1
|
Huang PH, Chen YW, Chen CH, Fan HJ, Hsieh CW, Tain YL, Tsai WT, Shih MK, Hou CY. Characterization and evaluation of the adsorption of uremic toxins through the pyrolysis of pineapple leaves and peels and by forming a bio-complex with sodium alginate. Int J Biol Macromol 2025; 302:138843. [PMID: 39701239 DOI: 10.1016/j.ijbiomac.2024.138843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
This study was performed to develop an optimal process for manufacturing activated carbon (AC) from pineapples' off-cuts (leaves and peels; PL and PP) by pyrolysis and for forming a bio-complex with sodium alginate (CA). In addition, the physicochemical properties were also explored under different preparation conditions, and the effects of adsorbed uremic toxins in three simulated gastrointestinal conditions (in vitro) were evaluated. This study showed that pyrolysis at 800 °C and activation by CO2 (30 min) resulted in satisfactory porous profiles with high specific surface areas of 388.79 and 536.84 m2/g for PLAC and PPAC, respectively. Regarding appearance and microstructures, there are still discernible disparities compared to the AST in regular service, while it exhibits a similar peak shape to that of the AC under the Raman spectrometer. Remarkably, the adsorption capacity of PLAC and PPAC for uremic toxins was best for indole adsorption while providing a consistent effect with AST. Indole-3-acetic acid (3-IAA) and p-cresol (p-C) adsorption capacities were the second highest. Nevertheless, AST also exhibited varying degrees of reduced adsorption capacity under different gastrointestinal simulation conditions. Therefore, this study conditions the development of cost-effective adsorbent products targeting uremic toxins, which could generate novel synergistic systems based on pineapple by-products within the circular economy framework.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai'an City, Jiangsu Province 223003, China
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chih-Hao Chen
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| | - Hua-Jin Fan
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City 40227, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| | - Wen-Tien Tsai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
2
|
Meena HM, Kukreti S, Jassal PS, Kalra AK. Novel green magnetite-chitosan adsorbent using Ricinus communis plants to adsorption of lead (II) from wastewater solution: anodic linear sweep voltammetry, isotherms, and kinetics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6198-6220. [PMID: 39982669 DOI: 10.1007/s11356-025-36107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
This study centered on removing toxic Pb (II) ions from wastewater using Fe3O4 with natural biopolymer chitosan and green plant extracts from Ricinus communis (Castor plant) to synthesize a novel magnetic chitosan nano-composites (GCS-Fe3O4) adsorbent. The nano-material was synthesized using the co-precipitation method and characterized using FTIR, XRD, FESEM, TEM, SEM, AFM, TGA-DTA, DLS, UV-Vis, and VSM. The green-synthesized nanocomposites (GCS-Fe3O4) have been used to remove Pb (II) from a wastewater solution. A study was conducted on the experimental parameters, such as the pH range, contact time, adsorbent dosage, and temperature effects, the highest capacity of adsorption Pb (II) ions observed at a pH 6.8, a temperature of 30℃, a contact time of 60 min., with an adsorbent dose of 0.30 g/L. The maximum removal of Pb (II) ions was 99.2%, obtained at a concentration of 0.30 g/L. The Freundlich isotherm stipulated the most precise simulation of the adsorption equilibrium. The maximum adsorption capacity was determined to be 48.64 mg/g at 30℃ using the Freundlich isotherm. The pseudo-second-order kinetic model most accurately represented the adsorption kinetics of Pb (II). In contrast, thermodynamic data shows an endothermic adsorption process with temperature, the adsorption efficiency also increases to 5.35, 7.17, and 8.90 kJ/mol respectively. The Pb (II) ions were determined by 797 VA anodic linear sweep voltammetry Computrace (Metrohm). Hence, the synthesized green magnetite chitosan composite (GCS-Fe3O4) is suitable for removing Pb (II) ions from wastewater solutions.
Collapse
Affiliation(s)
- Hari Mohan Meena
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India.
| | - Shrikant Kukreti
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Pyar Singh Jassal
- Department of Chemistry, SGTB Khalsa College, University of Delhi, Delhi, 110007, India
| | - Amarpreet Kaur Kalra
- Department of Chemistry, SGTB Khalsa College, University of Delhi, Delhi, 110007, India
| |
Collapse
|
3
|
Samanth A, Vinayagam R, Varadavenkatesan T, Selvaraj R. Fixed bed column adsorption systems to remove 2,4-Dichlorophenoxyacetic acid herbicide from aqueous solutions using magnetic activated carbon. ENVIRONMENTAL RESEARCH 2024; 261:119696. [PMID: 39068970 DOI: 10.1016/j.envres.2024.119696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
The widespread use of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a weedkiller has resulted in its persistence in the environment, leading to surface and groundwater pollution. In this study, the fixed bed column experiments were performed to remove 2,4-D from aqueous solutions using magnetic activated carbon derived from Peltophorum pterocarpum tree pods. The evaluation was done on effects of operating parameters such as bed depth (2-4 cm), influent flow rate (4.6-11.4 mL/min), and 2,4-D concentration (25-100 mg/L) on the breakthrough curves. The data fit well with the Yoon-Nelson and Thomas models, exhibiting high R2 values. Results indicated that lower flow rates, lower 2,4-D concentrations, and greater bed depths enhanced adsorption capacity, achieving up to 196.31 mg/g. Reusability studies demonstrated the material's potential for repeated use, while toxicity studies with Vigna radiata seeds confirmed the effectiveness of Fe3O4-CPAC in removing 2,4-D. This investigation highlights the promising application of Fe3O4-CPAC in fixed bed adsorption systems for efficient 2,4-D removal.
Collapse
Affiliation(s)
- Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Jankowska A, Panek R, Franus W, Goscianska J. Tailoring Natural and Fly Ash-Based Zeolites Surfaces for Efficient 2,4-D Herbicide Adsorption: The Role of Hexadecyltrimethylammonium Bromide Modification. Molecules 2024; 29:5244. [PMID: 39598632 PMCID: PMC11596083 DOI: 10.3390/molecules29225244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Global development has led to the generation of substantial levels of hazardous contaminants, including pesticides, which pose significant environmental risks. Effective elimination of these pollutants is essential, and innovative materials and techniques offer promising solutions. This study examines the modification of natural zeolite (clinoptilolite) and fly ash-based NaA and NaX zeolites with hexadecyltrimethylammonium bromide (CTAB) to create inexpensive adsorbents for removing 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide from water. Detailed characterization of these materials was performed, along with an evaluation of the effects of pH, contact time, temperature, and initial 2,4-D concentration on their sorption capacities. The modified samples exhibited significant changes in elemental composition (e.g., reduced SiO2 and Al2O3 content, presence of Br) and textural properties. The adsorption of the pesticide was found to be an exothermic, spontaneous process of pseudo-second-order kinetics and was consistent with the Langmuir model. The highest sorption capacities were observed for samples modified with 0.05 mol L-1 CTAB, particularly for CliCTAB-0.05.
Collapse
Affiliation(s)
- Agata Jankowska
- Department of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland;
| | - Rafał Panek
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (R.P.); (W.F.)
