1
|
Mallik T, Ghosh S, Ekka D. N-doped graphene oxide nanomaterial: synthesis and application as controlled-release of urea for advancement in modern agriculture. DISCOVER NANO 2025; 20:38. [PMID: 39961894 PMCID: PMC11833000 DOI: 10.1186/s11671-025-04194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Controlled-release fertilizer plays a crucial role in advancing modern agriculture. One promising avenue of research is the utilization of graphene oxide (GO) for controlled-release fertilizer. Here, urea decorated GO (urea@GO) nanomaterial has fabricated through mechanical process and applied for enhance the releasing characteristics of urea by control study. From the experiment, it has seen the nanocomposite (urea@GO) extends the power of the nutrient release period to ≥ 10 h in aqueous media. Where the UV-Vis peak at 560-600 nm shifts towards 400-490 nm by the formation of N-doping. This original and innovative technology holds a significant development for potential crop production. One more advantage is the photochemical dissociation of by-products & residue of GO and the release of non-toxic & eco-friendly species, which are not harmful to crops as well as the health of the environment.
Collapse
Affiliation(s)
- Tapas Mallik
- Department of Chemistry, Cooch Behar Panchanan Barma University, Coochbehar, 736101, India
| | - Srabanti Ghosh
- Department of Chemistry, Cooch Behar Panchanan Barma University, Coochbehar, 736101, India
| | - Deepak Ekka
- Department of Chemistry, Cooch Behar Panchanan Barma University, Coochbehar, 736101, India.
| |
Collapse
|
2
|
Aggarwal R, Gupta H, Awasthi K, Kumar M, Sarkar D, Sonkar SK. Heteroatom Doping in Pollutant Diesel Soot-Derived Nanocarbon for Enhanced Zn-Ion Storage Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9481-9489. [PMID: 38650463 DOI: 10.1021/acs.langmuir.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Herein, we have isolated onion-like nanocarbon (ONC) from the exhaust soot of diesel engines and further doped it with nitrogen (N) and sulfur (S) to fabricate N,S-co-doped ONC (N-S-ONC). To explore its application feasibility, we have assembled an aqueous Zn-ion hybrid supercapacitor (ZIHSC) with a N-S-ONC cathode, which attains high specific capacitance with good rate capability. In-depth analyses suggest that the mechanism of charge storage in the ONC is governed by both capacitive-controlled and diffusion-controlled processes, with the capacitive processes leading at all sweep rates. The ZIHSC demonstrated a good energy density of 50 Wh/kg, a maximum power density of 3.6 kW/kg, and an impressive cycle life with 73% capacitance retention after 50,000 charge-discharge cycles. The study suggests the potential possibly for the long-term application of BC derived nanocarbon in electrochemical energy storage systems (EESSs).
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Himanshu Gupta
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Manoj Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Debasish Sarkar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
3
|
Darvishmehr Z, Naderi L, Shahrokhian S, Ezzati M. Electrodeposition of CoFeS nanoflakes on Cu 2O nanospheres as an ultrasensitive sensing platform for measurement of the hydrazine and hydrogen peroxide in seawater sample. CHEMOSPHERE 2024; 352:141340. [PMID: 38301836 DOI: 10.1016/j.chemosphere.2024.141340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Nanoarchitectured design of the metal sulfides with highly available surface and abundant electroactive centers and using them as electrocatalyst for fabricate the electrochemical sensors for the detection of hydrazine (N2H4) and hydrogen peroxide (H2O2) is challenging and desirable. Herein, Cu2O nanospheres powder is firstly prepared using chemical reduction of copper chloride and then drop-casted on the glassy carbon electrode (GCE) surface. In the next step, CoFeS nanoflakes are electrodeposited on Cu2O nanospheres by cyclic voltammetry method to form CoFeS/Cu2O nanocomposite as a detection platform for measuring N2H4 and H2O2. Accordingly, Cu2O nanospheres are not only used as substrate, but also guided the CoFeS nanoflakes to adhere to the electrode surface without need to any binder or conductive additive, which enhances the electrical conductivity of the sensing active materials. As the hydrazine sensor, the CoFeS/Cu2O/GCE displayed wide linear ranges (0.0001-0.021 mM and 0.021-1.771 mM), low detection limit (0.12 μM), very high sensitivities (103.33 and 21.23 mA mM-1 cm-2), and excellent selectivity. The as-made nanocomposite also exhibited low detection limit of 1.26 μM for H2O2 sensing with very high sensitivities (12.31 and 3.96 mA mM-1 cm-2) for linear ranges of 0.001-0.03 mM and 0.03-2.03 mM, respectively, and negligible response against interfering substances. The superior analytical performance of the CoFeS/Cu2O for N2H4 electro-oxidation and H2O2 electro-reduction can be attributed to structure stability, high electroactive surface area, and good availability to analyte species and electrolyte diffusion. Moreover, to examine the potency of the prepared nanocomposite in real applications, the seawater sample was analyzed and results display that the CoFeS/Cu2O/GCE can be utilized as a reliable and applicable platform for measuring N2H4 and H2O2.
