1
|
Xue N, Guo Z, Gai X, Chen Y, He S, Lin G, Liu F, Zhang S, Qiu P. Insight on the optimized electronic structure of carbon nitride on ultrafast water treatment via photocatalytic activation of ferrate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137029. [PMID: 39742859 DOI: 10.1016/j.jhazmat.2024.137029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Ferrate (Fe(VI)) is a widely used water purifier and is easily affected by external factors. Given that the actual water environment conditions are complicated, this study designed an oxygen-doped carbon nitride (CNO) with rich electron sites to explore whether direct electron transfer promotes the degradation efficiency of Fe(VI) for pollutants under visible light. For comparison, we also prepared phosphorus-doped carbon nitride (CNP), which has electron-deficient sites and indirect electron transfer. In the CNO/Fe(VI)/light system, not only more high-valent iron and reactive oxygen species were generated, but also the pollutant degradation rate, reaction kinetics, and electron yield were significantly better than those of the CNP and CN systems, verifying the superiority of direct electron transfer. In addition, CNO showed excellent performance in both actual solar photocatalysis and continuous flow experiments. Therefore, the photocatalysis/direct electron transfer mechanism proposed provides an innovative strategy for improving the application potential of Fe(VI) in the field of pollution control and its industrialization application.
Collapse
Affiliation(s)
- Ningxuan Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaobing Guo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Suqian University, Suqian 223800, China.
| | - Xinyu Gai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiyang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Siyue He
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guanjie Lin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fengling Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
2
|
Andleeb S, Irfan M, Atta-Obeng E, Sukmawati D. Advances in waste-derived functional materials for PFAS remediation. Biodegradation 2025; 36:13. [PMID: 39832063 DOI: 10.1007/s10532-025-10109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally. Research in various regions such as North America, Asia, Europe, and remote polar zones has revealed the accumulation of perfluorooctane sulfonate (PFOS) in the tissues of various animal species, with concentrations reaching up to 1900 ng/g in aquatic species like dolphins and whales. Researchers have employed various remediation techniques such as solvent extraction, ion exchange, precipitation, adsorption, and membrane filtration, each of which has its drawbacks. Adsorption, particularly using waste-derived functional materials like biochar, is emerging as a promising method for PFAS remediation due to its cost-effectiveness and sustainability. For example, waste timber-derived biochar exhibits adsorption efficiency comparable to commercial activated carbon. This review highlights advancements in using agricultural, industrial, and biological waste-derived materials for sustainable PFAS remediation. We discuss innovative modification techniques like hydrothermal synthesis, pyrolysis, calcination, co-precipitation, the sol-gel method, and ball milling. The study also examines adsorption mechanisms, factors affecting adsorption efficiency, and the technological challenges in scaling up waste-derived material use. It aims to explore developments, challenges, and future directions for using these materials for efficient PFAS remediation and contributing to sustainable environmental cleanup solutions.
Collapse
Affiliation(s)
- Saba Andleeb
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Emmanuel Atta-Obeng
- Department of Natural Science, Coppin State University, Baltimore, MD, 21216, USA.