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (R.P.); (W.F.)
| | - Joanna Goscianska
- Department of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland;
| |
Collapse
|
5
|
Abdulaziz F, Alanazi A. Tailoring of magnetite nanocomposite of carboxymethyl chitosan impregnated with iron (III) oxide for enhanced degradation of reactive blue 19 dye and inactivation of harmful microbes in wastewater. Int J Biol Macromol 2024; 282:137004. [PMID: 39491694 DOI: 10.1016/j.ijbiomac.2024.137004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
The study investigates the fabrication of an innovative nanocomposite composed of carboxymethyl chitosan (CMCs) combined with different amounts of iron (III) oxide (Fe₂O₃) to boost dye degradation and antibacterial effectiveness. A top-down ball milling technique formed the nanocomposites and was extensively investigated for their structural, morphological, and functional features. The mean particle size of the 0.3Fe₂O₃/CMCs and 0.6Fe₂O₃/CMCs nanocomposites was 83.74 nm and 124.5 nm, respectively, with small polydispersity index (PdI) values suggesting satisfactory homogeneity. The adsorption effectiveness of Reactive Blue 19 (RB 19) dye was evaluated under different circumstances, with the 0.6Fe₂O₃/CMCs nanocomposite exhibiting the maximum adsorption capacity of 140 mg/g at an ideal pH of 5. Kinetic analyses indicated that the adsorption process adhered to a pseudo-second-order kinetic model. The nanocomposites had significant bactericidal performance, with the 0.6Fe₂O₃/CMCs nanocomposite exhibiting the most extensive inhibition zones, particularly against E. coli (28.4 mm) and Pseudomonas aeruginosa (23.2 mm). Furthermore, the reusability of the 0.6Fe₂O₃/CMCs nanocomposite was validated by five adsorption-desorption cycles, retaining over 90 % efficiency. The results underscore the efficacy of Fe₂O₃/CMCs nanocomposites as viable materials for wastewater treatment and antibacterial purposes, offering a promising approach for environmental remediation.
Collapse
Affiliation(s)
- Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia.
| | - Abdulaziz Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
6
|
Doğan Y, Öziç C, Ertaş E, Baran A, Rosic G, Selakovic D, Eftekhari A. Activated carbon-coated iron oxide magnetic nanocomposite (IONPs@CtAC) loaded with morin hydrate for drug-delivery applications. Front Chem 2024; 12:1477724. [PMID: 39498376 PMCID: PMC11532056 DOI: 10.3389/fchem.2024.1477724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Cancer is a major disease that affects millions of people around the world every year. It affects individuals of all ages, races, and backgrounds. Since drugs used to treat cancer cannot distinguish between cancerous and healthy cells, they cause systemic toxicity along with serious side effects. Recently, controlled drug-release systems have been developed to reduce the side effects caused by anticancer drugs used for treatment. Morin is an anticancer drug with a flavonol structure. It has been extensively researched for its antioxidant, anti-inflammatory, antitumoral, and antibacterial properties, especially found in Chinese herbs and fruits, and its multiple positive effects on different diseases. In this study, a nanocomposite with magnetic properties was synthesized by coating biocompatible activated carbon obtained using the fruits of the Celtis tournefortii plant on the surface of iron oxide magnetic nanoparticles. Characterization of the synthesized activated carbon-coated iron oxide magnetic nanocomposite was confirmed by Fourier transform infrared, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, dynamic light scattering, zeta potential, and vibrating sample magnetometry. The cytotoxic effects of the drug-loaded magnetic nanocomposite were examined in HT-29 (colorectal), T98-G (glioblastoma) cancer cell lines, and human umbilical vein endothelial cell (HUVEC) healthy cell line. The morin loading and release behavior of the activated carbon-coated iron oxide magnetic nanocomposite were studied, and the results showed that up to 60% of the adsorbed morin was released within 4 h. In summary, activated carbon-coated iron oxide magnetic nanocomposite carriers have shown promising results for the delivery of the morin drug.
Collapse
Affiliation(s)
- Yusuf Doğan
- Kızıltepe Vocational School, Mardin Artuklu University, Mardin, Türkiye
| | - Cem Öziç
- Department of Basic Medical Sciences, Department of Medical Biology, Faculty of Medicine, Kafkas University, Kars, Türkiye
| | - Erdal Ertaş
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Türkiye
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Türkiye
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Türkiye
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
7
|
Samanth A, Selvaraj R, Murugesan G, Varadavenkatesan T, Vinayagam R. Efficient adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) using biomass derived magnetic activated carbon nanocomposite in synthetic and simulated agricultural runoff water. CHEMOSPHERE 2024; 361:142513. [PMID: 38830462 DOI: 10.1016/j.chemosphere.2024.142513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
This study focused on evaluating the efficacy of a magnetic activated carbon material (CPAC@Fe3O4) derived from pods of copper pod tree in adsorbing the toxic herbicide, 2,4- (2,4-D) from aqueous solutions. The synthesized CPAC@Fe3O4 adsorbent, underwent various characterization techniques. FESEM images indicated a rough surface, incorporating iron oxide nanoparticles, while EDS analysis confirmed the presence of elements like Fe, O, and C. Notably, the CPAC@Fe3O4 exhibited high surface area (749.10 m2/g) and pore volume (0.5351 cm³/g), confirming its mesoporous nature. XRD investigations identified distinct signals associated with graphitic carbon and magnetite nanoparticles, while VSM analysis verified its magnetic properties with a high magnetic saturation value (2.72 emu/g). The adsorption process was exothermic, with a decrease in adsorption capacity at higher temperatures. Freundlich isotherm provided the best fit for the adsorption, and the pseudo-second-order equation effectively described the kinetics. Remarkably, the maximum adsorption capacity ranged from 246.43 to 261.03 mg/g, surpassing previously reported values. The ΔH° value (-8.67 kJ/mol) suggested a physisorption mechanism, and the negative ΔG° values established the spontaneous nature. Furthermore, the synthesized adsorbent demonstrated exceptional reusability, allowing for up to five cycles of adsorption-desorption operations. When applied to simulated agricultural runoff, CPAC@Fe3O4 showcased a significant adsorption capacity of 160.71 mg/g for 50 mg/L 2,4-D, using a 0.2 g/L dosage at pH 2. This study showcased the transformation of copper pod biomass into a valuable magnetic nanoadsorbent capable of efficiently eliminating the noxious 2,4-D pollutant from aqueous environments.
Collapse
Affiliation(s)
- Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Duong TTH, Ding S, Sebek M, Lund H, Bartling S, Peppel T, Le TS, Steinfeldt N. Effect of Bi 2MoO 6 Morphology on Adsorption and Visible-Light-Driven Degradation of 2,4-Dichlorophenoxyacetic Acid. Molecules 2024; 29:3255. [PMID: 39064834 PMCID: PMC11278676 DOI: 10.3390/molecules29143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The development of highly efficient and stable visible-light-driven photocatalysts for the removal of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water is still a challenge. In this work, Bi2MoO6 (BMO) materials with different morphology were successfully prepared via a simple hydrothermal method by altering the solvent. The morphology of the BMO material is mainly influenced by the solvent used in the synthesis (H2O, ethanol, and ethylene glycol or their mixtures) and to a lesser extent by subsequent thermal annealing. BMO with aggregated spheres and nanoplate-like structures hydrothermally synthesized in ethylene glycol (EG) and subsequently calcined at 400 °C (BMO-400 (EG)) showed the highest adsorption capacity and photocatalytic activity compared to other synthesized morphologies. Complete degradation of 2,4-D on BMO upon irradiation with a blue light-emitting diode (LED, λmax = 467 nm) was reached within 150 min, resulting in 2,4-dichlorophenol (2,4-DCP) as the main degradation product. Holes (h+) and superoxide radicals (⋅O2-) are assumed to be the reactive species observed for the rapid conversion of 2,4-D to 2,4-DCP. The addition of H2O2 to the reaction mixture not only accelerates the degradation of 2,4-DCP but also significantly reduces the total organic carbon (TOC) content, indicating that hydroxyl radicals are crucial for the rapid mineralization of 2,4-D. Under optimal conditions, the TOC value was reduced by 84.5% within 180 min using BMO-400 (EG) and H2O2. The improved degradation performance of BMO-400 (EG) can be attributed to its particular morphology leading to lower charge transfer resistance, higher electron-hole separation, and larger specific surface area.
