1
|
Vasudeva M, Adarsh UK, Warrier AK, George SD, Unnikrishnan VK. Performance evaluation of a hyphenated laser spectroscopy system with conventional methods for microplastic analysis. Sci Rep 2024; 14:19327. [PMID: 39164370 PMCID: PMC11336231 DOI: 10.1038/s41598-024-70501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Microplastics are one of the concerning environmental pollutants because of their ubiquity. Their capability to adsorb other environmental pollutants increases the risk even further. Existing identification approaches for microplastic characterization for polymer class and their surface-adsorbed heavy metal detection require the utilization of multiple resources and expertise. The article discusses the applicability of a custom-made hyphenated Laser Induced Breakdown Spectroscopy (LIBS)-Raman spectroscopic system in characterizing microplastics by comparing the analytical performance with conventional methods such as Attenuated Total Reflectance- Fourier Transform Infrared (ATR-FTIR) spectroscopy, confocal Raman spectroscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS). Raman analysis identified polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) plastics, which is confirmed by confocal Raman and FTIR study of the same. LIBS study of microplastics detected heavy metals such as Al, Ni, Co, and Zn, along with Ca and Mg trace elements. The cross-examination with EDS validates these trace elements' presence on the microplastics' surface. The results of the reported LIBS-Raman analysis and its validity evaluated using conventional gold-standard methods show the applicability of the proposed methodology in characterizing microplastics from environmental resources with less or no sample preparation in short time.
Collapse
Affiliation(s)
- M Vasudeva
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - U K Adarsh
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anish Kumar Warrier
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre for Climate Studies, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - V K Unnikrishnan
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Xiong X, Wang J, Liu J, Xiao T. Microplastics and potentially toxic elements: A review of interactions, fate and bioavailability in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122754. [PMID: 37844862 DOI: 10.1016/j.envpol.2023.122754] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In recent years, microplastics (MPs) have obtained growing public concern due to widespread distribution and harmful impacts. Their distinctive features including porous structure, small size, as well as large specific surface area render MPs to be carriers for transporting other pollutants in the environment, especially potentially toxic elements (PTEs). Considering the hot topic of MPs, it is of great significance to comb the reported literature on environmental behaviors of co-occurrence of MPs and PTEs, and systematically discuss their co-mobility, transportation and biotoxicity to different living organisms in diverse environmental media. Therefore, the aim of this work is to systematically review and summarize recent advances on interactions and co-toxicity of MPs and PTEs, in order to provide in-depth understanding on the transport behaviors as well as environmental impacts. Electrostatic attraction and surface complexation mainly govern the interactions between MPs and PTEs, which are subordinated by other physical sorption processes. Besides, the adsorption behaviors are mainly determined by physicochemical properties regarding to different MPs types and various condition factors (e.g., ageing and PTEs concentrations, presence of substances). Generally speaking, recently published papers make a great progress in elucidating the mechanisms, impact factors, as well as thermodynamic and kinetic studies. Bioavailability and bioaccumulation by plant, microbes, and other organisms in both aquatic and terrestrial environment have also been under investigation. This review will shed novel perspectives on future research to meet the sustainable development goals, and obtain critical insights on revealing comprehensive mechanisms. It is crucial to promote efficient approaches on environmental quality improvement as well as management strategies towards the challenge of MPs-PTEs.