Collapse
Affiliation(s)
- Zahra Darvishmehr
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Leila Naderi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Milad Ezzati
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Das GS, Tripathi VK, Dwivedi J, Jangir LK, Tripathi KM. Nanocarbon-based sensors for the structural health monitoring of smart biocomposites. NANOSCALE 2024; 16:1490-1525. [PMID: 38186362 DOI: 10.1039/d3nr05522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Structural health monitoring (SHM) is a critical aspect of ensuring the safety and durability of smart biocomposite materials used as multifunctional materials. Smart biocomposites are composed of renewable or biodegradable materials and have emerged as eco-friendly alternatives of traditional non-biodegradable glass fiber-based composite materials. Although biocomposites exhibit fascinating properties and many desirable traits, real-time and early stage SHM is the most challenging issue to enable their long-term use. Smart biocomposites are integrated with sensors for in situ identification of the progress of damage and composite failure. The sensitivity of such smart biocomposites is a key functionality, which can be tuned by the introduction of an appropriate filler. In particular, nanocarbons hold promising potential to be incorporated in SHM applications of biocomposites. This review focused on the potential applications of nanocarbons in SHM of biocomposites. The aspects related to fabrication techniques and working mechanism of sensors are comprehensively discussed. Furthermore, their unique mechanical and electrical properties and sustainable nature ensure seamless integration into biocomposites, allowing for real-time monitoring without compromising the material's properties. These sensors offer multi-parameter sensing capabilities, such as strain, pressure, humidity, temperature, and chemical exposure, allowing a comprehensive assessment of biocomposite health. Additionally, their durability and longevity in harsh conditions, along with wireless connectivity options, provide cost-effective and sustainable SHM solutions. As research in this field advances, ongoing efforts seek to enhance the sensitivity and selectivity of these sensors, optimizing their performance for real-world applications. This review highlights the significant advances, ongoing efforts to enhance the sensitivity and selectivity, and performance optimization of nanocarbon-based sensors along with their working mechanism in the field of SHM for smart biocomposites. The key challenges and future research perspectives facing the conversion of nanocarbons to smart biocomposites are also displayed.
Collapse
Affiliation(s)
- Gouri Sankar Das
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. kumud@
| | - Vijayendra Kumar Tripathi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Jaya Dwivedi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Lokesh Kumar Jangir
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi-221005, India.
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. kumud@
| |
Collapse
|
5
|
Thakur A, Kumar A. Unraveling the multifaceted mechanisms and untapped potential of activated carbon in remediation of emerging pollutants: A comprehensive review and critical appraisal of advanced techniques. CHEMOSPHERE 2024; 346:140608. [PMID: 37925026 DOI: 10.1016/j.chemosphere.2023.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
The rapid global expansion of industrialization has resulted in the discharge of a diverse range of hazardous contaminants into the ecosystem, leading to extensive environmental contamination and posing a pressing ecological concern. In this context, activated carbon (AC) has emerged as a highly promising adsorbent, offering significant advantages over conventional forms. For instance, AC has demonstrated remarkable adsorption capabilities, as evidenced by the successful removal of atrazine and ibuprofen using KOH and KOH-CO2-activated char, achieving impressive adsorption rates of 90% and 95%, respectively, at an initial dosage of 10 mg L-1. Moreover, AC can effectively adsorb aromatic compounds through π-π stacking interactions. The aromatic rings in organic molecules can align and interact with the carbon atoms in AC's structure, leading to effective adsorption. In this review, by employing a systematic analysis of recent research findings (majorly from 2015 to 2023), an in-depth exploration of AC's evolution and its wide-ranging applications in adsorbing and remediating emerging pollutants, including dyes, organic contaminants, and hazardous gases and mitigating the adverse impacts of such emerging pollutants on ecosystems have been discussed. It serves as a valuable resource for researchers, professionals, and policymakers involved in environmental remediation and pollution control, facilitating the development of sustainable and effective strategies for mitigating the global impact of emerging pollutants.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department , Government of Bihar, 803108, India.