Collapse
Affiliation(s)
- Thi Thanh Hoa Duong
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Shuoping Ding
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Michael Sebek
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Henrik Lund
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Stephan Bartling
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Tim Peppel
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Thanh Son Le
- Faculty of Chemistry, VNU University of Science, Hanoi 100000, Vietnam;
| | - Norbert Steinfeldt
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| |
Collapse
|
9
|
Bhushan B, Kotnala S, Nayak A. Biogenic magnetic nanocomposite of hydroxyapatite and dextran: synthesis, characterization, and enhanced removal of 2,4-D from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39331-39349. [PMID: 38816631 DOI: 10.1007/s11356-024-33819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
In this study, a biogenic magnetic nanocomposite, HAP@DEX@MNP, using hydroxyapatite from eggshell waste and dextran was developed to efficiently remove 2,4-D from aqueous solutions. The magnetic nano biocomposite underwent rigorous characterization using a comprehensive suite of analytical techniques, including FTIR, XRD, FESEM, EDX, TEM, and VSM. FTIR analysis was used to validate the existence of pivotal functional groups, such as phosphate, carbonyl, hydroxyl, and iron oxide. XRD analysis verified both the crystalline nature of hydroxyapatite and the successful integration of dextran and hematite within the composite structure. FESEM and EDX examinations provided valuable insights into the surface morphology and elemental composition. TEM observations elucidated the existence of nano-sized particles underscoring the unique structural characteristics of the nanocomposite. Batch adsorption experiments were conducted under optimized conditions, highlighting the critical role of pH 2 for efficient 2,4-D removal. The mechanisms driving the binding of 2,4-D to HAP@DEX@MNP were found to encompass diverse interactions, encompassing electrostatic forces, hydrogen bonding, π-π interactions, and van der Waals forces. Adsorption isotherm studies revealed both monolayer and multilayer adsorption, with the Langmuir and Freundlich models fitting well, indicating a maximal adsorption capacity of 217.39 µg/g at 25 °C. Kinetic investigations supported the pseudo-second-order model for efficient adsorption dynamics, and thermodynamic analysis emphasized the versatility of HAP@DEX@MNP across different temperatures. Importantly, the study highlighted the remarkable regenerative capacity of the nanocomposite using a 0.1 M NaOH solution, positioning it as an environmentally friendly option for water treatment. In conclusion, HAP@DEX@MNP holds significant potential for diverse applications in addressing global water treatment and environmental challenges.
Collapse
Affiliation(s)
- Brij Bhushan
- Department of Chemistry, Graphic Era University, 248002, Dehradun, India.
| | - Shreya Kotnala
- Department of Chemistry, Graphic Era University, 248002, Dehradun, India
- Department of Chemistry, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, India
| | - Arunima Nayak
- Department of Chemistry, Graphic Era University, 248002, Dehradun, India
| |
Collapse
|
10
|
Agha HM, Abdulhameed AS, Wu R, Jawad AH, ALOthman ZA, Algburi S. Chitosan-grafted salicylaldehyde/algae composite for methyl violet dye removal: adsorption modeling and optimization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1348-1358. [PMID: 38456236 DOI: 10.1080/15226514.2024.2318777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In this study, a hydrothermal approach was employed to graft chitosan (Chit)/algae (ALG) with salicylaldehyde (SA), resulting in the synthesis of a biocomposite named salicylaldehyde-based chitosan Schiff base/algae (Chit-SA/ALG). The main objective of this biocomposite was to effectively remove methyl violet (MV), an organic dye, from aqueous solutions. The adsorption performance of Chit-SA/ALG toward MV was investigated in detail, considering the effects of three factors: (A) Chit-SA/ALG dose (ranging from 0.02 to 0.1 g/100 mL), (B) pH (ranging from 4 to 10), and (C) time (ranging from 10 to 120 min). The Box-Behnken design (BBD) was utilized for experimental design and analysis. The experimental results exhibited a good fit with both the pseudo-second-order kinetic model and the Freundlich isotherm, suggesting their suitability for describing the MV adsorption process on Chit-SA/ALG. The maximum adsorption capacity of Chit-SA/ALG, as calculated by the Langmuir model, was found to be 115.6 mg/g. The remarkable adsorption of MV onto Chit-SA/ALG can be primarily attributed to the electrostatic forces between Chit-SA/ALG and MV as well as the involvement of various interactions such as n-π, π-π, and H-bond interactions. This research demonstrates that Chit-SA/ALG exhibits promising potential as a highly efficient adsorbent for the removal of organic dyes from water systems.
Collapse
Affiliation(s)
- Hasan M Agha
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Ruihong Wu
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Department of Chemistry, Heng Shui University, Heng Shui, China
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
11
|
Aigbe UO, Lebepe TC, Oluwafemi OS, Osibote OA. Prediction and optimizing of methylene blue sequestration to activated charcoal/magnetic nanocomposites using artificial neutral network and response surface methodology. CHEMOSPHERE 2024; 355:141751. [PMID: 38522674 DOI: 10.1016/j.chemosphere.2024.141751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Green synthesized magnetic nanoparticles (MNPs) linked with activated charcoal (AC) (AC/Fe3O4 NCs) were exploited for methylene blue (MB) confiscation in this study. The AC/Fe3O4 NCs produced were characterized using TEM, FTIR, UV/Vis and XRD spectrometry. The Response-Surface-Methodology (RSM) was utilized to improve the experimental data for the MB sorption to AC/Fe3O4 NCs, with 20 experimental runs implemented through a central composite design (CCD) to assess the effect of sorption factors-initial MB concentration, pH and sorbent dosage effects on the response (removal-effectiveness). The quadratic model was discovered to ideally describe the sorption process, with an R2 value of 0.9857. The theoretical prediction of the experimental data using the Artificial-Neural-Network (ANN) model showed that the Levenberg-Marquardt (LM) had a better performance criterion. Comparison between the modelled experimental and predicted data showed also that the LM algorithm had a high R2 of 0.9922, which showed NN model applicability for defining the sorption of MB to AC/Fe3O4 NCs with practical precision. The results of the non-linear fitting (NLF) of both isotherm and kinetic models, showed that the sorption of MB to AC/Fe3O4 NCs was perfectly described using the pseudo-second-order (PSOM) and Freundlich (FRHM) models. The estimated optimum sorption capacity was 455 mg g-1. Thermodynamically, the sorption of MB to AC/Fe3O4 NCs was shown to be non-spontaneous and endothermic.
Collapse
Affiliation(s)
- Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Thabang Calvin Lebepe
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
12
|
Mansab S, Rafique U. Adsorption simulation of 2,4-D pesticide on novel zinc-based 2-amino-4-(1H-1,2,4-triazole-4-yl)benzoic acid coordination complexes using machine learning approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36814-36833. [PMID: 38760604 DOI: 10.1007/s11356-024-33668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The capacity of zinc-based 2-amino-4-(1H-1,2,4-triazole-4-yl)benzoic acid coordination complex (Zn(NH2-TBA)2) and modified Zn(NH-TBA)2COMe complex for removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions was investigated through adsorption modeling and artificial intelligence tools. Analyzing the adsorption characteristics of pesticides helps in studying the groundwater pollution by pesticides in agriculture area.In this study, Zn(NH2-TBA)2 was synthesized using Schiff base and its surface was modified using acetic anhydride group and their physical characteristics were identified using proton NMR, FTIR, and XRD. NMR results showed maximum modification yield obtained was 65% after 5 days. The porous structure and surface area monitored using nitrogen isotherm and BET surface area analysis presented relatively less surface area and porosity after modification. Adsorption modelling indicated that Toth model with a maximum adsorption capacity of 150.8 mg/g and 100.7 mg/g represents the homogenous adsorption systems which satisfy both low- and high-end boundary of adsorbate concentration in all settings according to the optimum point, while the kinetics and rate of 2,4-D adsorption follow the pseudo-first-order kinetic model in all situations. Artificial neural network (ANN), support vector regression, and particle swarm optimized least squares-support vector regression (PSO-LSSVR) were used for the optimization and modelling of adsorbent mass, adsorbate concentration, contact time, and temperature to develop predictive equations for the simulation of the adsorption efficiency of 2,4-D pesticide. The obtained results exhibited the better performance of ANN and PSO-LSSVR for prediction of adsorption results. The mean square error values of ANN (0.001, 0.012) and PSO-LSSVR (0.121, 0.105) were obtained for Zn(NH2-TBA)2 and Zn(NH-TBA)2COMe, respectively, while their respective coefficient of determination (R2) obtained were 0.999 and 0.988 for ANN and 0.980 and 0.825 for PSO-LSSVR. The study specified that machine learning predictive behavior performed better for Zn(NH2-TBA)2 compared to Zn(NH-TBA)2COMe that is also supported by theoretical kinetics and isotherm models. The research concludes that artificial intelligence models are the most efficient tools for studying the predictive behavior of adsorption data.
