursun
- Climate Studies and Water Management Research Group, Climate and Life Vice Presidency, TUBITAK Marmara Research Center, 41470 Gebze, Kocaeli, Türkiye.
| | - Elmas Eva Öktem Olgun
- Climate Studies and Water Management Research Group, Climate and Life Vice Presidency, TUBITAK Marmara Research Center, 41470 Gebze, Kocaeli, Türkiye.
| | - Barış Güzel
- Climate Studies and Water Management Research Group, Climate and Life Vice Presidency, TUBITAK Marmara Research Center, 41470 Gebze, Kocaeli, Türkiye.
| | - Nevim Genç
- Kocaeli University, Environmental Engineering, Umuttepe Campus, 41275 İzmit, Kocaeli, Türkiye.
| | - Oltan Canlı
- Climate Studies and Water Management Research Group, Climate and Life Vice Presidency, TUBITAK Marmara Research Center, 41470 Gebze, Kocaeli, Türkiye.
| |
Collapse
|
2
|
Pala N, Vorkamp K, Bossi R, Bignert A, Traversa G, Fugazza D, Ancora S, Ademollo N, Baroni D, Corsolini S. Temporal trends of persistent organic pollutants (POPs) and perfluoroalkyl substances (PFAS) in Adèlie penguin (Pygoscelis adeliae) eggs from the Ross Sea (Antarctica), including their relationship with climate parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126130. [PMID: 40157488 DOI: 10.1016/j.envpol.2025.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Temporal trends of contaminants represent an important tool to evaluate the effectiveness of chemical restriction measures. In this work, 50 eggs of Adèlie penguin (Pygoscelis adeliae) collected along the Ross Sea coasts from 1997 to 2021 were analysed for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), perfluoroalkyl substances (PFAS). Some PCB congeners showed a significantly decreasing trend, whereas HCB and p,p'-DDE indicated decreasing but not significant trends, potentially related to the unintentional production of HCB and ongoing use of DDT, even if a contribution from climate-driven remobilisation mechanisms may also play a role. PBDE-47 also indicated a decreasing but not significant trend, which might be explained by the more recent global restriction. PFAS trends agreed with what has been previously observed in the Arctic, i.e. significantly decreasing perfluorooctane sulfonate (PFOS) according to its global ban and increasing long-chain perfluorinated carboxylic acids (PFCAs). Correlations with selected climate parameters showed an association between PBDE-47 and sampling year precipitations. To our knowledge, this work represents the longest time trend study of pollutants in penguins from the Ross Sea and the first one reporting PFAS. It highlights the importance of global regulations for the contaminant developments in polar ecosystems.
Collapse
Affiliation(s)
- Nicolas Pala
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
| | - Giacomo Traversa
- Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 20126, Milan, Italy
| | - Davide Fugazza
- Department of Environmental Science and Policy (ESP), University of Milan, 20133, Milan, Italy
| | - Stefania Ancora
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 40129, Bologna, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy; Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 40129, Bologna, Italy
| |
Collapse
|
3
|
Said TO, Ragab S, El Sikaily A, Arshad M, Hassaan MA, Yilmaz M, El Nemr A. Eco-toxicological study, characterization, distribution and sourcing of persistent organochlorine pesticides in Shalatin (Halayeb Triangle) sediment samples. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:205. [PMID: 40360782 DOI: 10.1007/s10653-025-02509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
This preliminary study looked at the concentrations, sources, and hazards of the persistent organochlorine pesticides in 71 sediment samples from the Shalatin area (Egyptian Red Sea coast). Conventional methods were used to study the persistent organochlorinated pesticide residue. The residues of 16 organochlorine pesticides were determined using the gas chromatograph-mass spectrometer-mass spectrometer (GC-MS/MS); selected reaction monitoring (SRM) technique. The total pesticide residue (ng g-1, dry weight) extended from < DL-0.628; < DL-7.128; and < DL-8.256 ng g-1 for hexachloro-cyclohexane (HCHs), dichloro-diphenyl-trichloro ethane (DDTs), and cyclodienes (CDs), respectively. DDD and DDE, metabolites of DDT, are abundant in the sediment samples, suggesting that the identified DDTs were ancient and not recently added to the Shalatin area due to the lack of potential sources of these metabolites such as rivers or agricultural activities near this area. The organochlorine pesticides in sediment samples are lower than those reported for other global regions. The source identification of organochlorine pesticides and the Eco-toxicological study were also investigated. The analysis of possible health and environmental issues showed that there were not many hazards to either people or animals in the area under study. The widespread use of organochlorine pesticides for non-agricultural and agricultural purposes is this study's leading cause of persistent pesticides.
