1
|
Wang Q, Zhang T, Liu X, Liu S, Wang X, Wang X. The fate of 6:2 fluorotelomer alcohol in anaerobic landfill leachate: Implication for fugitive emission from waste landfills. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126375. [PMID: 40334735 DOI: 10.1016/j.envpol.2025.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Although 6:2 fluorotelomer alcohol (6:2 FTOH) is a common compound in landfill leachate, its anaerobic biotransformation and partitioning remain poorly understood. This study investigated the anaerobic biotransformation and partitioning of 6:2 FTOH in landfill leachate microcosms. At the end of the experiment, 19.4 mol% of the initial 6:2 FTOH partitioned into the gas phase. Therefore, anaerobic leachate could represent a significant pathway for semi-volatile 6:2 FTOH to the landfill gas or enter the atmosphere. The anaerobic biotransformation of 6:2 FTOH in leachate conformed to the first-order bi-exponential degradation model and the half-life was 12 days. The 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was the main biotransformation product, accounting for 8 mol%. Moreover, microbial community composition showed the genus of Pseudomonas, DMER64, and Fastidiosipila may play a role in the biotransformation of 6:2 FTOH. This study elucidates the potential significance of biotransformation processes on both the partitioning and environmental fate of 6:2 FTOH within landfill leachate.
Collapse
Affiliation(s)
- Qian Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Tao Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Shuo Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Xinyue Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
2
|
Elboghdady HGE, Clagnan E, De Franceschi V, Cucina M, Dell'Orto M, De Nisi P, Goglio A, Adani F. Microbial acclimation of thermophilic anaerobic digestate enhances biogas production and biodegradation of polylactic acid in combination with the organic fraction of municipal solid waste (OFMSW). WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114895. [PMID: 40393274 DOI: 10.1016/j.wasman.2025.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Bioplastics are a promising alternative to conventional plastics. Their anaerobic co-digestion with the organic fractions of municipal solid waste (OFMSW) is an ideal end-of-life scenario reducing pre-treatment and increasing efficiency and biogas production. Bioplastic degradation is limited under anaerobic digestion (AD) as it requires longer hydraulic retention time (HRT) compared to industrial OFMSW plants' HRTs. Here, three AD runs were conducted sequentially under thermophilic conditions to investigate the effects of inoculum acclimation on enhancing the degradation of polylactic acid (PLA) and OFMSW in mono and co-digestion (PLA + OFMSW). In PLA mono-digestion, microbial acclimation increased biogas production up to +152 % (831 ± 11 NL kgVS-1) and biogas production rate from 27 to 47 NL kgVS-1 d-1 with a 5-day reduction of the lag phase. This improvement was associated with the enrichment of the PLA-degrading bacteria Tepidanaerobacter. In PLA + OFMSW co-digestion, biogas production increased of +69 % (827 ± 69 NL kgVS-1), the biogas production rate increased to 58 NL kgVS-1 d-1 with a lag phase reduction of 7 days. An increase of both protein degraders (Halocella and Acetomicrobium) and Tepidanaerobacter was achieved. In OFMSW mono-digestion, acclimation increased cumulative biogas production to + 22 % (719 ± 25 NL kgVS-1) with no biogas production rate and lag phase modifications, indicating an already adapted community. A variance in Methanothermobacter and Metanoculleus abundances across treatments was linked to different biomethane productions. Microbial acclimation is a valid and economical approach to enhance biogas production and PLA degradability, alone or with OFMSW, further reducing HRTs enabling sustainable bioplastic and OFMSW waste management.
Collapse
Affiliation(s)
- Hager Galal Elsayed Elboghdady
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Elisa Clagnan
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy.
| | - Veronica De Franceschi
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Mirko Cucina
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via della Madonna Alta 128, 06128 Perugia, Italy
| | - Marta Dell'Orto
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Patrizia De Nisi
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Andrea Goglio
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
3
|
Chen N, Zhang X, Qi L, Gao F, Wu G, Li H, Guo W, Ngo HH. Enhancement of volatile fatty acids degradation and rapid methanogenesis in a biochar-assisted anaerobic membrane bioreactor via enhancing direct interspecies electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125045. [PMID: 40127599 DOI: 10.1016/j.jenvman.2025.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
In this investigation, we assessed the efficacy of a biochar-supported anaerobic membrane bioreactor (BC-AnMBR) for continuously treating swine wastewater (SWW) under varying NH4+-N stress levels. Our findings revealed that as the NH4+-N concentration escalated from 440 mg/L to 1400 mg/L, the BC-AnMBR exhibited a notable 14.5 % improvement in NH4+-N removal under heightened ammonia pressure compared to the conventional AnMBR (CG-AnMBR). This enhancement primarily stemmed from ion-exchange interactions between the functional groups (hydroxyl, carboxyl, ester, and aldehyde groups) on the biochar surface and NH4+-N, serving as the primary mechanism of action. Moreover, concerning resource recovery, the BC-AnMBR sustained a standard methane yield of 0.184 LCH4/gCOD, surpassing that of the CG-AnMBR by more than threefold. Microbial community analysis unveiled that the BC-AnMBR fostered the enrichment of ammonia-tolerant electroactive methanogenic archaea, notably from the genera Methanosarcina and Methanolinea. Notably, up-regulation of functional genes associated with key enzymes involved in propionic and butyric acid degradation and the autotrophic methanogenic pathway was observed in the BC-AnMBR, consequently accelerating methane production rates. Ultimately, the incorporation of biochar amplified the activity of the microbial electron transport system by 41.77 % and boosted the concentration of c-type cytochrome by 50.6 %. These enhancements facilitated the establishment of direct interspecies electron transfer, ensuring the stability of the anaerobic digestion process under ammonia-inhibited conditions.