Collapse
Affiliation(s)
- Saira Mansab
- Department of Environmental Sciences, The Women University Multan, Multan, Pakistan.
| | - Uzaira Rafique
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
13
|
Alaysuy O, Aljohani MM, Alkhamis K, Alatawi NM, Almotairy AR, Abu Al-Ola KA, Khder AS, El-Metwaly NM. Synthesis, characterization and adsorption optimization of bimetallic La-Zn metal organic framework for removal of 2,4-dichlorophenylacetic acid. Heliyon 2024; 10:e28622. [PMID: 38689963 PMCID: PMC11059553 DOI: 10.1016/j.heliyon.2024.e28622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
To eliminate the hazardous pesticide 2,4-dichlorophenylacetic acid (2,4-D) through aqueous solutions, stacked nanorods known as hetero bimetallic organic frameworks (MOFs) of 2-methyl imidazole based on lanthanum and zinc are created. The research's convincing discoveries displayed that La/Zn-MOF is an actual adsorbent for the removal of 2,4-D through aqueous solutions. The La/Zn-MOF was investigated using a variability of techniques, with scanning electron microscope (SEM), powered X-ray diffraction (PXRD), and Brunauer-Emmett-Teller (BET) investigation. La/Zn-MOF has a significant pore capacity of 1.04 cm³/g and a comparatively large surface area of 897.69 m2/g. Our findings, which are quite intriguing, demonstrate that adsorption behavior is pointedly wedged by variations in pH. A pH 6 dose of 0.02 g was shown to be the optimal setting for the greatest capacity for adsorption. Because adsorption is an endothermic process, temperature variations affect its capability. The adsorption method was fit both isothermally and kinetically using the Langmuir isotherm classical. It was created that the entire process made use of a chemisorption mechanism. Solution pH, temperature, adsorbent dosage, and time were all improved using the Box-Behnken design (BBD) and Response Surface Methodology (RSM). We were able to accurately calculate the values of ΔHo, ΔSo, and ΔGo for 2,4-D by following the guidelines. These results demonstrated the spontaneous and endothermic character of the adsorption procedure employing La/Zn-MOF as an adsorbent. Adsorption-desorption cycles can be carried out up to five times. With the synthesized La/Zn-MOF adsorbent due to its exceptional reusability. Many processes, such π-π interaction, pore filling, H-bonding, or electrostatic contact, were postulated to explain the connection between La/Zn-MOF and 2,4-D after extra research to appreciate well the link was conducted. This is the first study to demonstrate the effectiveness of utilizing La/Zn-MOF as an adsorbent to eliminate 2,4-D from wastewater models. The results display that a pH of 6 is required to achieve the maximal 2,4-D adsorption capability on La/Zn-MOF, which is 307.5 mg/g.
Collapse
Affiliation(s)
- Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Meshari M. Aljohani
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Nada M. Alatawi
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Awatif R.Z. Almotairy
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, 30799, Saudi Arabia
| | - Khulood A. Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdelrahman S. Khder
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street 35516, Egypt
| | - Nashwa M. El-Metwaly
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street 35516, Egypt
| |
Collapse
|
14
|
Serbent MP, Magario I, Saux C. Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal. Biotechnol Bioeng 2024; 121:434-455. [PMID: 37990982 DOI: 10.1002/bit.28591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.
Collapse
Affiliation(s)
- Maria Pilar Serbent
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
- Programa de Pós-Graduação em Ciências Ambientais (PPGCAMB), Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brasil
| | - Ivana Magario
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (CONICET), Córdoba, Argentina
| | - Clara Saux
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
| |
Collapse
|
15
|
Hasan IMA, Assaf FH, Tawfik AR. Sustainable synthesis of magnetic Sargassum siliquastrum activated carbon loaded with NiS nanorods for adsorption of 2,4-D herbicide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13246-13269. [PMID: 38244163 PMCID: PMC10881655 DOI: 10.1007/s11356-024-31987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
The upgrade of sustainable resource waste into a valuable and beneficial material is an urgent task. The current paper outlines the development of an economical, sustainable, and prolonged adsorbent derived from Sargassum siliquastrum biomass and its use for potent 2,4-dichlorophenoxyacetic acid (2,4-D) removal. A simple carbonization approach was applied to obtain the highly functionalized carbon structure, which was subsequently transformed into a novel magnetic nanoadsorbent. The magnetic nanoadsorbent was characterized using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET)-specific surface area, and vibrating sample magnetometer (VSM). The characterization results confirm the successful formation of a high specific surface area and a uniform distribution of Fe3O4/NiS NPs grafted activated carbon. The adsorption kinetics was more accurately described via the pseudo-second order model; nevertheless, the isothermal data showed that the Langmuir model was most suitable. The monolayer adsorption capacity for 2,4-D was 208.26 ± 15.75 mg/g at 328 K. The favourability and spontaneity of the adsorption process were demonstrated by thermodynamic studies. The adsorbent displayed exceptional selectivity for 2,4-D and high stability in multi-cycle use. Electrostatic attraction, π-π stacking, and hydrogen bonding were all believed to have an impact on the sorbent's robust 2,4-D adsorption. Analyses of real tap and Nile River water samples showed little effect of the sample matrix on 2,4-D adsorption. This study presents an innovative approach for developing highly efficient adsorbent from natural biomass and offers an affordable way to recycle algal waste into beneficial materials.
Collapse
Affiliation(s)
- Ibrahem M A Hasan
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Fawzy H Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed R Tawfik
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
16
|
Blachnio M, Kusmierek K, Swiatkowski A, Derylo-Marczewska A. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules 2023; 28:5404. [PMID: 37513275 PMCID: PMC10385827 DOI: 10.3390/molecules28145404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing consumption of phenoxyacetic acid-derived herbicides is becoming a major public health and environmental concern, posing a serious challenge to existing conventional water treatment systems. Among the various physicochemical and biological purification processes, adsorption is considered one of the most efficient and popular techniques due to its high removal efficiency, ease of operation, and cost effectiveness. This review article provides extensive literature information on the adsorption of phenoxyacetic herbicides by various adsorbents. The purpose of this article is to organize the scattered information on the currently used adsorbents for herbicide removal from the water, such as activated carbons, carbon and silica adsorbents, metal oxides, and numerous natural and industrial waste materials known as low-cost adsorbents. The adsorption capacity of these adsorbents was compared for the two most popular phenoxyacetic herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA). The application of various kinetic models and adsorption isotherms in describing the removal of these herbicides by the adsorbents was also presented and discussed. At the beginning of this review paper, the most important information on phenoxyacetic herbicides has been collected, including their classification, physicochemical properties, and occurrence in the environment.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Krzysztof Kusmierek
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Andrzej Swiatkowski
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
17
|
Hiep H, Tuan Anh P, Dao VD, Viet Quang D. Greener Method for the Application of TiO 2 Nanoparticles to Remove Herbicide in Water. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:3806240. [PMID: 37469972 PMCID: PMC10353906 DOI: 10.1155/2023/3806240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
TiO2 nanoparticles have emerged as a great photocatalyst to degrade organic contaminants in water; however, the nanoparticles dispersed in water could be difficult to be recovered and potentially become contaminant. Herbicide like 2,4-dichlorophenoxyacetic acid (2,4-D) used in agriculture usually ends up with a large fraction remaining in water and sediment, which may cause potential risk to human health and the ecosystem. This study proposes a greener method to utilize TiO2 as photocatalyst to remove 2,4-D from water. Accordingly, TiO2 nanoparticles (10-45 nm) were synthesized and grafted on lightweight fired clay to generate a TiO2-based floating photocatalyst. Experimental testing revealed that 60.2% of 2,4-D (0.1 mM) can be decomposed in 250 min under UV light with TiO2-grafted lightweight fired clay floating on water. Degradation fits well into the pseudo-first-order kinetic model. The floating photocatalysts can degrade approximately 50% 2,4-D in 250 min under sunlight and the degradation efficiency is stable for cycles. The results revealed that the fabrication of floating photocatalyst could be a promising and greener way to remove herbicide contaminants in water using TiO2.