Collapse
Affiliation(s)
- Xinni Xiong
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Vrinda PK, Amal R, Abhirami N, Mini DA, Kumar VJR, Devipriya SP. Co-exposure of microplastics and heavy metals in the marine environment and remediation techniques: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114822-114843. [PMID: 37922080 DOI: 10.1007/s11356-023-30679-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2023]
Abstract
Microplastics (MPs) and heavy metals are significant pollutants in the marine environment, necessitating effective remediation strategies to prevent their release into the sea through sewage and industrial effluent. This comprehensive review explores the current understanding of the co-exposure of MPs and heavy metal-enriched MPs, highlighting the need for effective remediation methods. Various mechanisms, including surface ion complexation, hydrogen bonding, and electrostatic forces, contribute to the adsorption of heavy metals onto MPs, with factors like surface area and environmental exposure duration playing crucial roles. Additionally, biofilm formation on MPs alters their chemical properties, influencing metal adsorption behaviors. Different thermodynamic models are used to explain the adsorption mechanisms of heavy metals on MPs. The adsorption process is influenced by various factors, including the morphological characteristics of MPs, their adsorption capacity, and environmental conditions. Additionally, the desorption of heavy metals from MPs has implications for their bioavailability and poses risks to marine organisms, emphasizing the importance of source reduction and remedial measures. Hybrid approaches that combine both conventional and modern technologies show promise for the efficient removal of MPs and heavy metals from marine environments. This review identifies critical gaps in existing research that should be addressed in future studies including standardized sampling methods to ensure accurate data, further investigation into the specific interactions between MPs and metals, and the development of hybrid technologies at an industrial scale. Overall, this review sheds light on the adsorption and desorption mechanisms of heavy metal-enriched MPs, underscoring the necessity of implementing effective remediation strategies.
Collapse
Affiliation(s)
- Punmoth Kalyadan Vrinda
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, Andaman and Nicobar Islands, India
| | - Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, India, 682022
| | - Nandakumar Abhirami
- Department of Aquatic Environment Management, Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, 400061, India
| | - Divya Alex Mini
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682508, Kerala, India
| | | | | |
Collapse
|
4
|
Królicka A, Maj A, Łój G. Application of Laser-Induced Breakdown Spectroscopy for Depth Profiling of Multilayer and Graded Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6641. [PMID: 37895625 PMCID: PMC10608262 DOI: 10.3390/ma16206641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Laser-induced breakdown spectroscopy (LIBS) has emerged as a powerful analytical method for the elemental mapping and depth profiling of many materials. This review offers insight into the contemporary applications of LIBS for the depth profiling of materials whose elemental composition changes either abruptly (multilayered materials) or continuously (functionally graded or corroded materials). The spectrum of materials is discussed, spanning from laboratory-synthesized model materials to real-world products including materials for fusion reactors, photovoltaic cells, ceramic and galvanic coatings, lithium batteries, historical and archaeological artifacts, and polymeric materials. The nuances of ablation conditions and the resulting crater morphologies, which are instrumental in depth-related studies, are discussed in detail. The challenges of calibration and quantitative profiling using LIBS are also addressed. Finally, the possible directions of the evolution of LIBS applications are commented on.
Collapse
Affiliation(s)
- Agnieszka Królicka
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland; (A.M.); (G.Ł.)
| | | | | |
Collapse
|
5
|
Li Y, Feng H, Xian S, Wang J, Zheng X, Song X. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108065. [PMID: 37797385 DOI: 10.1016/j.plaphy.2023.108065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) has attracted increasing attention due to their combined toxicity to terrestrial vegetation. Photosynthesis which utilizes light energy to synthesize organic substances is crucial for crop production. However, the plant photosynthetic response to the joint toxicity of MPs and Cd is still unknown. Here, we studied the effects of polyethylene (PE) MPs on the photosynthetic performance of two maize cultivars Xianyu 335 (XY) and Zhengdan 958 (ZD) grown in a Cd contaminated soil. Results showed that the leaf Cd concentration in XY and ZD reached 26.1 and 31.9 μg g-1, respectively. PE-MPs did not influence the leaf Cd content, but posed direct and negative effects on photosynthesis by increasing the malondialdehyde content, reducing the chlorophyll content, inhibiting photosynthetic capacity, disrupting the PSII donor side, blocking electron transfer in different photosystems, and suppressing the oxidation and reduction states of PSI. Transcriptomic analysis revealed that the inhibitory effect of combined PE-MPs and Cd on maize photosynthesis was attributed to suppressed expression of the genes encoding PSII, PSI, F-type ATPase, cytochrome b6/f complex, and electron transport between PSII and PSI. Using WGCNA, we identified a MEturquoise module highly correlated with photosynthetic traits. Hub genes bridging carbohydrate metabolism, amino acid metabolism, lipid metabolism, and translation provided the molecular mechanisms of PE-MPs and Cd tolerance in maize plants. The comprehensive information on the phytotoxicity mechanisms of Cd stress in the presence or absence of PE-MPs on the photosynthesis of maize is helpful for cloning Cd and PE-MP resistance genes in the future.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hongyu Feng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Shutong Xian
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Jiawei Wang
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Xuebo Zheng
- Institute of Tobacco Research of CAAS, Qingdao, 266101, China.
| | - Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| |
Collapse
|
6
|
Tognana S, D'Angelo C, Montecinos S, Pereyra M, Salgueiro W. Laser induced breakdown spectroscopy (LIBS) as a technique to detect copper in plastic and microplastic waste. CHEMOSPHERE 2022; 303:135168. [PMID: 35649446 DOI: 10.1016/j.chemosphere.2022.135168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Plastic waste is an environmental problematic, not only because of its own contamination, but also because it can act as a vector for other pollutants, particularly metals. In this work, taking advantage of the sensitivity of the LIBS technique, the presence of copper in plastics and microplastics present in a stream that receives effluents from a medium-sized city was determined. The influence of the digestion process on the collected samples was analyzed. On the other hand, copper retention in commonly used plastics submerged in stream water and in a solution prepared in the laboratory was analyzed. This study confirms that both macroplastics and microplastics collected from a stream that receives effluents from a city, can retain copper.
Collapse
Affiliation(s)
- Sebastián Tognana
- IFIMAT, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000, Tandil, Argentina; CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina; Comisión de Investigaciones Científicas de la Provincia de Bs, As., Calle 526 entre 10 y 11, 1900, La Plata, Argentina.
| | - Cristian D'Angelo
- CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina; Comisión de Investigaciones Científicas de la Provincia de Bs, As., Calle 526 entre 10 y 11, 1900, La Plata, Argentina; IFAS, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000, Tandil, Argentina.
| | - Susana Montecinos
- IFIMAT, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000, Tandil, Argentina; CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.
| | - Mariana Pereyra
- CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina; IFAS, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000, Tandil, Argentina.
| | - Walter Salgueiro
- IFIMAT, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, 7000, Tandil, Argentina; CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina; Comisión de Investigaciones Científicas de la Provincia de Bs, As., Calle 526 entre 10 y 11, 1900, La Plata, Argentina.
| |
Collapse
|
7
|
Abstract
Microplastic debris is a persistent, ubiquitous global pollutant in oceans, estuaries, and freshwater systems. Some of the highest reported concentrations of microplastics, globally, are in the Gulf of Mexico (GoM), which is home to the majority of plastic manufacturers in the United States. A comprehensive understanding of the risk microplastics pose to wildlife is critical to the development of scientifically sound mitigation and policy initiatives. In this review, we synthesize existing knowledge of microplastic debris in the Gulf of Mexico and its effects on birds and make recommendations for further research. The current state of knowledge suggests that microplastics are widespread in the marine environment, come from known sources, and have the potential to be a major ecotoxicological concern for wild birds, especially in areas of high concentration such as the GoM. However, data for GoM birds are currently lacking regarding typical microplastic ingestion rates uptake of chemicals associated with plastics by avian tissues; and physiological, behavioral, and fitness consequences of microplastic ingestion. Filling these knowledge gaps is essential to understand the hazard microplastics pose to wild birds, and to the creation of effective policy actions and widespread mitigation measures to curb this emerging threat to wildlife.