Collapse
Affiliation(s)
- Nianwen Chen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Li Qi
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Fu Gao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland
| | - Hongxia Li
- Tianjin Caring Technology Development Co., Ltd., Haitai North Road 2, Tianjin, 300381, China
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
4
|
Chen L, Wu Z, Niu J, Wang Y, Cai M, Xi J, Cui Y, Cheng L, Fan X. Simultaneous nitrogen removal and phosphorus recovery in granular sludge-based partial denitrification/anammox-hydroxyapatite precipitation (PD/A-HAP) process under low C/N ratio and dissolved oxygen limitation. BIORESOURCE TECHNOLOGY 2025; 419:132045. [PMID: 39799988 DOI: 10.1016/j.biortech.2025.132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.13 % and a phosphorus removal efficiency (PRE) of 73.6 %. Metagenomic analysis revealed that under dissolved oxygen stress, The abundance of Candidatus Brocadia increased from 1 % to 26.1 %, significantly boosting anammox activity. indicating enhanced microbial activity. The upregulation of related genes (sdh, suc, hzs) further boosted AnAOB activity. HAP was identified as the main inorganic component of the granule. This process shows strong potential for nitrogen and phosphorus removal with resource recovery in wastewater treatment.
Collapse
Affiliation(s)
- Lijie Chen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Zhenjun Wu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.
| | - Jiayu Niu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Yihan Wang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Ming Cai
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450001, China
| | - Jiale Xi
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Yanlei Cui
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Lang Cheng
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Xinyi Fan
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| |
Collapse
|
5
|
Guo Y, Zhao Y, Li Z, Wang Z, Zhang W, Lin K, Zhou T. Exploring interactive effects of environmental and microbial factors on food waste anaerobic digestion performance: Interpretable machine learning models. BIORESOURCE TECHNOLOGY 2025; 416:131762. [PMID: 39515439 DOI: 10.1016/j.biortech.2024.131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Biogas yield in anaerobic digestion (AD) involves continuous and complex biological reactions. The traditional linear models failed to quantitatively assess the interactive effects of these factors on AD performance. To further explore the internal relationship between target variables and AD performance, this study developed four machine learning models to predict biogas yield and consider the interaction among various factors. Results indicated that the highest prediction accuracy of AD performance was achieved by adding bacterial genera dataset with environmental factors. Random forest model exhibited the highest accuracy, with the testing coefficient of determination equal to 0.9879. Among two types of input features, the bacterial genera accounted for 89.9 % of the impact on biogas yield, followed by environmental factors. The results revealed Keratinibaculum and Acetomicrobium as critical bacteria. The volatile fatty acid controlled below 2000 mg/L and the improved stirring system in AD process were recommended to achieve maximum biogas yield.
Collapse
Affiliation(s)
- Yanyan Guo
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Tianfu Yongxing Laboratory, Chengdu 610213, PR China
| | - Zongsheng Li
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210019, Jiangsu, PR China
| | - Zhengyu Wang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wenxiao Zhang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Kunsen Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China.
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China.
| |
Collapse
|
6
|
Adams M. Ammonia-stressed anaerobic digestion: Sensitivity dynamics of key syntrophic interactions and methanogenic pathways-A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123183. [PMID: 39492135 DOI: 10.1016/j.jenvman.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The problematic anaerobic digestion (AD) of protein-rich substrates owing to their high ammonia content continues to hinder optimum methanation despite their high potential for offsetting greenhouse gas (GHG) emissions. This review focuses on the analyses of the sensitivity dynamics of key AD processes as well as the microbial interactions and exchanges that occur with them. Aside from the apparent increased risk associated with thermophilic ammonia-rich substrate AD, the marginally higher energy generation compared to mesophilic systems is not commensurate to the energy requirement. Moreover, while comparable FAN thresholds have been confirmed, TAN thresholds are susceptible to physical chemistry and so vary greatly. Profiling of the metabolic capability of front-end AD microbiome revealed Bacteroidetes, Firmicutes, and Synergistetes as some of the ammonia-resilient bacteria groups while Proteobacteria and Actinobacteria were the most fragile taxa. Besides the predominance of incomplete propionate oxidizing bacteria under ammonia stress conditions, syntrophic propionate oxidation (SPO) is usually shifted from the methylmalonyl CoA to the dismutation pathway. Furthermore, besides their different recoverability potentials, distinct methanogenic groups are differentially impacted by different ammonia species. Prevailing literature evidence suggests that conductive material assisted bioaugmentation with SAO-HM consortia, and in-situ H2 supplementation are the most effective for expediting electron transfer and relieving ammonia stress. These valuable insights should inform the design of targeted ammonia inhibition mitigation strategies.
Collapse
Affiliation(s)
- Mabruk Adams
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
7
|
Ma X, Liu D, Chu X, Huang J, Shu Z, Li Y, Jin Y. Effects of exogenous signaling molecules on anaerobic sludge digestion: Quorum sensing and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2024; 414:131624. [PMID: 39395605 DOI: 10.1016/j.biortech.2024.131624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Regulating quorum sensing (QS) signaling molecules could improve wastewater treatment but might increase antibiotic resistance. This study investigated the effects of exogenous C6-HSL on anaerobic sludge under oxytetracycline stress, with a focus on antibiotic resistance genes (ARGs) and the QS response. The results revealed that exogenous oxytetracycline increased the copy number of ARGs by more than 68.8 %. It also facilitated a 3.04-fold increase in the concentration of signaling molecules and increased the abundance of QS genes. Further addition of the C6-HSL accelerated oxytetracycline degradation, and reduced its residual concentration by 70.9 %, alleviating oxytetracycline stress on microbial communities, and correspondingly reducing stress release from AHL by 75.4 %. Importantly, this did not exacerbate antibiotic resistance, with no significant difference (p > 0.05) in the ARG abundance. These findings may provide valuable insights into the relationship between QS process and antibiotic resistance.