| |
Collapse
|
6
|
Amu-Darko JNO, Hussain S, Zhang X, Ouladsmane M, Issaka E, Ali S, Wang M, Qiao G. Exploring the gas-sensing properties of MOF-derived TiN@CuO as a hydrogen sulfide sensor. CHEMOSPHERE 2023; 337:139401. [PMID: 37423407 DOI: 10.1016/j.chemosphere.2023.139401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
In an effort to develop a long-lasting gas sensor, this article presents titanium nitride (TiN) as a potential substitute sensitive material in conjunction with (copper(II) benzene-1,3,5-tricarboxylate) Cu-BTC-derived CuO. The work focused on the gas-sensing characteristics of TiN/CuO nanoparticles in detecting H2S gas at various temperatures and concentrations. XRD, XPS, and SEM were utilized to analyze the composites with varied Cu molar ratios. The responses of TiN/CuO-2 nanoparticles to 50 and 100 ppm H2S gas at 50 °C and 250 °C are 34.8 and 60.0, respectively. The related sensor had high selectivity and stability towards H2S, and the response of TiN/CuO-2 is still 2.5-5 ppm H2S. The gas-sensing properties as well as the mechanism are fully explained in this study. TiN/CuO might be a choice for the detection of H2S gas, opening up new avenues for applications in industries, medical facilities, and homes.
Collapse
Affiliation(s)
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiangzhao Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Salman Ali
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Mingsong Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Kaushik J, Sharma C, Lamba NK, Sharma P, Das GS, Tripathi KM, Joshi RK, Sonkar SK. 3D Porous MoS 2-Decorated Reduced Graphene Oxide Aerogel as a Heterogeneous Catalyst for Reductive Transformation Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12865-12877. [PMID: 37639338 DOI: 10.1021/acs.langmuir.3c01785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The MoS2-based reduced graphene oxide aerogel (MoS2-rGOA)-assisted organic transformation reactions are presented. MoS2-rGOA is used as a heterogeneous catalyst for the reduction of benzene derivatives such as benzaldehyde, nitrobenzene, and benzonitrile to benzyl alcohol, aniline, and benzamide and their derivatives, respectively, in green solvents (water/methanol) and green reducing agents (hydrazine hydrate having N2 and H2 as byproducts). The mechanistic features of the reduction pathway, substrate scope, and the best suitable conditions by varying the temperature, solvent, reducing agent, catalyst loading, time, etc. are optimized. All of the synthesized products are obtained in quantitative yield with purity and well characterized based on nuclear magnetic resonance analysis. Further, it is also observed that our catalyst is efficiently recyclable and works well checked up to 5 cycles.
Collapse
Affiliation(s)
- Jaidev Kaushik
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Nicky Kumar Lamba
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Purshotam Sharma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Gouri Sankar Das
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Raj Kumar Joshi
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| |
Collapse
|
8
|
Zhang D, Xu F, Lu Q, Zhang R, Xia J. Poly(3-amino-carbazole) derivatives containing 1,10-phenanthroline and 8-hydroxyquinoline ligands: Synthesis, properties and application as ion sensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122608. [PMID: 36947941 DOI: 10.1016/j.saa.2023.122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
As we know, excessive metal ions can even damage human health. Herein, two novel kinds of fluorescent sensing materials Poly(3-amino-carbazole) derivatives containing 1,10-phenanthroline and 8-hydroxyquinoline were synthesized and further applied to fluorescence detection for ions. The results show that Ni2+, Cu2+, and Pd2+ have excellent quenching effects on the fluorescence of Poly[9-(1,10-phenanthroline-2-yl)-9H-carbazol-3-amine] (PPNC), the LOD for these ions reaches 5.2 nM, 12.7 nM, 33.5 nM respectively. In the process of ion response, there is no shift of UV absorption peak, combined with IR spectra and theoretical calculation simulation, the quenching is considered to be caused by the coordination between metal ions and the second amine (-NH-) or 1,10-phenanthroline ligand of PPNC, which leads to the charge transfer from ligands to metal ions. In addition, an acid test was done for PPNC to verify and detect the presence of secondary amine (-NH-), and the results show that PPNC has good acid sensing ability which also supports the secondary amine (-NH-) structure. Finally, the paper test was performed on PPNC, indicating that PPNC has the potential for visual application.
Collapse
Affiliation(s)
- Dongkui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Feng Xu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qingyi Lu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Rui Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Instituted and Technology, Wuhan 400073, Hubei, People's Republic of China.