| | - Dalia Sukmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| |
Collapse
|
3
|
Subash V, Manikandan V, Soup Song K, Sethuraman V, Elango D, Muthusamy G, Kim W, Jayanthi P. Tailoring CuO x loading on CoFe 2O 4 nanocubes photocatalyst for superior photocatalytic degradation of triclosan pollutants under VL irradiation and toxicological evaluation. ENVIRONMENTAL RESEARCH 2024; 258:119395. [PMID: 38909944 DOI: 10.1016/j.envres.2024.119395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 06/09/2024] [Indexed: 06/25/2024]
Abstract
In this study, we report the development of a novel CuOx(3 wt%)/CoFe2O4 nanocubes (NCs) photocatalyst through simple co-precipitation and wet impregnation methods for the efficient photocatalytic degradation of triclosan (TCS) pollutants. Initially, rod-shaped bare CoFe2O4 was synthesized using a simple co-precipitation technique. Subsequently, CuOx was loaded in various percentages (1, 2, and 3 wt%) onto the surface of bare CoFe2O4 nanorods (NRs) via the wet impregnation method. The synthesized materials were systematically characterized to evaluate their composition, structural and electrical characteristics. The CuOx(3 wt%)/CoFe2O4 NCs photocatalyst exhibited superior photocatalytic degradation efficiency of TCS (89.9%) compared to bare CoFe2O4 NRs (62.1 %), CuOx(1 wt%)/CoFe2O4 (80.1 %), CuOx(2 wt%)/CoFe2O4 (87.0 %) under visible light (VL) irradiation (λ ≥ 420 nm), respectively. This enhanced performance was attributed to the improved separation effectiveness of photogenerated electron (e-) and hole (h+) in CuOx(3 wt%)/CoFe2O4 NCs. Furthermore, the optimized CuOx(3 wt%)/CoFe2O4 NCs exhibited strong stability and reusability in TCS degradation, as demonstrated by three successive cycles. Genetic screening on Caenorhabditis elegans showed that CuOx(3 wt%)/CoFe2O4 NCs reduced ROS-induced oxidative stress during TCS photocatalytic degradation. ROS levels decreased at 30, 60, and 120-min intervals during TCS degradation, accompanied by improved egg hatching rates. Additionally, expression levels of stress-responsible antioxidant proteins like SOD-3GFP and HSP-16.2GFP were significantly normalized. This study demonstrates the efficiency of CuOx(3 wt%)/CoFe2O4 NCs in degrading TCS pollutants, offers insights into toxicity dynamics, and recommends its use for future environmental remediation.
Collapse
Affiliation(s)
- Velu Subash
- Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India; Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Velu Manikandan
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea; Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, 600077, India
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Veeran Sethuraman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India
| | - Duraisamy Elango
- Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea.
| | - Palaniyappan Jayanthi
- Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
4
|
Huang H, Tao X, Niu Z, Qin X, Ren J, Shan B, Liu Y, Ren J. Construction of magnetically recoverable MnZnFe 2O 4@Ag 3PO 4 Z-scheme photocatalyst for rapid visible-light-driven phenol degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32095-32107. [PMID: 36462080 DOI: 10.1007/s11356-022-24479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Visible-light-driven magnetic heterojunction as a promising photocatalysts has received much attention in environmental remediation. In this work, novel Z-scheme heterojunction MnZnFe2O4@Ag3PO4 (MZFO@APO) magnetic photocatalysts with excellent visible-light-driven photocatalytic activity are successfully constructed and characterized. The photocatalytic activity for phenol degradation is measured, and photodegradation mechanism is investigated with EPR, radical trapping experiments, and LC-MS. It turns out that the heterojunction introduced MZFO exhibits good adsorption effect on visible light and the direct Z-scheme bandgap alignment of MZFO and APO significantly improves charge separation and electron transfer, outperforming that of pure APO. MZFO@APO-40% with 40% APO content shows the rapid photodegradation performance, obtaining a 100% removal efficiency of phenol (25 mg L-1) after 12-min visible light irradiation, and its kinetic constants are approximately 25.3 and 4.9 times higher than that of P25 TiO2 and pure APO, respectively. Especially, MZFO@APO-40% also possesses a high magnetic separation property and can be efficiently reused for 5 cycles. Additionally, EPR and radical trapping experiments confirm that h+, O2-, and 1O2 are the main active species in the photocatalytic process. Hydroquinone and small molecular organic acids such as maleic acid and oxalic acid are detected by LC-MS, which further indicates that the pathway of phenol degradation involves hydroxylation, open-ring reactions, and mineralization reactions. The novel addition of MZFO in photocatalyst construction has the potential to promote its application in environmental remediation.
Collapse
Affiliation(s)
- Hua Huang
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, 716000, Yan'an, Shaanxi, China
- Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, 716000, Yan'an, Shaanxi, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, 716000, Yan'an, Shaanxi, China
| | - Xin Tao
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, 716000, Yan'an, Shaanxi, China
| | - Zhirui Niu
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, 716000, Yan'an, Shaanxi, China.
- Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, 716000, Yan'an, Shaanxi, China.
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, 716000, Yan'an, Shaanxi, China.
| | - Xiaoqian Qin
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, 716000, Yan'an, Shaanxi, China
| | - Jialu Ren
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, 716000, Yan'an, Shaanxi, China
| | - Baoqin Shan
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, 716000, Yan'an, Shaanxi, China
- Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, 716000, Yan'an, Shaanxi, China
| | - Yu Liu
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, 716000, Yan'an, Shaanxi, China
- Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, 716000, Yan'an, Shaanxi, China
| | - Jingyu Ren
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, 716000, Yan'an, Shaanxi, China
- Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, 716000, Yan'an, Shaanxi, China
| |
Collapse
|
5
|
Huang H, Tao X, Niu Z, Shan B, Liu Y, Ren J. Construction of a p-n heterojunction based on magnetic Mn 0.6Zn 0.4Fe 2O 4 and ZnIn 2S 4 to improve photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20790-20803. [PMID: 36260225 DOI: 10.1007/s11356-022-23721-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
To improve the photocatalytic performance of Mn0.6Zn0.4Fe2O4 (MZFO) and ZnIn2S4 (ZIS) for organic pollutants, the p-n MZFO@ZIS heterojunctions with different weight percentage (10 ~ 40%) of MZFO are constructed from spent batteries and added indium ion via a green bioleaching and hydrothermal method. Structural, optical, and photocatalytic properties for the heterojunctions are investigated systematically by XRD, FT-IR, SEM-EDX, TEM, BET, VB-XPS, UV-vis DRS, PL, etc. The results confirm that p-n junction significantly improves the visible light adsorption and the separation efficiency of photogenerated carriers. Specifically, MZFO-25%@ZIS shows the highest photodegradation performance toward Congo red (CR), and its reactive kinetic constant is about 9.6, 7.8, and 7.0 times higher than that of P25 TiO2, MZFO, and ZIS, respectively, and MZFO-25%@ZIS still possesses a high reusability and simple magnetic separation after 5 cycles of reuse. The radical trapping experiments and electronic paramagnetic resonance (EPR) tests show that ·O2-, ·OH, and h+ are the most important active substance for degrading CR. The pathways for the CR degradation are further proposed based on the intermediate analysis. DFT + U calculations confirm that the high charge density of Zn-O, Fe-O, and Zn-S bonds in the MZFO and ZIS molecules provides the electrons for the sufficient production of free radicals. This work also provides a novel high value-added strategy for the green utilization of spent batteries.
Collapse
Affiliation(s)
- Hua Huang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China
| | - Xin Tao
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China
| | - Zhirui Niu
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China.
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China.
| | - Baoqin Shan
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yu Liu
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jingyu Ren
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an University, Yan'an, 716000, Shaanxi, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China
| |
Collapse
|
6
|
Zhao B, Xu H, Zhang K, Gao B, Wang Y, Wang Q, Zhang K, Huang Y, Li J. Visible-light-driven CQDs/TiO 2 photocatalytic simultaneous removal of Cr(VI) and organics: Cooperative reaction, kinetics and mechanism. CHEMOSPHERE 2022; 307:135897. [PMID: 35932916 DOI: 10.1016/j.chemosphere.2022.135897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
CQDs/TiO2 was synthesized with a coprecipitation method and characterized by XRD, SEM, TEM/HRTEM, BET, XPS, UV-Vis DRS and I-t curve technologies. UV-Vis DRS displayed that absorption spectrum of CQDs/TiO2 enlarged to visible light zone, suggesting that CQDs/TiO2 can be irradiated by visible light. I-t curve showed that photocurrent of CQDs/TiO2 was higher than that of bare TiO2, revealing that the doping of CQDs accelerated the transfer of photoelectrons and restrained the recombination of photoinduced carriers. Simultaneous removal of Cr(VI) and organics with CQDs/TiO2 photocatalytic reaction was investigated and factors were optimized, and almost all Cr(VI) and organics were removed under the optimum conditions. Experimental results displayed that there was a distinct cooperation removal effect between Cr(VI) and organics in CQDs/TiO2 photocatalytic reaction. XPS analysis proved that Cr(VI) was reduced to Cr(III) in situ on CQDs/TiO2 surface. There were e-, h+,·OH and ·O2- active species which were detected with DMPO in ESR test during CQDs/TiO2 photocatalytic reaction, and scavenger experiment proved that e- and h+ were the substantial reactants for Cr(VI) and organics, respectively. The pathway of photocatalytic simultaneous removal of Cr(VI) and organics underwent four steps: adsorption of Cr(VI) and organics on CQDs/TiO2 surface; production of photo electrons and holes in visible light; reduction of Cr(VI) and oxidation of organics; desorption of Cr(III) and intermediates. Photocatalytic reaction kinetics of Cr(VI) and organics were both confirmed to pseudo first-order reaction. Life span and small scale real application tests both demonstrated that CQDs/TiO2 had a potential application to wastewater containing Cr(VI) and organics.