Collapse
|
8
|
Zhao M, Cao Y, Chen T, Li H, Tong Y, Fan W, Xie Y, Tao Y, Zhou J. Characteristics and source-pathway of microplastics in freshwater system of China: A review. CHEMOSPHERE 2022; 297:134192. [PMID: 35257703 DOI: 10.1016/j.chemosphere.2022.134192] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
China plays a key role in global plastic production, consumption and disposal, which arouses growing concern about microplastics (MPs) contamination in Chinese freshwater systems. However, few reviews have discussed the characteristics of MP pollution in whole freshwater systems at a national scale. In this review, we summarized the characteristics, sources and transport pathways of MPs in Chinese freshwater systems including surface water and sediment. Results showed that current research mainly focused on the middle and lower reaches of the Yangtze River and its tributaries, as well as lakes and reservoirs along the Yangtze River. Large-scale reservoirs, rivers and lakes located in densely populated areas usually showed higher abundances of MPs. The majority of MPs in Chinese surface water and sediment mainly consisted of polyethylene and polypropylene, and the most common morphologies were fibers and fragments. To identify the sources and pathways, we introduced the source-sink-pathway model, and found that sewage system, farmland and aquaculture area were the three most prevalent sinks in freshwater systems in China. The source-sink-pathway model will help to further identify the migration of MPs from sources to freshwater systems.
Collapse
Affiliation(s)
- Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| | - Tiantian Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yifei Tong
- Wuhan Ecologic Environmental Carbon Technology Co., Ltd, Wuhan, 430073, China
| | - Wenbo Fan
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yuwei Xie
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Ye Tao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingcheng Zhou
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| |
Collapse
|
9
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Ding DS, Hsieh S, Chen CW, Dong CD. Exposure of Goniopora columna to polyethylene microplastics (PE-MPs): Effects of PE-MP concentration on extracellular polymeric substances and microbial community. CHEMOSPHERE 2022; 297:134113. [PMID: 35227744 DOI: 10.1016/j.chemosphere.2022.134113] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Although the pollution of coral reefs by microplastics (MPs) is an environmental problem of global significance, the effects of MP concentration on scleractinian corals remain largely underexplored. Herein, we exposed a representative scleractinian coral (Goniopora columna) to different concentrations (5-300 mg L-1) of polyethylene microplastics (PE-MPs; 40-48 μm) over seven days and evaluated the changes in microbial community and extracellular polymeric substances (EPS) using fluorescence excitation-emission matrix spectroscopy and amplicon sequence variants (ASV). At a PE-MP concentration of 300 mg L-1, the relative abundance of Bacillus (Firmicutes phylum) and Ruegeria (Proteobacteria phylum) in PE-MP-associated EPS increased and decreased, respectively, while the effects of exposure depended on the particle size of the extracellular polymeric substance (EPS)-based matrix and the humification index. Humic- and fulvic-like substances were identified as critical EPS components produced by microbial activity. The results have shed new insights into short-term responses of G. columna during exposure to different PE-MP concentrations and reveal important coral-MP-microbiome interactions in coral reef ecosystems. Results demonstrated that the coral-MPs interactions should be further evaluated to gain a deeper understanding of the underlying ecotoxicological risks.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
10
|
Yin Y, Liu G. Application of a novel hydroxyl functionalized fluorescent covalent organic framework for turn-off ultrasensitive Zn 2+ ion detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1988-1995. [PMID: 35532901 DOI: 10.1039/d2ay00331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this research, a novel hydroxyl functionalized covalent organic framework (COF) with fluorescence properties was rationally designed based on the reaction between 2,5-dihydroxy-terephthalic-dihydrazide (DHTPz) and 1,3,5-benzenetricarboxaldehyde (Bt) for Zn2+ detection. The prepared DHTPz-Bt exhibited strong fluorescence, while the apparent quenching of fluorescence was observed after the introduction of Zn2+. Meanwhile, DHTPz-Bt exhibited high sensitivity and promising selectivity during the detection of Zn2+. Additionally, the recognition process was revealed to be attributed to the coordination between the hydroxyl groups on the phenyls of DHTPz-Bt and Zn2+ ions, as verified by using Fourier-transform infrared spectra and X-ray photoelectron spectra. This work demonstrates the great potential of fluorescent probes by rationally introducing metal ligands, which will lead to a suite of new COF materials for metal ion sensing in a practical manner.
Collapse
Affiliation(s)
- Yuan Yin
- Key Lab of Smart Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing, 100083, China.
- Key Lab of Agriculture Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing, 100083, China
| | - Gang Liu
- Key Lab of Smart Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing, 100083, China.
- Key Lab of Agriculture Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
11
|
|