Collapse
Affiliation(s)
- Tarek O Said
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Amany El Sikaily
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, 62529, Abha, Saudi Arabia
| | - Mohamed A Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Murat Yilmaz
- Department of Chemistry and Chemical Processing Technologies, Bahçe Vocational School, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
4
|
Kostenko O, Flores del Pino L, Jorge-Montalvo P, Visitación-Figueroa L. Management of waste containing polybrominated diphenyl ethers: A review. Heliyon 2024; 10:e40229. [PMID: 39584110 PMCID: PMC11585757 DOI: 10.1016/j.heliyon.2024.e40229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are substances used as flame retardants that can be released into the environment through volatilization, leaching, and abrasion throughout the useful life of the articles that contain them, especially at the end of their life cycle because PBDEs do not chemically bind to the initial materials (electrical and electronic equipment, textiles, materials used in transport vehicles, toys, among others). Research has shown that the toxic effects and risks of PBDEs to ecosystems and human health are greater than their benefits owing to their neurotoxicity, toxicity to the endocrine and reproductive systems, and possible carcinogenicity. This review shows the current situation of management of waste containing PBDEs (plastics, sludge, soil, and ash) and the characterization, valorization, treatment, and final disposal of these wastes, to minimize their impacts on ecosystems and human health are analyzed. Wastes with concentrations greater than 1000 mg/kg of PBDE should be considered as hazardous waste. This research identifies the methods available to reduce the risk in their management; at the same time, it provides innovative ideas for the integrated management of PBDE-containing wastes, prioritizing their valorization and disposal.
Collapse
Affiliation(s)
- Olga Kostenko
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
- Department of Environmental Engineering, Scientific University of the South, Lima, Peru
| | - Lisveth Flores del Pino
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Paola Jorge-Montalvo
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lizardo Visitación-Figueroa
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| |
Collapse
|
5
|
Ulanova E, Martí Ibáñez R, Domínguez-García P, Díaz-Ferrero J, Gomez-Canela C, Ortiz Almirall X. Impact of legacy and unintentionally produced polychlorinated biphenyls (PCBs) in effluents from two wastewater treatment plants in rivers near Barcelona, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175095. [PMID: 39074743 DOI: 10.1016/j.scitotenv.2024.175095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a family of 209 congeners listed as Persistent Organic Pollutants in the Stockholm Convention. Although there has been a lot of focus on those congeners present in the Aroclor or Clophen technical mixtures commercialized in the past (legacy PCBs), other industrial processes such as paint and pigment production can generate other congeners as byproducts (Unintentionally Produced PCBs or UP-PCBs). The present study focuses on the analysis of 72 PCB congeners (including 42 UP-PCBs) in the two major rivers surrounding the city of Barcelona -Llobregat and Besós rivers-, and their levels in two wastewater treatment plants during the production of effluents and reclaimed water. It was observed that WWTP can efficiently remove PCBs from untreated water during sludge production where concentrations are six orders of magnitude higher than in water (in the ng g-1 and pg L-1 ranges, respectively). Although PCB levels in the effluent and reclaimed water replenishing the rivers are not negligible, these do not significantly increase the concentrations already found in the studied rivers, and in most cases PCB concentrations in river water are reduced after merging with the reclaimed water due to dilution effect. The presence of UP-PCB-11 (not present in the Aroclor technical mixtures) in the analyzed water and sludge samples is significant (ranging from 22 to 25 % of the total PCB amount in the Besós river), being often one of the most abundant PCB congeners.