Collapse
Affiliation(s)
- Hoang Hiep
- Academy for Green Growth, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - Pham Tuan Anh
- Falcuty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Van-Duong Dao
- Falcuty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Dang Viet Quang
- Falcuty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
18
|
Serbent MP, Gonçalves Timm T, Vieira Helm C, Benathar Ballod Tavares L. Growth, laccase activity and role in 2,4-D degradation of Lentinus crinitus (L.) Fr. in a liquid medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
19
|
Samanth A, Vinayagam R, Murugesan G, Varadavenkatesan T, Selvaraj R, Pugazhendhi A. Enhanced adsorption of 2,4-dichlorophenoxyacetic acid using low-temperature carbonized Peltophorum pterocarpum pods and its statistical physics modeling. CHEMOSPHERE 2023:139143. [PMID: 37285973 DOI: 10.1016/j.chemosphere.2023.139143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
The usage of various herbicides in the agricultural field leads to water pollution which is a big threat to the environment. Herein, the pods of the Peltophorum pterocarpum tree were used as a cheap resource to synthesize activated carbon (AC) by low-temperature carbonization to remove 2,4-dichlorophenoxyacetic acid (2,4-D) - an abundantly used herbicide. The exceptional surface area (1078.34 m2/g), mesoporous structure, and the various functional groups of the prepared AC adsorbed 2,4-D effectively. The maximum adsorption capacity was 255.12 mg/g, significantly higher than the existing AC adsorbents. The adsorption data satisfactorily modelled using Langmuir and pseudo-second-order models. Also, the adsorption mechanism was studied using a statistical physics model which substantiated the multi-molecular interaction of 2,4-D with the AC. The adsorption energy (<20 kJ/mol) and thermodynamic studies (ΔH°: -19.50 kJ/mol) revealed the physisorption and exothermicity. The practical application of the AC was successfully tested in various waterbodies by spiking experiments. Hence, this work confirms that the AC prepared from the pods of P. pterocarpum can be applied as a potential adsorbent to remove herbicides from polluted waterbodies.
Collapse
Affiliation(s)
- Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
Zhang X, Liu Y, Qu L, Han R. Adsorption of 2,4-dichlorophenoxyacetic acid and glyphosate from water by Fe 3O 4-UiO-66-NH 2 obtained in a simple green way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60574-60589. [PMID: 37032407 DOI: 10.1007/s11356-023-26737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
In this study, a green adsorbent (Fe3O4-UiO-66-NH2) with the ability of addressing the issues of separation and recovery of UiO-66-NH2 is obtained using a simple co-precipitation method under environmentally benign conditions. Various characterization techniques are utilized for evaluating the properties of the developed adsorbent. The capability of Fe3O4-UiO-66-NH2 towards 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate (GP) from solution is explored. The results revealed that the magnetization process did not destroy the crystal structure of UiO-66-NH2, which ensured that Fe3O4-UiO-66-NH2 had good adsorption performance for 2,4-D and GP. The adsorption processes showed a wide pH application range, high salt tolerance, and regeneration performance as well as an excellent adsorption rate. Results from thermodynamic study showed that both processes were spontaneous and endothermic. The unit uptake ability of Fe3O4-UiO-66-NH2 for 2,4-D and GP reached up to 249 mg·g-1 and 183 mg·g-1 from Langmuir model at 303 K, respectively. When solid-liquid ratio was 2 g·L-1, Fe3O4-UiO-66-NH2 can reduce the content of 2,4-D or GP with the initial density of 100 mg·L-1 below the drinking water requirement limit. In addition, the reusability efficiency of Fe3O4-UiO-66-NH2 towards 2,4-D and GP was found to be 86% and 80% using 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples indicated that Fe3O4-UiO-66-NH2 could achieve the single or simultaneous removal of 2,4-D and GP from wastewater. Summarily, Fe3O4-UiO-66-NH2 as a green adsorbent can serve as an alternative for removing 2,4-D and GP from water body.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Yang Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
21
|
Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, Aljuwayid AM, Habila MA, Mubashir M. Synthesis of bioinspired sorbent and their exploitation for methylene blue remediation. CHEMOSPHERE 2023; 321:138000. [PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
Collapse
Affiliation(s)
- Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Rizwan Ullah Khan
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Ghazanfar Ullah
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Long Q, Cui LK, He SB, Sun J, Chen QZ, Bao HD, Liang TY, Liang BY, Cui LY. Preparation, characteristics and cytotoxicity of green synthesized selenium nanoparticles using Paenibacillus motobuensis LY5201 isolated from the local specialty food of longevity area. Sci Rep 2023; 13:53. [PMID: 36593245 PMCID: PMC9807572 DOI: 10.1038/s41598-022-26396-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Selenium is an essential micronutrient element. For the extremely biotoxic of selenite, Selenium nanoparticles (SeNPs) is gaining increasing interest. In this work, a selenium-enriched strain with highly selenite-resistant (up to 173 mmol/L) was isolated from the local specialty food of longevity area and identified as Paenibacillus motobuensis (P. motobuensis) LY5201. Most of the SeNPs were accumulated extracellular. SeNPs were around spherical with a diameter of approximately 100 nm. The X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed that the purified SeNPs consisted of selenium and proteins. Our results suggested that P. motobuensis LY5201could be a suitable and robust biocatalyst for SeNPs synthesis. In addition, the cytotoxicity effect and the anti-invasive activity of SeNPs on the HepG2 showed an inhibitory effect on HepG2, indicating that SeNPs could be used as a potential anticancer drug.