Collapse
Affiliation(s)
- Xinxin Ma
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dandan Liu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450000, PR China
| | - Xu Chu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Jianli Huang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhifei Shu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yangyang Li
- Zhejiang Jiaxing Green Energy Environmental Protection Technology Co. LTD, Jiaxing 314000, PR China
| | - Yiying Jin
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Zhu Q, Gao K, Sun Q, Ma C, Luo Y, Niu Z, Liu Y, Yang Z. Upcycling of nutrients from kitchen waste: Integration of anaerobic digestion system and microbial protein production system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122411. [PMID: 39232317 DOI: 10.1016/j.jenvman.2024.122411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
To upcycle the nutrients from kitchen waste (KW), an integrated system consisting of anaerobic digestion (AD) reactor and microbial protein (MP) production reactor was established in this study. The subsystem I (AD system) demonstrated an efficient bio-energy production (282.37 mL CH4/g VS), with 553.54 mg/L of NH4+-N remained in the digestate. The subsystem II (MP production system) utilized the nitrogenous constituents of the digestate, with 2.04 g/L MP production. In order to further enhance the recovery efficiency, C/N ratio in the subsystem II was studied. NH4+-N recovery efficiency was 23.08% higher after C/N ratio optimization along with 0.24 g/L increment on MP production. Over 0.7 g/L of essential amino acids was obtained, according with the qualitative necessary for the feeds. Also, the key enzyme abundance of CO2 releasing and amino acid biosynthesis was obviously increased with max. 55.21%. Meanwhile, the integrated system was profitable via a simplified economic assessment.
Collapse
Affiliation(s)
- Qile Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Kangjian Gao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Sun
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuan Ma
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuxing Luo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zijin Niu
- Beijing Scinor Membrane Technology Co., Ltd., Beijing, 100083, China
| | - Yanping Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ziyi Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Wang Z, Li H, Wang P, Zhu J, Yang Z, Liu Y. Comparison of anaerobic co-digestion of vacuum toilet blackwater and kitchen waste under mesophilic and thermophilic conditions: Reactor performance, microbial response and metabolic pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121725. [PMID: 38971070 DOI: 10.1016/j.jenvman.2024.121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Co-digestion of kitchen waste (KW) and black water (BW) can be considered as an attractive method to efficiently achieve the clean energy from waste. To find the optimal operation parameters for the co-digestion, the effects of different temperatures (35 and 55 °C) and BW:KW ratios on the reactor performances, microbial communities and metabolic pathways were studied. The results showed that the optimum BW:KW ratio was 1:3.6 and 1:4.5 for mesophilic and thermophilic optimal reactors, with methane production of 449.04 mL/g VS and 411.90 mL/g VS, respectively. Microbial communities showed significant differences between the reactors under different temperatures. For bacteria, increasing BW:KW ratio significantly promoted Defluviitoga enrichment (1.1%-9.5%) under thermophilic condition. For Archaea, the increase in BW:KW ratio promoted the enrichment of Methanosaeta (8.6%-56.4%) in the mesophilic reactor and Methanothermobacter (62.0%-89.2%) in the thermophilic reactor. The analysis of the key enzymes showed that, acetoclastic methanogenic pathway performed as the dominant under mesophilic condition, with high abundance of Acetate-CoA ligase (EC:6.2.1.1) and Pyruvate synthase (EC:1.2.7.1). Hydrogenotrophic methanogenic pathway was the main pathway in the thermophilic reactors, with high abundance of Formylmethanofuran dehydrogenase (EC:1.2.99.5).
Collapse
Affiliation(s)
- Ziang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixiang Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Pingbo Wang
- Hangzhou EXPEC Technology Co., Ltd., Hangzhou 310000, China
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, 518115, China
| | - Ziyi Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanping Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Tang L, Huang J, Zhuang C, Yang X, Sun L, Lu H. Biogenic sulfur recovery from sulfate-laden antibiotic production wastewater using a single-chamber up-flow bioelectrochemical reactor. WATER RESEARCH 2024; 256:121590. [PMID: 38631241 DOI: 10.1016/j.watres.2024.121590] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
The high-concentration sulfate (SO42-) in the antibiotic production wastewater hinders the anerobic methanogenic process and also proposes possible environmental risk. In this study, a novel single-chamber up-flow anaerobic bioelectrochemical reactor (UBER) was designed to realize simultaneous SO42- removal and elemental sulfur (S0) recovery. With the carbon felt, the cathode was installed underneath and the anode above to meet the different biological niches for sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria (SOB). The bio-anode UBER (B-UBER) demonstrated a much higher average SO42- removal rate (SRR) of 113.2 ± 5.7 mg SO42--S L-1 d-1 coupled with a S0 production rate (SPR) of 54.4 ± 5.8 mg S0-S L-1 d-1 at the optimal voltage of 0.8 V than that in the abio-anode UBER (control reactor) (SRR = 86.6 ± 13.4 mg SO42--S L-1 d-1; SPR = 25.5 ± 9.7 mg S0-S L-1 d-1) under long-term operation. A large amount of biogenic S0 (about 72.2 mg g-1 VSS) was recovered in the B-UBER. The bio-anode, dominated by Thiovirga (SOB genus) and Acinetobacter (electrochemically active bacteria genus), exhibited a higher current density, lower overpotential, and lower internal resistance. C-type cytochromes mainly served as the crucial electron transfer mediator for both direct and indirect electron transfer, so that significantly increasing electron transfer capacity and biogenic S0 recovery. The reaction pathways of the sulfur transformation in the B-UBER were hypothesized that SRB utilized acetate as the main electron donor for SO42- reduction in the cathode zone and SOB transferred electrons to the anode or oxygen to produce biogenic S0 in the anode zone. This study proved a new pathway for biogenic S0 recovery and sulfate removal from sulfate-laden antibiotic production wastewater using a well-designed single-chamber bioelectrochemical reactor.
Collapse
Affiliation(s)
- Lan Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Jiamei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Chuanyan Zhuang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Xiaojing Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
11
|
Welz PJ, De Jonge N, Lilly M, Kaira W, Mpofu AB. Integrated biological system for remediation and valorization of tannery wastewater: Focus on microbial communities responsible for methanogenesis and sulfidogenesis. BIORESOURCE TECHNOLOGY 2024; 395:130411. [PMID: 38309670 DOI: 10.1016/j.biortech.2024.130411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Microbial communities in hybrid linear flow channel reactors and anaerobic sequencing batch reactors operated in series for remediation and beneficiation of tannery wastewater were assessed. Despite concurrent sulfidogenesis, more intensive pre-treatment in hybrid linear flow channel reactors reduced methanogenic inhibition usually associated with anaerobic digestion of tannery effluent and promoted efficiency (max 321 mLCH4/gCODconsumed, 59% biogas CH4). Nitrification and biological sulfate reduction were key metabolic pathways involved in overall and sulfate reducing bacterial community selection, respectively, during pre-treatment. Taxonomic selection could be explained by the proteinaceous and saline character of tannery effluent, with dominant genera being protein and/or amino acid degrading, halotolerant and/or ammonia tolerant. Complete oxidizers dominated the sulfidogenic populations during pre-treatment, while aceticlastic genera dominated the methanogenic populations during anaerobic digestion. With more intensive pre-treatment, the system shows promise for remediation and recovery of biogas and sulfur from tannery wastewater in support of a bio-circular economy.