Collapse
Affiliation(s)
- Elena Ulanova
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ramon Martí Ibáñez
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Pol Domínguez-García
- Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Jordi Díaz-Ferrero
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Cristian Gomez-Canela
- Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Xavier Ortiz Almirall
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
6
|
Piva E, Nicorelli E, Pacchini S, Schumann S, Drago L, Vanzan G, Tolomeo AM, Irato P, Bakiu R, Gerdol M, Santovito G. Unravelling stress granules in the deep cold: Characterisation of TIA-1 gene sequence in Antarctic fish species. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109903. [PMID: 39299404 DOI: 10.1016/j.fsi.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Stress granules (SGs) are cytoplasmic foci lacking membranes, comprising non-translating messenger ribonucleoproteins, translational initiation factors, and additional proteins. Their formation is crucial for rapidly modulating gene expression in response to adverse environmental conditions, such as pollution and infections. Limited research has focused on investigating the molecular components of SGs in fish, with minimal exploration in Antarctic fish. This study characterises for the first time the transcript sequences of one key protein component of SGs, TIA-1 (T-cell intracellular antigen 1), in two Antarctic endemic fish species, i.e. Trematomus bernacchii and Chionodraco hamatus. The mRNA-binding protein TIA-1 acts as a post-transcriptional regulator of gene expression and its aggregation leads to the formation of SGs in response to cellular damage. The in vitro and bioinformatic analyses of the TIA-1 gene sequences of these two species highlighted interesting peculiarities, which include the transcription of alternatively spliced isoforms unique to the notothenioid lineage, potentially unlocking further insights into their unique adaptations to extreme environmental conditions. This is the first study to analyze tia-1 expression levels in different tissues of Antarctic fish species. Our key findings indicate that the TIA-1 gene is expressed at particularly high levels in the liver and spleen of C. hamatus, as well as in the heart and skeletal muscle of T. bernacchii. This suggests that those tissues play a significant role in the stress response mechanisms of the studied species. This study provides novel insights into the molecular adaptations of Antarctic fish, highlighting the potential importance of TIA-1 in their response to environmental stressors. The unique features of TIA-1 identified in these species may offer broader implications for understanding how Antarctic fish regulate gene transcriptions in their extreme environments.
Collapse
Affiliation(s)
- E Piva
- Department of Biology, University of Padova, Italy
| | - E Nicorelli
- Department of Biology, University of Padova, Italy
| | - S Pacchini
- Department of Biology, University of Padova, Italy
| | - S Schumann
- Department of Biology, University of Padova, Italy
| | - L Drago
- Department of Biology, University of Padova, Italy
| | - G Vanzan
- Department of Biology, University of Padova, Italy
| | - A M Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Italy
| | - P Irato
- Department of Biology, University of Padova, Italy
| | - R Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Albania
| | - M Gerdol
- Department of Life Sciences, University of Trieste, Italy
| | - G Santovito
- Department of Biology, University of Padova, Italy.
| |
Collapse
|
7
|
Hassaan MA, Ragab S, Elkatory MR, El Nemr A. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) distribution, origins, and risk evaluation in the Egyptian Mediterranean coast sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11093. [PMID: 39129319 DOI: 10.1002/wer.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
A study was conducted on 31 surface sediments located in different sectors of the Egyptian Mediterranean coast. The sediments were analyzed for their pollution levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The sediments were collected from various depths in harbors, coastal lakes, bays, and lagoons, covering the southeastern Mediterranean of the Nile Delta region. The study aimed at determining the distribution, origin, and potential ecological impact of OCP and PCB pollutants. The researchers used the SRM method of GC-MS/MS to measure the concentration of 18 PCBs and 16 OCPs residues. The study found that the total concentration of OCPs in the samples ranged from 3.091 to 20.512 ng/g, with a mean of 8.749 ± 3.677 ng/g. The total concentration of PCB residues ranged from 2.926 to 20.77 ng/g, with a mean of 5.68 ± 3.282 ng/g. The concentration of DDTs exceeded the effect range low (ERL) (1.00) and threshold effect level (TEL) (1.19) in several stations, but it was still below the effect range median (ERM) (7.00) and the probable effect level (PEL) (4.77). This indicates a low ecological risk. The principal component analysis (PCA) was also conducted to determine the sources of all pollutants in the sediment. The PCA showed significant correlations between the concentrations of Gama-HCH and Beta-HCH (0.741), suggesting similar sources. PRACTITIONER POINTS: OCPs and PCBs residues were analyzed in the sediment of the southeastern Mediterranean. The concentration, existence, and causes of OCPs and PCBs were investigated. OCPs and PCBs ecological risk and ecotoxicological calculation were investigated in detail. Cluster analysis, PCA, and correlation coefficient were also investigated.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