Collapse
Affiliation(s)
- Qian Long
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
- Department of Clinical Laboratory, The Fourth People's Hospital of Nanning, Guangxi AIDS Clinical Treatment Center (Nanning), No. 1 Erli, Changgang Road, Nanning, 530023, Guangxi, People's Republic of China
| | - Lan-Kun Cui
- School of History and Archive, Yunnan University, Kunming, 650000, Yunnan, People's Republic of China
| | - Sheng-Bin He
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jian Sun
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Quan-Zhi Chen
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Hao-Dong Bao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Teng-Yue Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Bao-Yue Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Lan-Yu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
23
|
Vinayagam R, Ganga S, Murugesan G, Rangasamy G, Bhole R, Goveas LC, Varadavenkatesan T, Dave N, Samanth A, Radhika Devi V, Selvaraj R. 2,4-Dichlorophenoxyacetic acid (2,4-D) adsorptive removal by algal magnetic activated carbon nanocomposite. CHEMOSPHERE 2023; 310:136883. [PMID: 36257398 DOI: 10.1016/j.chemosphere.2022.136883] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In the present study, ferric oxide nanoparticles impregnated with activated carbon from Ulva prolifera biomass (UPAC-Fe2O3) were prepared and employed to remove 2,4-Dichlorophenoxyacetic acid (2,4-D) by adsorption. The UPAC-Fe2O3 nanocomposite was characterized for its structural and functional properties by a variety of techniques. The nanocomposite had a jagged, irregular surface with pores due to uneven scattering of Fe2O3 nanoparticles, whereas elemental analysis portrayed the incidence of carbon, oxygen, and iron. XRD analysis established the crystalline and amorphous planes corresponding to the iron oxide and carbon phase respectively. FT-IR analyzed the functional groups that confirmed the integration of Fe2O3 nanoparticles onto nanocomposite surfaces. VSM and XPS studies uncovered the superparamagnetic nature and presence of carbon and Fe2O3, respectively, in the UPAC-Fe2O3 nanocomposite. While the surface area was 292.51 m2/g, the size and volume of the pores were at 2.61 nm and 0.1906 cm3/g, respectively, indicating the mesoporous nature and suitability of the nanocomposites that could be used as adsorbents. Adsorptive removal of 2,4-D by nanocomposite for variations in process parameters like pH, dosage, agitation speed, adsorption time, and 2,4-D concentration was studied. The adsorption of 2,4-D by UPAC-Fe2O3 nanocomposite was monolayer chemisorption owing to Langmuir isotherm behavior along with a pseudo-second-order kinetic model. The maximum adsorption capacity and second order rate constant values were 60.61 mg/g and 0.0405 g/mg min respectively. Thermodynamic analysis revealed the spontaneous and feasible endothermic adsorption process. These findings confirm the suitability of the synthesized UPAC-Fe2O3 nanocomposite to be used as an adsorbent for toxic herbicide waste streams.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saivedh Ganga
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Ruchi Bhole
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Louella Concepta Goveas
- Nitte (Deemed to Be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niyam Dave
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - V Radhika Devi
- Department of Science and Humanities, MLR Institute of Technology, Hyderabad, Telangana, 500043, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
24
|
Vinayagam R, Quadras M, Varadavenkatesan T, Debraj D, Goveas LC, Samanth A, Balakrishnan D, Selvaraj R. Magnetic activated carbon synthesized using rubber fig tree leaves for adsorptive removal of tetracycline from aqueous solutions. ENVIRONMENTAL RESEARCH 2023; 216:114775. [PMID: 36370812 DOI: 10.1016/j.envres.2022.114775] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The current study emphasizes the activated carbon fabrication from rubber fig leaves, the establishment of its composite with iron oxide nanoparticles (RFAC@Fe2O3), and its relevance in the adsorptive elimination of tetracycline. The physical and functional properties of RFAC@Fe2O3 nanocomposite were uncovered by multiple approaches. Elemental analysis portrayed the existence of carbon, oxygen, and iron, while FESEM analysis revealed that Fe2O3 nanoparticle agglomerates were entrenched in the activated carbon matrix rendering it a rough abrasive texture. FT-IR analysis reported the presence of functional groups attributing to CC, -OH, crystalline iron oxide, and Fe-O stretching vibrations, and XRD corroborated graphitic crystalline structure, oxygenated functional groups attached to carbon accompanied by crystalline plane corresponding to Fe2O3 nanoparticles. XPS spectra depicted signature peaks for C, O, and Fe, while VSM studies designated its superparamagnetic nature. The high surface area (662.73 m2/g), pore size (3.12 nm), and mesoporous nature of RFAC@Fe2O3 make it apt for the adsorption of pollutants from contaminated samples. The adsorption of tetracycline (50 ppm) by RFAC@Fe2O3 was maximum at pH 4.0. As the nanocomposite dosage and stirring speed increased to 2.0 g/L and 150 rpm, maximum adsorption was observed due to more active binding sites and improved mixing. Freundlich isotherm along with pseudo-second-order model well described adsorption process divulging that tetracycline was adsorbed onto RFAC@Fe2O3 composite in multi-layers by chemisorption. Thermodynamic analysis signified negative values for ΔG°, while positive values for ΔH° and ΔS were obtained, indicating spontaneous feasible endothermic adsorption.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Melisha Quadras
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devangshi Debraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Louella Concepta Goveas
- Nitte (Deemed to Be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India
| | - Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
25
|
Selvaraj R, Pai S, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. CHEMOSPHERE 2022; 308:136331. [PMID: 36087731 DOI: 10.1016/j.chemosphere.2022.136331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology is considered the budding discipline in various fields of science and technology. In this review, the various synthesis methods of iron and iron oxide nanoparticles were summarised with more emphasis on green synthesis - a sustainable and eco-friendly method. The mechanism of green synthesis of these nanomaterials was reviewed in recent literature. The magnetic properties of these nanomaterials were briefed which makes them unique in the family of nanomaterials. An overview of various removal methods for the pollutants such as dye, heavy metals, and emerging contaminants using green synthesized iron and iron oxide nanoparticles is discussed. The mechanism of pollutant removal methods like Fenton-like degradation, photocatalytic degradation, and adsorption techniques was also detailed. The review is concluded with the challenges and possible future aspects of these nanomaterials for various environmental applications.
Collapse
Affiliation(s)
- Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
26
|
Selvaraj R, Murugesan G, Rangasamy G, Bhole R, Dave N, Pai S, Balakrishna K, Vinayagam R, Varadavenkatesan T. As (III) removal using superparamagnetic magnetite nanoparticles synthesized using Ulva prolifera - optimization, isotherm, kinetic and equilibrium studies. CHEMOSPHERE 2022; 308:136271. [PMID: 36064025 DOI: 10.1016/j.chemosphere.2022.136271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, magnetite nanoparticles (MNPs) were synthesized using the seaweed - Ulva prolifera, an amply found marine source in the Western coastal regions of India. The surface and other properties of MNPs were characterized by many sophisticated methods. Spherical nanoclusters were observed in the FESEM image and iron and oxygen elements were seen in EDS results. XRD peaks were consistent with magnetite standards and MNPs had good crystallinity. FTIR portrayed the specific signals for MNPs and TGA profile ascertained the thermal stability. Magnetic saturation of 41.84 emu/g with negligible hysteresis loop substantiated the superparamagnetism. XPS pointed out the presence of Fe and O with oxidation states specific for MNPs, and the results were consistent with EDS. BET revealed a high specific surface area (144.98 m2/g) of MNPs with mesopores. The synthesized MNPs were used as nanoadsorbent for the removal of As (III) from aqueous solution. The central composite design was used for optimizing As (III) adsorption on MNPs. The optimum conditions were found out as 97.5% at pH: 9, rotation speed: 150 rpm, time: 90 min, and MNPs dosage: 1.15 g/L. The adsorption process fitted in a better way with the Langmuir isotherm and pseudo-second-order model. The highest adsorption capacity was 12.45 mg/g, which is substantially larger than the documenter reports. The spontaneous and endothermic nature of adsorption were ascertained from thermodynamic studies. The results suggested that the synthesized MNPs using the extract of U. prolifera could be alternative nanoadsorbents for eliminating toxic heavy metals from waste streams.
Collapse
Affiliation(s)
- Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Ruchi Bhole
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niyam Dave
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keshava Balakrishna
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
27
|
Diéguez-Santana K, Nachimba-Mayanchi MM, Puris A, Gutiérrez RT, González-Díaz H. Prediction of acute toxicity of pesticides for Americamysis bahia using linear and nonlinear QSTR modelling approaches. ENVIRONMENTAL RESEARCH 2022; 214:113984. [PMID: 35981614 DOI: 10.1016/j.envres.2022.113984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Globally, pesticides are toxic substances with wide applications. However, the widespread use of pesticides has received increasing attention from regulatory agencies due to their various acute and chronic effects on multiple organisms. In this study, Quantitative Structure-Toxicity Relationship (QSTR) models were established using Multiple Linear Regression (MLR) and five Machine Learning (ML) algorithms to predict pesticide toxicity in Americamysis bahia. The most influential descriptors included in the MLR model are RBF, JGI2, nCbH, nRCOOR, nRSR, nPO4 and 'Cl-090', with positive contributions to the dependent variable (negative decimal logarithm of median lethal concentration at 96-h). The Random Forest (RF) regression model was superior amongst the five ML models. We observed higher values of R2 (0.812) and lower values of RMSE (0.595) and MAE (0.462) in the cross-validation training set and external validation set. Similarly, this study had a high level of fitness and was internally robust and externally predictive compared to models presented in similar studies. The results suggest that the developed QSTR models are suitable for reliably predicting the aquatic toxicity of structurally diverse pesticides and can be used for screening, prioritising new pesticides, filling data gaps and overcoming the limitations of in vivo and in vitro tests.