Collapse
Affiliation(s)
- P J Welz
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| | - N De Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers vej 7H, Aalborg DK-9220, Denmark.
| | - M Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| | - W Kaira
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa
| | - A B Mpofu
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
12
|
Liu QH, Sun HY, Yang ZM. Role of KOH-activated biochar on promoting anaerobic digestion of biomass from Pennisetumgianteum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120165. [PMID: 38278119 DOI: 10.1016/j.jenvman.2024.120165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Pennisetum giganteum is a promising non-food crop feedstock for biogas production due to its high productivity and bio-methane potential. However, the accumulation of volatile fatty acids (VFA) usually restricts the conversion efficiency of P. giganteum biomass (PGB) during anaerobic digestion (AD). Here, the role of KOH-activated biochar (KB) in improving the AD efficiency of PGB and the related mechanisms were investigated in detail. The results revealed that KB exhibited excellent electrical conductivity, electron transfer capacity and specific capacitance, which might be related to the decrease in the electron transfer resistance after adding KB to the AD process. In addition, the KB addition not only reinforced metabolisms of energy and VFAs but also promoted the conversion of VFAs to methane, leading to a 52% increase in the methane production rate. Bioinformatics analysis showed that Smithella and Methanosaeta were key players in the KB-mediated AD process of PGB. The stimulatory effect of methanogenesis probably resulted from the establishment of direct interspecies electron transfer (DIET) between VFA-oxidizing acetogens (e.g., Smithella) and Methanosaeta. These findings provided a key step to improve the PGB-based AD process.
Collapse
Affiliation(s)
- Qing-Hua Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong-Ying Sun
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Science, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
13
|
Zeng Y, Zheng D, Li LP, Wang M, Gou M, Kamagata Y, Chen YT, Nobu MK, Tang YQ. Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats. Appl Environ Microbiol 2024; 90:e0109023. [PMID: 38259075 PMCID: PMC10880629 DOI: 10.1128/aem.01090-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.
Collapse
Affiliation(s)
- Yan Zeng
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, Sichuan, China
| | - Dan Zheng
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Lan-Peng Li
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd., Dalian, Liaoning, China
| | - Miaoxiao Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ya-Ting Chen
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Masaru Konishi Nobu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yue-Qin Tang
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, Sichuan, China
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
- Engineering Research Centre of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorisation, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Sitthikitpanya N, Ponuansri C, Jomnonkhaow U, Wongfaed N, Reungsang A. Unlocking the potential of sugarcane leaf waste for sustainable methane production: Insights from microbial pre-hydrolysis and reactor optimization. Heliyon 2024; 10:e25787. [PMID: 38356542 PMCID: PMC10865077 DOI: 10.1016/j.heliyon.2024.e25787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Sugarcane leaf waste, a byproduct of the growing global sugar industry, challenges agricultural waste management. This study explores its potential for methane production via anaerobic digestion. A microbial pre-hydrolysis, using lignocellulose-degrading bacteria, enhanced soluble chemical oxygen demand at an optimal initial substrate concentration of 40 g-volatile solid/L. Comparative analysis with untreated and bioaugmented leaves revealed the pre-hydrolyzed leaves achieved the highest methane production rate (MPR) at 14.0 ± 0.5 mL-CH4/L·d, surpassing others by 1.47 and 1.67 times. Two continuous stirred tank reactors were employed to assess the optimal hydraulic retention time (HRT). Results showed a stable methane production with an HRT of 25 days, yielding high MPRs: 88.70 ± 0.63 mL-CH4/L·d from pre-hydrolyzed sugarcane leaves and 82.57 ± 1.22 mL-CH4/L·d from microbial consortium-augmented leaves. A 25-day HRT fosters high microbial diversity with Bacteroidota, Firmicutes, Chloroflexi, and Verrucomicrobiota dominance, indicating favorable conditions. Conversely, a 20-day HRT results in lower diversity due to unfavorable factors like low pH during organic overloading, leading to increased concentrations of volatile fatty acids and lactic acid, with Firmicutes as the predominant phylum. This study highlights sugarcane leaf waste's potential as a valuable resource for sustainable methane production.