8
|
Pala N, Vorkamp K, Bossi R, Ancora S, Ademollo N, Baroni D, Sarà G, Corsolini S. Chemical threats for the sentinel Pygoscelis adeliae from the Ross Sea (Antarctica): Occurrence and levels of persistent organic pollutants (POPs), perfluoroalkyl substances (PFAS) and mercury within the largest marine protected area worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174562. [PMID: 38981544 DOI: 10.1016/j.scitotenv.2024.174562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The Ross Sea Marine Protected Area (RS-MPA) hosts endemic species that have to cope with multiple threats, including chemical contamination. Adèlie penguin is considered a good sentinel species for monitoring pollutants. Here, 23 unhatched eggs, collected from three colonies along the Ross Sea coasts, were analysed to provide updated results on legacy pollutants and establish a baseline for newer ones. Average sum of polychlorinated biphenyls (∑PCBs) at the three colonies ranged 20.9-24.3 ng/g lipid weight (lw) and included PCBs IUPAC nos. 28, 118, 153, 138, 180. PCBs were dominated by hexachlorinated congeners as previously reported. Hexachlorobenzene (HCB) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) ranged between 134 and 166 and 181-228 ng/g lw, respectively. Overall, ∑PCBs was exceeded by pesticides, contrary to previous studies from the Ross Sea. Sum of polybrominated diphenyl ethers (∑PBDEs) ranged between 0.90 and 1.18 ng/g lw and consisted of BDE-47 (that prevailed as expected, representing 60-80 % of the ∑PBDEs) and BDE-85. Sum of perfluoroalkyl substances (∑PFAS) ranged from 1.04 to 1.53 ng/g wet weight and comprised five long-chain perfluorinated carboxylic acids (PFCAs), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA); perfluorooctane sulfonamide (PFOSA) was also detected. The PFAS profile was dominated by PFCAs as already observed in Arctic seabirds. Mercury ranged from 0.07 to 0.15 mg/kg dry weight similarly to previous studies. Legacy pollutants confirmed their ongoing presence in Antarctic biota and their levels seemed mostly in line with the past, but with minor variations in some cases, likely due to continued input or release from past reservoirs. PFAS were reported for the first time in penguins from the Ross Sea, highlighting their ubiquity. Although further studies would be useful to increase the sample size and accordingly improve our knowledge on spatial and temporal trends, this study provides interesting data for future monitoring programs within the RS-MPA that will be crucial to test its effectiveness against human impacts.
Collapse
Affiliation(s)
- Nicolas Pala
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Stefania Ancora
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences, Italian National Research Council (ISP-CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy
| | - Gianluca Sarà
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; Institute of Polar Sciences, Italian National Research Council (ISP-CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| |
Collapse
|
9
|
Martínez A. Toxicity of persistent organic pollutants: a theoretical study. J Mol Model 2024; 30:97. [PMID: 38451367 PMCID: PMC11310291 DOI: 10.1007/s00894-024-05890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
CONTEXT Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are two families of persistent organic pollutants that are dangerous as they remain in the atmosphere for long periods and are toxic for humans and animals. They are found all over the world, including the penguins of Antarctica. One of the mechanisms that explains the toxicity of these compounds is related to oxidative stress. The main idea of this theoretical research is to use conceptual density functional theory as a theory of chemical reactivity to analyze the oxidative stress that PCBs and PBDEs can produce. The electron transfer properties as well as the interaction with DNA nitrogenous bases of nine PCBs and ten PBDEs found in Antarctic penguins are investigated. From this study, it can be concluded that compounds with more chlorine or bromine atoms are more oxidizing and produce more oxidative stress. These molecules also interact directly with the nitrogenous bases of DNA, forming hydrogen bonds, and this may be an explanation for the toxicity. Since quinone-type metabolites of PCBs and PBDEs can cause neurotoxicity, examples of quinones are also investigated. Condensed Fukui functions are included to analyze local reactivity. These results are important as the reactivity of these compounds helps to explain the toxicity of PCBs and PBDEs. METHODS All DFT computations were performed using Gaussian16 at M06-2x/6-311 + g(2d,p) level of theory without symmetry constraints. Electro-donating (ω-) and electro-accepting (ω +) powers were used as global response functions and condensed Fukui functions as local parameters of reactivity.