Collapse
Affiliation(s)
- Karel Diéguez-Santana
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; Universidad Regional Amazónica Ikiam, Tena, Ecuador.
| | | | - Amilkar Puris
- Facultad de Ciencias de la Ingeniería, Universidad Técnica Estatal de Quevedo, Ecuador
| | | | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; Basque Center for Biophysics CSIC-UPVEH, University of Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Biscay, Spain
| |
Collapse
|
28
|
Prabhu P, Rao M, Murugesan G, Narasimhan MK, Varadavenkatesan T, Vinayagam R, Lan Chi NT, Pugazhendhi A, Selvaraj R. Synthesis, characterization and anticancer activity of the green-synthesized hematite nanoparticles. ENVIRONMENTAL RESEARCH 2022; 214:113864. [PMID: 35870497 DOI: 10.1016/j.envres.2022.113864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The conventional synthesis of hematite nanoparticles (HNPs) is expensive and creates secondary contaminants. Therefore, to combat these issues, there is a requirement for a cheap, effective, and eco-friendly technique. Herein, HNPs were prepared using the fruit extract of Spondias pinnata - an abundant source available in Western-coastal India. The polyphenolic compounds aided the synthesis process and the entire procedure was very rapid. The obtained HNPs had needle-like morphology with agglomerations due to the magnetic interactions as seen in FESEM and HRTEM images. Fe and O elements were noticed in EDS results. The crystalline nature and crystal phase were confirmed from XRD and SAED patterns. The lattice parameters of HNPs were in tandem with the literature. Fe-O crystalline vibrations were noticed in FTIR studies. VSM results portrayed the superparamagnetic nature of HNPs with a high magnetic saturation value of 8.949 emu/g and a negligible hysteresis loop. Thermal stability was ascertained using TGA results with 32% overall weight loss. XPS studies revealed the existence of pure HNPs with signature peaks. Raman spectrum showed the bands specific for HNPs, comparable to the commercial one. In addition, the HNPs were mesoporous with a high surface area (72.04 m2/g) - higher than the commercial one. The anticancer potential of the HNPs was successfully demonstrated against two mammalian cancer cell lines. Therefore, the HNPs synthesized in this study could be applied in various biomedical fields, especially for anticancer formulations.
Collapse
Affiliation(s)
- Paresh Prabhu
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Rao
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
29
|
Khaloo SS, Bagheri A, Gholamnia R, Saeedi R. Graphene oxide/MIL 101(Cr) (GO/MOF) nano-composite for adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4 D) from aqueous media: synthesis, characterization, kinetic and isotherm studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1496-1509. [PMID: 36178819 DOI: 10.2166/wst.2022.282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contamination of water resources with various pollutants and therefore lack of clean water resources are major problems that threaten many human societies. The need to develop efficient methods and materials to decontaminate water resource is an undeniable fact. Metal-organic frameworks (MOFs), as new class of highly crystalline porous solids, have attracted a great deal of attention in different research fields, especially in adsorptive removal and purification. In this study, MIL 101(Cr) MOF decorated with graphene oxide nano-layers (GO/MOF) was synthesized by a simple one-pot hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and electron dispersion energy (EDS) were utilized to approve the growing of Cr-MOF on graphene oxide nano-layer. The synthesized nano-composite was used as a potential adsorbent for the removal of a pesticide, 2, 4-dichlorophenoxyacetic acid (2,4 D). The adsorption performance, kinetic and mechanism of 2,4 D adsorption onto GO/MOF were studied. The highest adsorption capacities of 476.9 mg g-1 was obtained at room temperature, pH 6.0 using 0.6 gL-1 of GO/MOF which was 34% higher than that of pristine Cr-MOF. The kinetics and isotherm data fitted well with pseudo-second kinetic and Langmuir isotherm model, respectively. The reusability and stability analyses showed that the synthesized GO/MOF nanocomposite kept 89% of sorption capacities for 2,4 D after four adsorption-desorption cycles. GO/MOF nano-composite was successfully applied to remove 2,4 D from agricultural waste. The results approved that the synthesized nano-composite could introduce as a stable and high performance adsorbent for adsorptive removal of selected pesticide.
Collapse
Affiliation(s)
- Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail: ; Department of Health, Safety, and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Bagheri
- Department of Health, Safety, and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Gholamnia
- Department of Health, Safety, and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail: ; Department of Health, Safety, and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Salari M, Nikoo MR, Al-Mamun A, Rakhshandehroo GR, Mooselu MG. Optimizing Fenton-like process, homogeneous at neutral pH for ciprofloxacin degradation: Comparing RSM-CCD and ANN-GA. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115469. [PMID: 35751268 DOI: 10.1016/j.jenvman.2022.115469] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are considered among the most non-biodegradable environmental contaminants due to their genetic resistance. Considering the importance of antibiotics removal, this study was aimed at multi-objective modeling and optimization of the Fenton-like process, homogeneous at initial circumneutral pH. Two main issues, including maximizing Ciprofloxacin (CIP) removal and minimizing sludge to iron ratio (SIR), were modeled by comparing central composite design (CCD) based on Response Surface Methodology (RSM) and hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA). Results of simultaneous optimization using ethylene diamine tetraacetic acid (EDTA) revealed that at pH ≅ 7, optimal conditions for initial CIP concentration, Fe2+ concentration, [H2O2]/[Fe2+] molar ratio, initial EDTA concentration, and reaction time were 14.9 mg/L, 9.2 mM, 3.2, 0.6 mM, and 25 min, respectively. Under these optimal conditions, CIP removal and SIR were predicted at 85.2% and 2.24 (gr/M). In the next step, multilayer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANN) were developed to model CIP and SIR. It was concluded that ANN, especially multilayer perceptron (MLP-ANN) has a decent performance in predicting response values. Additionally, multi-objective optimization of the process was performed using Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to maximize CIP removal efficiencies while minimizing SIR. NSGA-II optimization algorithm showed a reliable performance in the interaction between conflicting goals and yielded a better result than the GA algorithm. Finally, TOPSIS method with equal weights of the criteria was applied to choose the best alternative on the Pareto optimal solutions of the NSGA-II. Comparing the optimal values obtained by the multi-objective response surface optimization models (RSM-CCD) with the NSGA-II algorithm showed that the optimal variables in both models were close and, according to the absolute relative error criterion, possessed almost the same performance in the prediction of variables.
Collapse
Affiliation(s)
- Marjan Salari
- Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran
| | - Mohammad Reza Nikoo
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| | | | | |
Collapse
|
31
|
Balci B, Al Dafiry MHA, Erkurt FE, Basibuyuk M, Zaimoglu Z, Budak F, Yesiltas HK. Fe 2O 3-powder activated carbon/CaO 2 as an efficient hybrid process to remove a reactive dye from textile wastewater. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Behzat Balci
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - M. H. Ahmed Al Dafiry
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - F. Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - Mesut Basibuyuk
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - Zeynep Zaimoglu
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - Fuat Budak
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - H. Kivanc Yesiltas
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| |
Collapse
|
32
|
Ragupathy S, Priyadharsan A, AlSalhi MS, Devanesan S, Guganathan L, Santhamoorthy M, Kim SC. Effect of doping and loading Parameters on photocatalytic degradation of brilliant green using Sn doped ZnO loaded CSAC. ENVIRONMENTAL RESEARCH 2022; 210:112833. [PMID: 35150712 DOI: 10.1016/j.envres.2022.112833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Sn doped ZnO loaded cotton stalk activated carbon (Sn-ZnO/CSAC) was prepared by chemical precipitation method, and the products were characterized. The XRD resultants confirm that the presence of hexagonal wurtzite phase of the bare ZnO. Furthermore, particular particle size gradually decreases (21.49 nm) due to doping and loading. UV-Vis absorption intensity of doped/loaded sample was red-shifted and then PL intensity is reduced. The photocatalytic performances of bare, Sn-doped ZnO and Sn-ZnO/CSAC was estimated by photodegradation of brilliant green (BG) under sunlight. The photodegradation of BG dye in 120 min over Sn-doped ZnO/CSAC is nearly 96.52%, which is considerably improved than bare ZnO (72.60%), respectively.