Collapse
Affiliation(s)
- Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaweewan Ponuansri
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantharat Wongfaed
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|
15
|
Wang X, Liu N, Zeng R, Liu G, Yao H, Fang J. Change of core microorganisms and nitrogen conversion pathways in chicken manure composts by different substrates to reduce nitrogen losses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14959-14970. [PMID: 38285254 DOI: 10.1007/s11356-024-31901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Due to the rapid development of animal husbandry, the associated environmental problems cannot be ignored, with the management of livestock and poultry manure emerging as the most prominent issue. Composting technology has been widely used in livestock and poultry manure management. A deeper understanding of the nitrogen conversion process during composting offers a theoretical foundation for selecting compost substrates. In this study, the effects of sawdust (CK) and spent mushroom compost (T1) as auxiliary materials on nitrogen as well as microbial structure in the composting process when composted with chicken manure were investigated. At the end of composting, the nitrogen loss of T1 was reduced by 17.18% relative to CK. When used as a compost substrate, spent mushroom compost accelerates the succession of microbial communities within the compost pile and alters the core microbial communities within the microbial community. Bacterial genera capable of cellulose degradation (Fibrobacter, Herbinix) are new core microorganisms that influence the assimilation of nitrate reduction during compost maturation. Using spent mushroom compost as a composting substrate increased the enzyme activity of nitrogen assimilation while decreasing the enzyme activity of the denitrification pathway.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
16
|
Zhao L, Wang P, Li Y, Yu M, Zheng Y, Ren L, Wang Y, Li J. Feasibility of anaerobic co-digestion of biodegradable plastics with food waste, investigation of microbial diversity and digestate phytotoxicity. BIORESOURCE TECHNOLOGY 2024; 393:130029. [PMID: 37977495 DOI: 10.1016/j.biortech.2023.130029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The effects of biodegradable plastics of different thicknesses (30 and 40 μm) and sizes (20 × 20, 2 × 2, and 1 × 1 mm) on anaerobic digestion of food waste and digestate phytotoxicity were investigated. Methane productions (38 days) for the groups with 20 × 20, 2 × 2, and 1 × 1 mm of 30 μm plastics were 92.46, 138.27, and 259.95 mL/gVSremoval, respectively which are nearly 58 % higher than the control group (58.86 mL/gVSremoval). Methane production in 40 μm plastics groups was lower than in 30 μm groups of equal size. All sizes of 30 µm plastics promoted substrate hydrolysis, acidification, and relative abundance of key hydrolytic bacteria and methanogens. Phytotoxicity tests results showed that seed root elongation was inhibited in groups with 40 μm plastics. In conclusion, 30 μm biodegradable plastics were more suitable for anaerobic digestion with food waste than 40 μm.
Collapse
Affiliation(s)
- Liya Zhao
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yingnan Li
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Yu
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Zheng
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Lianhai Ren
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yongjing Wang
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Wang K, Zhang H, Shen Y, Li J, Zhou W, Song H, Liu M, Wang H. Impact of salinity on anaerobic ceramic membrane bioreactor for textile wastewater treatment: Process performance, membrane fouling and machine learning models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118717. [PMID: 37536141 DOI: 10.1016/j.jenvman.2023.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) shows great potential for textile wastewater treatment, but high salinity in the influent may undermine its performance. This study evaluated the impact of salinity on the treatment performance of an upflow anaerobic sludge blanket (UASB) configured AnMBR using a flat sheet ceramic membrane. The salinity was stepwise increased (0, 5, 10 and 20 g/L) in four phases of the AnMBR operation. Results indicated that increased salinity jeopardized the COD removal efficiency of AnMBR from 92% to 73%, but had a marginal effect on dye removal efficacy (90-96%). Low salinity (5 g/L) boosted the biogas production whilst high salinity (>10 g/L) had a negative impact. Additionally, the increase of salinity resulted in the soluble microbial production (SMP) concentration soar and membrane fouling rate increase, peaking at a salinity of 10 g/L (Phase III) and recovering back to a lower level at a salinity of 20 g/L (Phase IV). This indicated a transition occurrence at a salinity of 10 g/L (Phase III). The microbial diversity analyses further suggested a transition from salinity-sensitive microbes (Aminiphilus, Caldatribacterium, Mesotoga, Methanobrevibacter, Methanobacterium, Methanosaeta) to salinity-tolerant microbes (Longilinea, Ignavibacterium, Rhodovarius, Bosea and Flexilinea). This transition can be associated with the increase SMP concentration and more severe membrane fouling in Phase III, which were mitigated after a new equilibrium was reached when the microbial consortium acclimatized to the high salinity. Finally, a machine learning model of the Adaboost algorithm was established to predict COD removal under different salinities. Importantly, this study revealed that AnMBR process performance and membrane operation can be maintained for high salinity textile wastewater treatment with a halophilic microbial community growth under high-salinity selection pressure.
Collapse
Affiliation(s)
- Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Architecture and Environment, Sichuan University, Chengdu, 610000, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, Zhejiang, China
| | - Haoliang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiale Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wu Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hualong Song
- Shaoxing Water Treatment Development Co., Ltd, Shaoxing, 312074, Zhejiang, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
18
|
Zhang Z, Li C, Wang G, Yang X, Zhang Y, Wang R, Angelidaki I, Miao H. Mechanistic insights into Fe 3O 4-modified biochar relieving inhibition from erythromycin on anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118459. [PMID: 37399623 DOI: 10.1016/j.jenvman.2023.118459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Anaerobic digestion (AD) of antibiotic manufacturing wastewater to degrade residual antibiotics and produce mixture of combustible gases has been investigated actively in the past decades. However, detrimental effect of residual antibiotic to microbial activities is commonly faced in AD process, leading to the reduction of treatment efficiency and energy recovery. Herein, the present study systematically evaluated the detoxification effect and mechanism of Fe3O4-modified biochar in AD of erythromycin manufacturing wastewater. Results showed that Fe3O4-modified biochar had stimulatory effect on AD at 0.5 g/L erythromycin existence. A maximum methane yield of 327.7 ± 8.0 mL/g COD was achieved at 3.0 g/L Fe3O4-modified biochar, leading to the increase of 55.7% compared to control group. Mechanistic investigation demonstrated that different levels of Fe3O4-modified biochar could improve methane yield via different metabolic pathways involved in specific bacteria and archaea. Low levels of Fe3O4-modified biochar (i.e., 0.5-1.0 g/L) led to the enrichment of Methanothermobacter sp., strengthening the hydrogenotrophic pathway. On the contrary, high levels of Fe3O4-modified biochar (2.0-3.0 g/L) favored the proliferation of acetogens (e.g., Lentimicrobium sp.) and methanogen (Methanosarcina sp.) and their syntrophic relations played vital role on the simulated AD performance at erythromycin stress. Additionally, the addition of Fe3O4-modified biochar significantly decreased the abundance of representative antibiotic resistant genes (ARGs), benefiting the reduction of environmental risk. The results of this study verified that the application of Fe3O4-modified biochar could be an efficient approach to detoxify erythromycin on AD system, which brings high impacts and positive implications for biological antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Ruming Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
19
|
Kalamaras SD, Christou ML, Tzenos CA, Vasileiadis S, Karpouzas DG, Kotsopoulos TA. Investigation of the Critical Biomass of Acclimated Microbial Communities to High Ammonia Concentrations for a Successful Bioaugmentation of Biogas Anaerobic Reactors with Ammonia Inhibition. Microorganisms 2023; 11:1710. [PMID: 37512885 PMCID: PMC10386354 DOI: 10.3390/microorganisms11071710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to investigate the role of the bioaugmented critical biomass that should be injected for successful bioaugmentation for addressing ammonia inhibition in anaerobic reactors used for biogas production. Cattle manure was used as a feedstock for anaerobic digestion (AD). A mixed microbial culture was acclimated to high concentrations of ammonia and used as a bioaugmented culture. Different volumes of bioaugmented culture were injected in batch anaerobic reactors under ammonia toxicity levels i.e., 4 g of NH4+-N L-1. The results showed that injecting a volume equal to 65.62% of the total working reactor volume yielded the best methane production. Specifically, this volume of bioaugmented culture resulted in methane production rates of 196.18 mL g-1 Volatile Solids (VS) and 245.88 mL g-1 VS after 30 and 60 days of AD, respectively. These rates were not significantly different from the control reactors (30d: 205.94 mL CH4 g-1 VS and 60d: 230.26 mL CH4 g-1 VS) operating without ammonia toxicity. Analysis of the microbial community using 16S rRNA gene sequencing revealed the dominance of acetoclastic methanogen members from the genus Methanosaeta in all reactors.