Collapse
Affiliation(s)
- Ana Martínez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S.N. Ciudad Universitaria, 04510, CDMX, CP, Mexico.
| |
Collapse
|
10
|
Muñoz-Arnanz J, Cortés-Avizanda A, Donázar-Aramendía I, Arrondo E, Ceballos O, Colomer-Vidal P, Jiménez B, Donázar JA. Levels of persistent organic pollutants (POPs) and the role of anthropic subsidies in the diet of avian scavengers tracked by stable isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123188. [PMID: 38123115 DOI: 10.1016/j.envpol.2023.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Persistent Organic Pollutants (POPs) have been identified as a significant factor driving declines in wildlife populations. These contaminants exhibit a dual tendency to biomagnify up the food chains and persist within tissues, rendering long-lived vertebrates, such as raptors, highly vulnerable to their adverse effects. We assessed the concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in fledglings of two vulture species, the Egyptian vulture (Neophron percnopterus) and the griffon vulture (Gyps fulvus), coexisting in northern Spain. Vultures, currently facing a severe threat with a population decline exceeding 90%, represent one of the most critically endangered avian groups in the Old World. Despite this critical situation, there remains a scarcity of research examining the intricate relationship between contaminant levels and individual foraging behaviors. In parallel, we analyzed stable isotope levels (δ15N and δ13C) in fledgling's feathers and prey hair to determine the association between individual dietary and contaminant burdens. Our findings revealed higher levels of PCBs in Egyptian vultures, while pesticide concentrations remained very similar between focal species. Furthermore, higher individual values of δ13C, indicating a diet based on intensive farming carcasses and landfills, were associated with higher levels of PCBs. While the levels of POPs found do not raise immediate alarm, the presence of individuals with unusually high values reveals the existence of accessible contamination sources in the environment for avian scavengers. The increasing reliance of these birds on intensive livestock farming and landfills, due to the decline of extensive livestock farming, necessitates long-term monitoring of potential contaminant effects on their populations.
Collapse
Affiliation(s)
- J Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| | - A Cortés-Avizanda
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Av. Reina Mercedes 6, 41012, Seville, Spain; Department of Conservation Biology, Estación Biológica de Doñana, CSIC, C/. Americo Vespucio 26, 41092, Seville, Spain
| | - I Donázar-Aramendía
- Laboratorio de Biología Marina, Seville Aquarium R + D + I Biological Research Area, Department of Zoology, Faculty of Biology, University of Sevilla, 41012, Seville, Spain
| | - E Arrondo
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, C/. Americo Vespucio 26, 41092, Seville, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Elche, Spain; Department of Zoology, University of Granada, Spain
| | - O Ceballos
- UGARRA, Avda. Carlos III 1, 31002, Pamplona, Navarre, Spain
| | - P Colomer-Vidal
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - B Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J A Donázar
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, C/. Americo Vespucio 26, 41092, Seville, Spain
| |
Collapse
|
11
|
Hassaan MA, Elkatory MR, Ragab S, El Nemr A. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in water-sediment system of southern Mediterranean: Concentration, source and ecological risk assessment. MARINE POLLUTION BULLETIN 2023; 196:115692. [PMID: 37871457 DOI: 10.1016/j.marpolbul.