Collapse
Affiliation(s)
- Baoxiu Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Hao Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Keliu Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Bo Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Yilin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Qi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Kaixin Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Yue Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Jincheng Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
7
|
Guo J, Liu T, Peng H, Zheng X. Efficient Adsorption-Photocatalytic Removal of Tetracycline Hydrochloride over Octahedral MnS. Int J Mol Sci 2022; 23:9343. [PMID: 36012607 PMCID: PMC9408993 DOI: 10.3390/ijms23169343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
To disclose the effect of crystal plane on the adsorption-photocatalytic activity of MnS, octahedral MnS was prepared via the hydrothermal route to enhance the adsorption and photocatalytic efficiencies of tetracycline hydrochloride (TCH) in visible light region. The optimal MnS treated at 433 K for 16 h could remove 94.83% TCH solution of 260 mg L-1 within 180 min, and its adsorption-photocatalytic efficiency declined to 89.68% after five cycles. Its excellent adsorption-photocatalytic activity and durability were ascribed to the sufficient vacant sites of octahedral structure for TCH adsorption and the feasible band-gap structure for visible-light response. In addition, the band gap structure (1.37 eV) of MnS with a conduction band value of -0.58 eV and a valence band value of 0.79 eV was favorable for the generation of O2-, while unsuitable for the formation of OH. Hence, octahedral MnS was a potential material for the removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Jing Guo
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Tingting Liu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China
| | - Hao Peng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Xiaogang Zheng
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China
| |
Collapse
|
8
|
Ma Y, Wang D, Xu Y, Lin H, Zhang H. Nonradical electron transfer-based peroxydisulfate activation by a Mn-Fe bimetallic oxide derived from spent alkaline battery for the oxidation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129172. [PMID: 35739708 DOI: 10.1016/j.jhazmat.2022.129172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Mn-Fe bimetallic oxide has been employed as an outstanding peroxydisulfate (PDS) activator, but the underlying mechanism is still controversial. In this work, Mn0.27FeO4.55 (MFBO) was synthesized using the recovered waste alkaline battery and its catalytic activity and mechanism for PDS activation were explored in detail. Results show that MFBO exhibited a higher catalytic activity than the individual single metal oxides (FeOx and Mn2O3) due to the synergistic effect between Fe and Mn elements. The removal efficiency of bisphenol A (BPA) with an initial concentration of 10 mg/L reached 97.8% within 90 min in the presence of 0.5 g/L MFBO and 2.0 mM PDS. Moreover, the MFBO maintained high stability and reusability even after being recycled for five times. With the aid of a series of experiments and ex-situ/in-situ characterizations, a non-radical PDS activation mechanism was proposed, in which organic contaminants would be oxidized through a direct electron transfer pathway mediated by the metastable reactive complexes (MFBO-PDS*). Notably, the MFBO/PDS system revealed selective oxidation towards different organic pollutants and the reaction rates were closely related to their structures and properties. The research provided an effective alternation process for application of the waste battery, as well as developed a novel perspective for removal of recalcitrant aqueous contaminants through a nonradical mechanism.