Collapse
Affiliation(s)
- Sotirios D Kalamaras
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Lida Christou
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos A Tzenos
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Thomas A Kotsopoulos
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
20
|
Xu Y, Meng X, Song Y, Lv X, Sun Y. Effects of different concentrations of butyrate on microbial community construction and metabolic pathways in anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 377:128845. [PMID: 36898564 DOI: 10.1016/j.biortech.2023.128845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Investigating the effect of butyric acid concentration on anaerobic digestion systems in complex systems is important for the efficient degradation of butyric acid and improving the efficiency of anaerobic digestion. In this study, different loadings of butyric acid with 2.8, 3.2, and 3.6 g/(L·d) were added to the anaerobic reactor. At a high organic loading rate of 3.6 g/(L·d), methane was efficiently produced with VBP (Volumetric Biogas Production) of 1.50 L/(L·d) and biogas content between 65% and 75%. VFAs concentration remained below 2000 mg/L. Metagenome sequencing revealed changes in the functional flora within different stages. Methanosarcina, Syntrophomonas, and Lentimicrobium were the main and functional microorganisms. That the relative abundance of methanogens exceeded 35% and methanogenic metabolic pathways were increased indicated the methanogenic capacity of the system significantly improved. The presence of a large number of hydrolytic acid-producing bacteria also indicated the importance of the hydrolytic acid-producing stage in the system.
Collapse
Affiliation(s)
- Yonghua Xu
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xianghui Meng
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yunong Song
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xiaoyi Lv
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yong Sun
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China.
| |
Collapse
|
21
|
Zhang F, Ge R, Wan Z, Li G, Cao L. Dual effects of PFOA or PFOS on reductive dechlorination of trichloroethylene (TCE). WATER RESEARCH 2023; 240:120093. [PMID: 37210970 DOI: 10.1016/j.watres.2023.120093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
PFASs and chlorinated solvents are the common co-contaminants in soil and groundwater at firefighter training areas (FTAs). Although PFASs mixtures could have adverse impacts on bioremediation of trichloroethylene (TCE) by inhibiting Dehalococcoides (Dhc), little is known about the effect and contribution of PFOA or PFOS on dechlorination of TCE by non-Dhc organohalide-respiring bacteria (OHRB). To study this, PFOA and PFOS were amended to the growth medium of a non-Dhc OHRB-containing enrichment culture to determine the impact on dechlorination. This study demonstrated that high levels of PFOA or PFOS (100 mg L-1) inhibited TCE dechlorination in four non-Dhc OHRB-containing community including Geobacter, Desulfuromonas, Desulfitobacterium, and Dehalobacter, but low levels of PFOA or PFOS (≤10 mg L-1) enhanced TCE dechlorination. Four non-Dhc OHRB were less inhibited by PFOA than that by PFOS, and high level of PFOS killed Desulfitobacterium and Dehalobacter and decreased the biodiversity of bacterial community. Although most fermenters were killed by the presence of 100 mg L-1 PFOS, two important co-cultures (Desulfovibrio and Sedimentibacter) of OHRB were enriched, indicating that the syntrophic relationships between OHRB and co-cultures still remained, and PFOA or PFOS inhibited TCE dechlorination by directly repressing non-Dhc OHRB. Our results highlight that the bioattenuation of chloroethene contamination could be confounded by non-Dhc OHRB in high levels of PFOS contaminated subsurface environments at FTAs.
Collapse
Affiliation(s)
- Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Runlei Ge
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Ziren Wan
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Lifeng Cao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
22
|
Cai Y, Shen X, Meng X, Zheng Z, Usman M, Hu K, Zhao X. Syntrophic consortium with the aid of coconut shell-derived biochar enhances methane recovery from ammonia-inhibited anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162182. [PMID: 36773909 DOI: 10.1016/j.scitotenv.2023.162182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic digestion (AD) of nitrogen-rich substrates often suffers from the issue of ammonia inhibition. Although bioaugmentation has been used to assist AD with high ammonia concentration, the combined effect of domesticated syntrophic consortium (MC) together with biochar on ammonia inhibited AD are still unknown. In the present study, MC was adapted and enriched by purposive domestication. As a novel strategy, coconut shell-derived biochar was used as a carrier to aid the MC. The results showed that the digestion system deteriorated completely without the assistance of MC and biochar when the TAN concentration exceeded 8.0 g L-1. The combination of biochar and MC (B-MC treatment) could restore ammonia inhibition in 10 days and achieved a high methane yield of 357.5 mL g-1 volatile solid, which was 7.5 % higher than that of MC treatment. Syntrophomonas, Syntrophobacter, and Methanoculleus in MC played a critical role in reducing propionic acid and butyric acid content and efficiently producing methane. Their abundances increased 12-fold, 10-fold, and 2-fold, respectively. With the assistance of biochar, MC had a better performance in relieving ammonia inhibition. This could be attributed to two aspects. First, biochar encouraged the growth or colonization of key microorganisms such as propionate and butyrate oxidizing bacteria and ammonia-tolerant archaea. Second, biochar induced the growth of conductive microorganisms such as Geobacter. From the perspective of enzyme genes, biochar increased the abundance of related enzyme genes in butyrate and propionate degradation, acetoclastic and hydrogenotrophic pathways. In conclusion, MC combined with biochar is a potential approach to alleviate ammonia nitrogen inhibition.