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in the Nile Delta area of Egypt's southern Mediterranean for their environmental impacts, probable sources, and ecological risk assessment. Using the Gas Chromatography Triple Quadrupole technique, the residues of 16 OCPs and 18 PCBs were determined. The total OCPs content in the seawater and sediment samples ranged from 0.108 to 10.97 μg/L and 0.301 to 5.268 ng/g, respectively, while the PCBs residues had values between 0.808 and 1069.75 μg/L in seawater and between not detected and 575.50 ng/g in sediment samples. The findings of the risk evaluation showed that, except for endosulfan-I, OCPs caused little harm in seawater. However, PCB180, PCB153, PCB156, PCB126 and PCB138 posed a comparatively significant risk. The concentration of DDTs was higher than the effect range low and threshold effect level but remained below the effect range median and probable effect level, posing a minimal ecological concern.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Marwa R Elkatory
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
12
|
Said TO, Ragab S, El Sikaily A, Hassaan MA, Arshad M, El Nemr A. Chlorinated pesticides and PCB residues in the Egyptian Western Desert oases sediments. MARINE POLLUTION BULLETIN 2023; 193:115236. [PMID: 37418808 DOI: 10.1016/j.marpolbul.2023.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
This preliminary investigation aimed to detect concentrations of chlorinated pesticides and PCBs in 40 sediment samples from three desert oases located in Kharga, Dakhla and Farafra in western Egypt. The residues of 18 PCBs and 16 chlorinated pesticides were measured by GC-MS/MS (SRM) method. The results showed that PCBs and pesticides were present in all studied samples. The concentrations of individual PCBs ranged from undetected to 3.99 ng/g dw in all these sediment samples. The total residue of pesticides (ng/g, dry weight) in sediment samples also varied from 5.18 to 25.92, 5.41 to 29.49, and 5.93 to 24.19 ng/g dw for the Kharga, Dakhla and Farafra Oases, respectively. The concentrations of PCBs and chlorinated pesticides detected in these oasis sediments were lower than that reported for other worldwide locations. According to the recorded concentrations in this baseline study of PCBs and total DDTs, the results revealed the minimal risks to organisms and people in the studied area according to the Effects Range-Low (ERL) and Effects Range-Median (ERM) guideline values.
Collapse
Affiliation(s)
- Tarek O Said
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Amany El Sikaily
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
13
|
Postigo C, Moreno-Merino L, López-García E, López-Martínez J, López de Alda M. Human footprint on the water quality from the northern Antarctic Peninsula region. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131394. [PMID: 37086669 DOI: 10.1016/j.jhazmat.2023.131394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This study assessed the human footprint on the chemical pollution of Antarctic waters by characterizing inorganic chemicals and selected organic anthropogenic contaminants of emerging concern (CECs) in inland freshwater and coastal seawater and the associated ecotoxicological risk. Nicotine and tolytriazole, present in 74% and 89% of the samples analyzed, respectively, were the most ubiquitous CECs in the investigated area. The most abundant CECs were citalopram, clarithromycin, and nicotine with concentrations reaching 292, 173, and 146 ng/L, respectively. The spatial distribution of CECs was not linked to any water characteristic or inorganic component. The contamination pattern by CECs in inland freshwater varied among locations, whereas it was very similar in coastal seawater. This suggests that concentrations in inland freshwater may be ruled by environmental processes (reemission from ice, atmospheric deposition, limited photo- and biodegradation processes, etc.) in addition to human activities. Following risk assessment, citalopram, clarithromycin, nicotine, venlafaxine, and hydrochlorothiazide should be considered of concern in this area, and hence, included in future monitoring of Antarctic waters and biota. This work provides evidence on the fact that current measures taken to protect the pristine environment of Antarctica from human activities are not effective to avoid CEC spread in its aquatic environment.
Collapse
Affiliation(s)
- Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, Granada 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071, Granada, Spain.