Collapse
Affiliation(s)
- Yahui Ma
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Dalin Wang
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Yin Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China.
| | - Heng Lin
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China; Department of Cardiothoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan 430060, China.
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
9
|
Chen Z, Wei W, Chen H, Ni BJ. Recent advances in waste-derived functional materials for wastewater remediation. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:86-104. [PMID: 38075525 PMCID: PMC10702907 DOI: 10.1016/j.eehl.2022.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 01/17/2024]
Abstract
Water pollution is a major concern for public health and a sustainable future. It is urgent to purify wastewater with effective methods to ensure a clean water supply. Most wastewater remediation techniques rely heavily on functional materials, and cost-effective materials are thus highly favorable. Of great environmental and economic significance, developing waste-derived materials for wastewater remediation has undergone explosive growth recently. Herein, the applications of waste (e.g., biowastes, electronic wastes, and industrial wastes)-derived materials for wastewater purification are comprehensively reviewed. Sophisticated strategies for turning wastes into functional materials are firstly summarized, including pyrolysis and combustion, hydrothermal synthesis, sol-gel method, co-precipitation, and ball milling. Moreover, critical experimental parameters within different design strategies are discussed. Afterward, recent applications of waste-derived functional materials in adsorption, photocatalytic degradation, electrochemical treatment, and advanced oxidation processes (AOPs) are analyzed. We mainly focus on the development of efficient functional materials via regulating the internal and external characteristics of waste-derived materials, and the material's property-performance correlation is also emphasized. Finally, the key future perspectives in the field of waste-derived materials-driven water remediation are highlighted.
Collapse
Affiliation(s)
- Zhijie Chen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Wei Wei
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bing-Jie Ni
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
10
|
Huang H, Feng W, Niu Z, Qin X, Liu X, Shan B, Liu Y. Structural, optical and photocatalytic properties of magnetic recoverable Mn 0.6Zn 0.4Fe 2O 4@Zn 0.9Mn 0.1O heterojunction prepared from waste Mn-Zn batteries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114120. [PMID: 34794055 DOI: 10.1016/j.jenvman.2021.114120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Green, simple and high value-adding technology is crucial for realizing waste batteries recycling. In this work, the magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn0.9Mn0.1O (MZFO@ZMO) heterojunctions are prepared from waste Mn-Zn batteries via a green bioleaching and sample co-precipitation method. The as-prepared catalysts with different Zn0.9Mn0.1O weight percentage (25%, 50% and 75%) have been comprehensively characterized in structure, optics, photoelectrochemistry and photocatalytic activity. Characterization results indicate that MZFO@ZMO heterojunctions with the core-shell structure, demonstrates excellent absorption intensity in the visible light region, outperforming that of individual ZnO and Zn0.9Mn0.1O. Especially, the staggered bandgap alignment of Mn0.6Zn0.4Fe2O4 and Zn0.9Mn0.1O greatly enhances electron transfer and charge separation in the binary heterojunction system. The optimized MZFO@50%-ZMO shows the highest photodegradation performance toward methylene blue (MB) under the visible light irradiation, with a 99.7% of photodegradation efficiency of 20 mg L-1 of MB within 90 min, and its reactive kinetic constants is about 7.2, 10.8 and 21.7 times higher than that of Zn0.9Mn0.1O, P25 TiO2 and Mn0.6Zn0.4Fe2O4, respectively. The MB photocatalytic mechanism is investigated in the scavenger and 5,5-dimethylpyrroline-N-oxide (DMPO) spin-trapping electron spin resonance (ESR) experiments, and h+ and *O2- are identified as the major active species for MB degradation. In addition, MZFO@50%-ZMO also exhibits a good reusability and high magnetic separation properties after six successive cycles. This new material indicates the advantages of low costs, simple reuse and great potential in application.
Collapse
Affiliation(s)
- Hua Huang
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, PR China
| | - Wanting Feng
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, PR China
| | - Zhirui Niu
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, PR China.
| | - Xiaoqian Qin
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, PR China
| | - Xianfan Liu
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, PR China
| | - Baoqin Shan
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, PR China
| | - Yu Liu
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, PR China
| |
Collapse
|