Collapse
Affiliation(s)
- Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi 712100, China.
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Kai Hu
- Shenzhen Derun Biomass Investment Co. Ltd., Shenzhen 518066, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
23
|
Luiz FN, Passarini MRZ, Magrini FE, Gaio J, Somer JG, Meyer RF, Paesi S. Metataxonomic characterization of the microbial community involved in the production of biogas with microcrystalline cellulose in pilot and laboratory scale. World J Microbiol Biotechnol 2023; 39:184. [PMID: 37147463 DOI: 10.1007/s11274-023-03573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 05/07/2023]
Abstract
Biogas, produced in anaerobic digestion, is a sustainable alternative for generating energy from agro-industrial and municipal waste. Information from the microbiota active in the process expands the possibilities for technological innovation. In this study, taxonomic annotations, and functional prediction of the microbial community of the inoculum of two processes were carried out: an industrial unit (pilot-scale urban solid waste plant-IU) and a laboratory-scale reactor fed with swine and cattle waste (LS). The biochemical potential of biogas was obtained using tested inoculum with microcrystalline cellulose, obtaining 682 LN/kgVS (LSC-laboratory scale inoculum and microcrystalline cellulose), and 583 LN/kgVS (IUC-industrial unit inoculum and microcrystalline cellulose), which is equivalent to a recovery of 91.5% of total biogas to LSC. The phyla Synergistota and Firmicutes were more abundant in LS/LSC. In the IU/IUC (treatment of restaurant waste and customs seizures), there was a greater microbiological variety and a predominance of the Bacteroidota, Cloacimonadota, Firmicutes and Caldatribacteriota. The genus Methanosaeta predominated in the process, and it was possible to infer the genes (K01895, K00193 and K00625) related to acetoclastic pathway, as well as endoglucanases that are involved in the metabolism of cellulose (LSC). Terpenoids, polyketides, cofactors, and vitamin metabolism were higher in reactors that received different substrates (IU; IUC). The taxonomic and functional differences revealed the importance of determining the microbiota in the analysis of the potential of an inoculum, combined with the use of microcrystalline cellulose, which can provide optimization information in the production of clean energy.
Collapse
Affiliation(s)
- Franciele Natividade Luiz
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | | | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil
| | - Juliana Gaio Somer
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | - Rafaela Faust Meyer
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil.
| |
Collapse
|
24
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|
25
|
Zhang Y, Ji S, Xie P, Liang Y, Chen H, Chen L, Wei C, Yang Z, Qiu G. Simultaneous partial nitrification, Anammox and nitrate-dependent Fe(II) oxidation (NDFO) for total nitrogen removal under limited dissolved oxygen and completely autotrophic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163300. [PMID: 37031928 DOI: 10.1016/j.scitotenv.2023.163300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023]
Abstract
Sustainable nitrogen removal from wastewater at reduced energy and/or chemical consumptions is challenging. This paper investigated, for the first time, the feasibility of coupled partial nitrification, Anammox and nitrate-dependent Fe(II) oxidation (NDFO) for sustainable autotrophic nitrogen removal. With NH4+-N as the only nitrogen-containing compound in the influent, near-complete nitrogen removal (a total of 97.5 % with a maximal total nitrogen removal rate of 6.64 ± 2.68 mgN/L/d) was achieved in a sequencing batch reactor for a 203-d operation without organic carbon source addition and forced aeration. Anammox (predominated by Candidatus Brocadia) and NDFO bacteria (such as Denitratisoma) were successfully enriched, with total relative abundances up to 11.54 % and 10.19 %, respectively. Dissolved oxygen (DO) concentration was a key factor affecting the coupling of multi (ammonia oxidization, Anammox, NDFO, iron-reduction, etc.) bacterial communities, resulting in different total nitrogen removal efficiencies and rates. In batch tests, the optimal DO concentration was 0.50-0.68 mg/L with a maximal total nitrogen removal efficiency of 98.7 %. Fe(II) in the sludge not only competed with nitrite oxidizing bacteria for DO to prevent complete nitrification, but promoted the transcription of NarG and NirK genes (10.5 and 3.5 times higher than the group without Fe(II) addition) as indicated by the reverse transcription quantitative polymerase chain reaction (RT-qPCR), resulting in increased NDFO rate (by 2.7 times) and promoted NO2--N generated from NO3--N, which back fed the Anammox process, achieving near-complete nitrogen removal. The reduction of Fe(III) by iron-reducing bacteria (IRB) and hydrolytic and fermentative anaerobes enabled a sustainable Fe(II)/Fe(III) recycling, avoiding the need in continuous Fe(II) or Fe (III) dosage. The coupled system is expected to benefit the development of novel autotrophic nitrogen removal processes with neglectable energy and material consumptions for the treatment of wastewater with low organic carbon and NH4+-N contents in underdeveloped regions, such as decentralized rural wastewaters.