| | - Luis Moreno-Merino
- Spanish Geological Survey CN IGME (CSIC), Ríos Rosas, 23, Madrid 28003, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, Barcelona 08034, Spain
| | - Jerónimo López-Martínez
- Faculty of Sciences, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
14
|
Martín J, Gonkowski S, Kortas A, Sobiech P, Rytel L, Santos JL, Aparicio I, Alonso E. Multiclass method to determine emerging pollutants in bats using a non-invasive approach based on guano matrix. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Liu M, Yuan J, Shi J, Xu J, He Y. Chlorinated organic pollutants in global flooded soil and sediments: Pollution status and potential risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121270. [PMID: 36780978 DOI: 10.1016/j.envpol.2023.121270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated organic pollutants (COPs) were widely detected in anaerobic environments while there is limited understanding of their pollution status and potential environmental risks. Here, we applied meta-analysis to identify the occurrence status, pollution sources, and environmental risk of COPs from 246 peer-published literature, including 25 kinds of COPs from 977 sites. The results showed that the median concentrations of COPs were at the ng g-1 level. By the combination of principal component analysis (PCA) and positive matrix factorization (PMF), we established 7 pollution sources for COPs. Environmental risk assessment found 73.3% of selected sites were at a security level but the rest were not, especially for the wetlands. The environmental risk of COPs was usually underestimated by the existing evaluation methods, such as without the consideration of the non-extractable residues (NER) and the multi-process coupling effect. Especially, the synergetic coupling associations between dechlorination and methanogenesis might increase the risk of methane emission that has barely been previously considered in previous risk assessment approaches. Our results expanded the knowledge for the pollution control and remediation of COPs in anaerobic environments.
Collapse
Affiliation(s)
- Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Yuan
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80524, USA
| | - Jiachun Shi
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
16
|
Leistenschneider C, Le Bohec C, Eisen O, Houstin A, Neff S, Primpke S, Zitterbart DP, Burkhardt-Holm P, Gerdts G. No evidence of microplastic ingestion in emperor penguin chicks (Aptenodytes forsteri) from the Atka Bay colony (Dronning Maud Land, Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158314. [PMID: 36041615 DOI: 10.1016/j.scitotenv.2022.158314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (<5 mm; MP) pollution has been an emerging threat for marine ecosystems around the globe with increasing evidence that even the world's most remote areas, including Antarctica, are no longer unaffected. Few studies however, have examined MP in Antarctic biota, and especially those from Antarctic regions with low human activity, meaning little is known about the extent to which biota are affected. The aim of this study was to investigate, for the first time, the occurrence of MP in the emperor penguin (Aptenodytes forsteri), the only penguin species breeding around Antarctica during the austral winter, and an endemic apex predator in the Southern Ocean. To assess MP ingestion, the gizzards of 41 emperor penguin chicks from Atka Bay colony (Dronning Maud Land, Antarctica), were dissected and analyzed for MP >500 μm using Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. A total of 85 putative particles, mostly in the shape of fibers (65.9 %), were sorted. However, none of the particles were identified as MP applying state-of-the-art methodology. Sorted fibers were further evidenced to originate from contamination during sample processing and analyses. We find that MP concentrations in the local food web of the Weddell Sea and Dronning Maud Land coastal and marginal sea-ice regions; the feeding grounds to chick-rearing emperor penguin adults, are currently at such low levels that no detectable biomagnification is occurring via trophic transfer. Being in contrast to MP studies on other Antarctic and sub-Antarctic penguin species, our comparative discussion including these studies, highlights the importance for standardized procedures for sampling, sample processing and analyses to obtain comparable results. We further discuss other stomach contents and their potential role for MP detection, as well as providing a baseline for the long-term monitoring of MP in apex predator species from this region.
Collapse
Affiliation(s)
- Clara Leistenschneider
- Department of Environmental Sciences, Man-Society-Environment Program, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Kurpromenade, 27498 Helgoland, Germany.