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
9
|
Yin M, Jiang H, Shi L, Zhang D, He Z, Luo Y, Pan B. Air-enclosed pores in graphene aerogel inhibit the adsorption of bisphenol A but accelerate the adsorption of naphthalene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:114989. [PMID: 37178614 DOI: 10.1016/j.ecoenv.2023.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Graphene hydrogel (GH) and aerogel (GA) have great application potential as highly effective adsorbents, but the accessibility of their adsorption sites have not yet been identified, restricting our understanding on the adsorption mechanisms and manufacturing. This study comparatively studied the adsorption characteristics of bisphenol A (BPA) and naphthalene (NAP) on GH and GA, focussing on the accessibility of the adsorption sites. The adsorption of BPA on GA was much lower but faster than that on GH. NAP adsorption on GA was very close to that on GH but faster than that on the latter. Considering that NAP is volatilisable, we speculate that some unwetted sites in the air-enclosed pores are available to it, but not to BPA. We applied ultrasonic and vacuum treatments to remove the air in GA pores, which was verified using a CO2 replacement experiment. BPA adsorption was greatly enhanced but slowed, while that of NAP was not enhanced. This phenomenon suggested that some inner pores became accessible in the aqueous phase after air removal from pores. The enhanced accessibility of air-enclosed pores was verified by the increased relaxation rate of surface-bounded water on GA, based on a 1H NMR relaxation analysis. This study highlights that the accessibility of adsorption site plays a crucial role for the adsorption properties of carbon-based aerogel. The volatile chemicals may be quickly adsorbed in the air-enclosed pores, which be useful for immobilizing volatile contaminants.
Collapse
Affiliation(s)
- Mengnan Yin
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276005, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Jiang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Shi
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276005, China
| | - Di Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276005, China.
| | - Zhaohui He
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong Luo
- Yunnan Maochen Engineering Consulting Co. LTD, Kunming 650301, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
10
|
Gunture K, Garg AK, Aggarwal R, Kaushik J, Prajapati RK, Sonkar SK. Non-aqueous onion like nano-carbons from waste diesel-soot used as FRET-based sensor for sensing of nitro-phenols. ENVIRONMENTAL RESEARCH 2022; 212:113308. [PMID: 35460637 DOI: 10.1016/j.envres.2022.113308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Herein, a simple-functionalization method is described to prepare the oleylamine functionalized non-aqueous version of onion-like nanocarbons (ONC-OA), where ONC was isolated from the waste pollutant soot exhausted from the diesel engine. The surface group analysis of ONC-OA has been investigated via Nuclear Magnetic Resonance and X-ray Photoelectron Spectroscopy. ONC-OA shows blue fluorescence with a quantum yield of ∼6% in tetrahydrofuran (THF). The fluorescence-based sensing applications of ONC-OA has been investigated for selective sensing of toxic aromatic nitro-phenols compounds (para-nitro, dinitro, and trinitro phenols) from the tested many nitro organic compounds. Based on the limit of detection values, ONC-OA shows much better results for tri-nitro phenol compared to di and mono nitrophenol. To understand the quenching mechanism, a time-resolved photoluminescence analysis of the sensor with and without the addition of quenchers is performed. The effective lowering in fluorescence lifetime of the sensor after the addition of quenchers concludes that the quenching observed is majorly due to the Förster Resonance Energy Transfer (FRET) mechanism. The real-life application of ONC-OA was analyzed by external spiking of N-PhOHs in soil samples.
Collapse
Affiliation(s)
- Kumar Gunture
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Jaidev Kaushik
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Rajneesh Kumar Prajapati
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India.
| |
Collapse
|
11
|
Gunture, Kaushik J, Saini D, Singh R, Dubey P, Sonkar SK. Surface adhered fluorescent carbon dots extracted from the harmful diesel soot for sensing Fe( iii) and Hg( ii) ions. NEW J CHEM 2021. [DOI: 10.1039/d1nj04189d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple cost effective isolation method has been described for the extraction of surface-adhered blue–green fluorescent carbon material from the diesel soot and used them for the selective sensing of Fe(iii) and toxic Hg(ii) metal ions in aqueous medium.
Collapse
Affiliation(s)
- Gunture
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, 302017, India
| | - Jaidev Kaushik
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, 302017, India
| | - Ravindra Singh
- Department of Chemistry, Maharani Shri Jaya Government Post-Graduate College, Bharatpur, Rajasthan-321001, India
| | - Prashant Dubey
- Centre of Material Sciences, Institute of Interdisciplinary Studies, Nehru Science Complex, University of Allahabad, Prayagraj-211002, Uttar Pradesh, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, 302017, India
| |
Collapse
|