Collapse
Affiliation(s)
- S Ragupathy
- Department of Physics, E.R.K. Arts and Science College, Erumiyampatti, Dharmapuri, 636 905, Tamil Nadu, India.
| | - A Priyadharsan
- Department of Physics, E.R.K. Arts and Science College, Erumiyampatti, Dharmapuri, 636 905, Tamil Nadu, India.
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - L Guganathan
- Department of Physics, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea
| | - S C Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea.
| |
Collapse
|
33
|
Pai S, Kini MS, Mythili R, Selvaraj R. Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. ENVIRONMENTAL RESEARCH 2022; 210:112951. [PMID: 35183516 DOI: 10.1016/j.envres.2022.112951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In the present study, magnetite nanoparticles (Fe3O4NPs) synthesized using Thunbergia grandiflora leaf extract as a reducing agent were doped with hydroxyapatite sourced from waste bivalve clamshells to produce hydroxyapatite/magnetite nanocomposite (HA/Fe3O4NPs). The magnetic nanocomposite was examined using several characterization techniques. The results of XRD and FESEM, analysis showed HA/Fe3O4NPs have a crystalline phase and irregular spherical particles respectively. EDAX and FTIR confirmed the presence of specific elements and functional groups of both iron oxide and hydroxyapatite nanoparticles respectively. The surface area and superparamagnetic property of the composite were determined by BET and VSM analysis. Central Composite Design (CCD) was used to optimize the adsorption process to remove of AB113 from aqueous solutions. The optimal adsorption efficiency was found out to be 94.38% at pH 8, AB113 dye concentration 54 ppm, HA/Fe3O4NPs dose 84 mg, and an agitation speed of 174 rpm. The monolayer Langmuir isotherm was the best model with a sorption capacity of 109.98 mg/g which was higher than the reported values. The pseudo-second-order kinetic model displayed a good fit with an R2 = 0.99. Thermodynamic parameters were assessed which confirmed the exothermic adsorption process. Therefore, the synthesized magnetic nanocomposite can be employed as a novel nanoadsorbent for the removal of anionic dyes from waste effluents.
Collapse
Affiliation(s)
- Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - M Srinivas Kini
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Raja Mythili
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, 637501, Namakkal, Tamil Nadu, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
34
|
Sodhani H, Hedaoo S, Murugesan G, Pai S, Vinayagam R, Varadavenkatesan T, Bharath G, Haija MA, Nadda AK, Govarthanan M, Selvaraj R. Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract. CHEMOSPHERE 2022; 299:134752. [PMID: 35513083 DOI: 10.1016/j.chemosphere.2022.134752] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, - Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.
Collapse
Affiliation(s)
- Hriday Sodhani
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shantanu Hedaoo
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - G Bharath
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 41566, Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
35
|
Bhole R, Gonsalves D, Murugesan G, Narasimhan MK, Srinivasan NR, Dave N, Varadavenkatesan T, Vinayagam R, Govarthanan M, Selvaraj R. Superparamagnetic spherical magnetite nanoparticles: synthesis, characterization and catalytic potential. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02532-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Vinayagam R, Dave N, Varadavenkatesan T, Rajamohan N, Sillanpää M, Nadda AK, Govarthanan M, Selvaraj R. Artificial neural network and statistical modelling of biosorptive removal of hexavalent chromium using macroalgal spent biomass. CHEMOSPHERE 2022; 296:133965. [PMID: 35181433 DOI: 10.1016/j.chemosphere.2022.133965] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
This study focused on the sustainable removal of chromium in its hexavalent form by adsorption using sugar-extracted spent marine macroalgal biomass - Ulva prolifera. The adsorption of Cr (VI) from aqueous solutions utilizing macroalgal biomass was studied under varying conditions of pH, adsorbent amount, agitation speed, and time to assess and optimize the process variables by using a statistical method - response surface methodology (RSM) to enhance the adsorption efficiency. The maximum adsorption efficiency of 99.11 ± 0.23% was obtained using U. prolifera under the optimal conditions: pH: 5.4, adsorbent dosage: 200 mg, agitation speed: 160 rpm, and time: 75 min. Also, a prediction tool - artificial neural network (ANN) model was developed using the RSM experimental data. Eight neurons in the hidden layer yielded the best network topology (4-8-1) with a high correlation coefficient (RANN: 0.99219) and low mean squared error (MSEANN: 0.99219). Various performance parameters were compared between RSM and ANN models, which confirmed that the ANN model was better in predicting the response with a high coefficient of determination value (R2ANN: 0.9844, R2RSM: 0.9721) and low MSE value (MSEANN: 3.7002, MSERSM: 6.2179). The adsorption data were analyzed by fitting to various equilibrium isotherms. The maximum adsorption capacity was estimated as 6.41 mg/g. Adsorption data was in line with Freundlich isotherm (R2 = 0.97) that confirmed the multilayer adsorption process. Therefore, the spent U. prolifera biomass can credibly be applied as a low-cost adsorbent for Cr (VI) removal, and the adsorption process can be modelled and predicted efficiently using ANN.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niyam Dave
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
37
|
Intachai S, Tongchoo P, Sumanatrakul P, Pankam P, Khaorapapong N. Efficient and practical adsorption of mixed anionic dyes in aqueous solution by magnetic NiFe-layered double oxide. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1099-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Puiatti GA, de Carvalho JP, de Matos AT, Lopes RP. Green synthesis of Fe 0 nanoparticles using Eucalyptus grandis leaf extract: Characterization and application for dye degradation by a (Photo)Fenton-like process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114828. [PMID: 35278918 DOI: 10.1016/j.jenvman.2022.114828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Zero-valent iron nanoparticles (EGnZVI) were synthesized using Eucalyptus grandis (EG) leaf extract as a reducing/stabilizing agent. The studied materials (EG leaves, extract and EGnZVI) were characterized using the XRD, FTIR, Raman spectroscopy, SEM, TEM/EDS techniques. The results indicate that several organic compounds, including phenolics, present in the EG leaves were successfully extracted and incorporated into the structure of the material, possibly promoting the capping and stabilization of the formed zero-valent iron particles. The EGnZVI presented low crystallinity, varied size (50-500 nm), approximately spherical shape, and formed aggregates. The EGnZVI were utilized in the removal of the Direct Red 80 (DR80), an azo dye. The effects of the temperature (15-35 °C), initial DR80 concentration (10-250 mg L-1), initial pH (2.5-8.5), the doses of H2O2 (0.5-5 mmol L-1) and EGnZVI (0.2-10 mg L-1), and the incidence of UV-light were evaluated. The EGnZVI did not present reactivity towards the DR80 in the absence of H2O2. However, in the presence of H2O2, the EGnZVI was highly efficient at removing the DR80 at slightly acidic pH0 values (4 and 5.5). Under these pH0 conditions, the EGnZVI/Fenton process proved to be more effective than the classic homogenous Fenton. Finally, in the presence of the UV-light, the process was highly efficient throughout the studied pH0 interval, with increased removal rates. Therefore, the nZVI/Fenton process, using the synthesized material, presents itself as a promising alternative for the degradation of organic pollutants, and the incidence of UV light can considerably improve its efficiency.
Collapse
Affiliation(s)
- Gustavo Alves Puiatti
- Department of Environmental and Sanitary Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-010, Brazil.
| | - Jéssica Passos de Carvalho
- Department of Chemistry, Federal University of Viçosa, Av. Peter Henry Rolfs, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Antonio Teixeira de Matos
- Department of Environmental and Sanitary Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Renata Pereira Lopes
- Department of Chemistry, Federal University of Viçosa, Av. Peter Henry Rolfs, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|