| | - Céline Le Bohec
- Centre National de la Recherche Scientifique, Université de Strasbourg, IPHC UMR, 7178 Strasbourg, France; Centre Scientifique de Monaco, Département de Biologie Polaire, Monaco City, Monaco
| | - Olaf Eisen
- Glaciology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar und Meeresforschung, Bremerhaven, Germany and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Aymeric Houstin
- Centre National de la Recherche Scientifique, Université de Strasbourg, IPHC UMR, 7178 Strasbourg, France; Centre Scientifique de Monaco, Département de Biologie Polaire, Monaco City, Monaco
| | - Simon Neff
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Sebastian Primpke
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Kurpromenade, 27498 Helgoland, Germany
| | - Daniel P Zitterbart
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia Burkhardt-Holm
- Department of Environmental Sciences, Man-Society-Environment Program, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Kurpromenade, 27498 Helgoland, Germany
| |
Collapse
|
17
|
Lewis PJ, Lashko A, Chiaradia A, Allinson G, Shimeta J, Emmerson L. New and legacy persistent organic pollutants (POPs) in breeding seabirds from the East Antarctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119734. [PMID: 35835279 DOI: 10.1016/j.envpol.2022.119734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants (POPs) are pervasive and a significant threat to the environment worldwide. Yet, reports of POP levels in Antarctic seabirds based on blood are scarce, resulting in significant geographical gaps. Blood concentrations offer a snapshot of contamination within live populations, and have been used widely for Arctic and Northern Hemisphere seabird species but less so in Antarctica. This paper presents levels of legacy POPs (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)) and novel brominated flame retardants (NBFRs) in the blood of five Antarctic seabird species breeding within Prydz Bay, East Antarctica. Legacy PCBs and OCPs were detected in all species sampled, with Adélie penguins showing comparatively high ∑PCB levels (61.1 ± 87.6 ng/g wet weight (ww)) compared to the four species of flying seabirds except the snow petrel (22.5 ± 15.5 ng/g ww), highlighting that legacy POPs are still present within Antarctic wildlife despite decades-long bans. Both PBDEs and NBFRs were detected in trace levels for all species and hexabromobenzene (HBB) was quantified in cape petrels (0.3 ± 0.2 ng/g ww) and snow petrels (0.2 ± 0.1 ng/g ww), comparable to concentrations found in Arctic seabirds. These results fill a significant data gap within the Antarctic region for POPs studies, representing a crucial step forward assessing the fate and impact of legacy POPs contamination in the Antarctic environment.
Collapse
Affiliation(s)
- Phoebe J Lewis
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
| | - Anna Lashko
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Andre Chiaradia
- Conservation Department, Phillip Island Nature Parks, Victoria, 3925, Australia
| | - Graeme Allinson
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Louise Emmerson
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| |
Collapse
|
18
|
Paliya S, Mandpe A, Bhisikar D, Kumar MS, Kumar S. Polybrominated diphenyl ethers (PBDEs) in Indian wastewater treatment plant: Occurrence, mass flow and removal. CHEMOSPHERE 2022; 303:135055. [PMID: 35609666 DOI: 10.1016/j.chemosphere.2022.135055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are categorized as a group of brominated flame retardants that cause hazardous health impacts but are still being used consistently worldwide. The studies on their occurrence and fate in wastewater treatment plants are scarce, and considering the Indian scenario, no study has been reported till date in this context. Therefore, in the present study, PBDE congeners of primary concern were investigated first time to assess the existence, dissemination and fate of PBDEs in the municipal wastewater treatment plant (MWTP) located in Nagpur city, Maharashtra, India. BDE 209 and 47 were detected as the predominant PBDE contaminants in all the analysed samples. The concentration of PBDEs was primarily found in the particulate phase of wastewater. According to mass loading analysis, 1297 mg/day concentration of PBDEs is disposed of at landfill sites in the form of sludge, while 77.46 mg/day is released via final effluent. The present investigation is the first of its kind of study conducted to evaluate the PBDE contamination in Indian MWTP, which reveals the presence of high PBDE concentration in Indian municipal sewage. The findings of the current study exhibit the need for appropriate action toward the sound surveillance of PBDEs in the Indian context.
Collapse
Affiliation(s)
- Sonam Paliya
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ashootosh Mandpe
- Department of Civil Engineering, Indian Institute of Technology (IIT) Indore, Simrol, 453 552, Madhya Pradesh, India
| | - Divyesh Bhisikar
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune, 412 115, India
| | - M Suresh Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
19
|
Falandysz J, Loganathan B, Nakano T. Novel approaches and trends in the analytics of halogenated POPs. CHEMOSPHERE 2022; 290:133308. [PMID: 34919916 DOI: 10.1016/j.chemosphere.2021.133308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Bommanna Loganathan
- Murray State University, Department of Chemistry and Watershed Studies Institute, Murray, KY, 42071, USA.
| | - Takeshi Nakano
- Osaka University, Research Center for Environmental Preservation, 2-4 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|