Collapse
Affiliation(s)
- Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Sijia Ji
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peiran Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yitong Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Zhongpu Yang
- Department of Ecology and Environment of Guangdong Province, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
26
|
Wang S, Wang Z, Usman M, Zheng Z, Zhao X, Meng X, Hu K, Shen X, Wang X, Cai Y. Two microbial consortia obtained through purposive acclimatization as biological additives to relieve ammonia inhibition in anaerobic digestion. WATER RESEARCH 2023; 230:119583. [PMID: 36638729 DOI: 10.1016/j.watres.2023.119583] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Ammonia inhibition is a challenging issue in the anaerobic digestion (AD) of nitrogen-rich substrates and hinders the energy recovery from organic wastes. Bioaugmentation is promising strategy to stabilize AD systems with high ammonia concentration. The composition of microbial consortia often determines their effectiveness in bioaugmentation. Up to now, the effect of various microbial consortia as biological additives on the AD systems is not fully understood. In this study, two microbial consortia (syntrophic microbial consortium, MC, and hydrogenotrophic methanogen consortium, SS) were obtained through two domestication methods, and were applied in a nitrogen-rich AD system. The results showed that the MC and SS treatments could restore AD performance within 21 days and 83 days, respectively. The recovery of digestion performance depended on the methanogenic archaea Methanospirillum, Methanothermobacter, and Methanoculleus in the early and later stages. Analysis of the 13C isotope indicated that both MC and SS enhanced the hydrogenotrophic pathway. The KEGG analysis showed that the MC not only promoted the key enzyme genes in the hydrogenotrophic pathway but also had a positive effect on the related enzyme genes of propionate and butyrate degradation, which was affected by the abundant short-chain fatty acids degrading bacteria, such as Syntrophomonas, Syntrophobacter, and Tissierella in the MC. After recovery of digestion performance, there was no significant difference (p > 0.05) in methane yield between the MS and SS treatments. Therefore, the best intervention period for bioaugmentation is when the digestion performance of the AD system is unstable.
Collapse
Affiliation(s)
- Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing, 100193, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, 100048, China
| | - Kai Hu
- Shenzhen Derun Biomass Investment Co., Ltd. Shenzhen, 518066, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing, 100193, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China.
| |
Collapse
|
27
|
Feng JR, Deng QX, Han SK, Ni HG. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: A mini review. CHEMOSPHERE 2023; 313:137391. [PMID: 36457267 DOI: 10.1016/j.chemosphere.2022.137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticle (NP)-coated (immobilized) bacteria are an effective method for treating environmental pollution due to their multifarious benefits. This review collates a vast amount of existing literature on organic pollution treatment using NP-coated bacteria. We discuss the features of bacteria, NPs, and decoration techniques of NP-bacteria assemblies, with special attention given to the surface modification of NPs and connection mechanisms between NPs and cells. Furthermore, the performance of NP-coated bacteria was examined. We summarize the factors that affect bioremediation efficiency using coated bacteria, including pH, temperature, and agitation, and the possible mechanisms involving them are proposed. From future perspectives, suitable surface modification of NPs and wide application in real practice will make the NP-coated bacterial technology a viable treatment strategy.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shang-Kun Han
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Li Y, Kong W, Liu H, Hong Y, Huang T. Enhanced degradation of phenolic compounds in coal gasification wastewater by activated carbon-Fe3O4 nanoparticles coupled with anaerobic co-metabolism. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Yang G, Xu C, Varjani S, Zhou Y, Wc Wong J, Duan G. Metagenomic insights into improving mechanisms of Fe 0 nanoparticles on volatile fatty acids production from potato peel waste anaerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127703. [PMID: 35907599 DOI: 10.1016/j.biortech.2022.127703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The management of potato peel waste (PPW) has been a challenge faced by the potato industry. This investigation assessed the feasibility of PPW for volatile fatty acids (VFAs) production via anaerobic fermentation, and investigated the impact of Fe0 nanoparticles (Fe0 NPs) supplementation on the VFAs production. It is found that PPW is a potential feedstock for producing VFAs, achieving a yield of 480.4 mg COD/g-vS Meanwhile, the supplementation of Fe0 NPs significantly promoted the VFAs productivity and quality. The higher enrichment of VFAs-producing bacteria, including Clostridium, Proteiniphilum, Fonticella and Pygmaiobacter, contributed to the promotion of the VFAs yield. Furthermore, metagenomic analysis revealed that the encoding genes responsible for carbohydrate metabolism (especially starch), membrane transport, glycolysis and the formation of acetic and butyric acids were remarkably up-regulated,which could be the essential reason for the enhanced metabolic activity and VFAs productivity. This work provides a promising strategy for recycling PPW.
Collapse
Affiliation(s)
- Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar-382 010, Gujarat, India
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jonathan Wc Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Basak B, Patil SM, Kumar R, Ahn Y, Ha GS, Park YK, Ali Khan M, Jin Chung W, Woong Chang S, Jeon BH. Syntrophic bacteria- and Methanosarcina-rich acclimatized microbiota with better carbohydrate metabolism enhances biomethanation of fractionated lignocellulosic biocomponents. BIORESOURCE TECHNOLOGY 2022; 360:127602. [PMID: 35835420 DOI: 10.1016/j.biortech.2022.127602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
An inadequate lignocellulolytic capacity of a conventional anaerobic digester sludge (ADS) microbiota is the bottleneck for the maximal utilization of lignocellulose in anaerobic digestion. A well-constructed microbial consortium acclimatized to lignocellulose outperformed the ADS in terms of biogas productivity when fractionated biocomponents of rice straw were used to achieve a high methane bioconversion rate. A 33.3 % higher methane yield was obtained with the acclimatized consortium (AC) compared to that of ADS control. The dominant pair-wise link between Firmicutes (18.99-40.03 %), Bacteroidota (10.94-28.75 %), and archaeal Halobacteriota (3.59-20.57 %) phyla in the AC seed digesters indicated that the keystone members of these phyla were responsible for higher methane yield. A high abundance of syntrophic bacteria such as Proteiniphilum (1.22-5.19 %), Fermentimonas (0.71-5.31 %), Syntrophomonas (0.87-3.59 %), and their syntrophic partner Methanosarcina (4.26-18.80 %) maintained the digester stability and facilitated higher substrate-to-methane conversion in the AC seed digesters. The present combined strategy will help in boosting the 'biomass-to-methane" conversion.
Collapse
Affiliation(s)
- Bikram Basak
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Swapnil M Patil
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Yongtae Ahn
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Woo Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
31
|
Pinpatthanapong K, Panichnumsin P, Phalakornkule C, Phattarapattamawong S, Treesubsuntorn C, Boonapatcharoen N, Ketbuppha K, Phanwilai S, Boonnorat J. Propionate-cultured sludge bioaugmentation to enhance methane production and micropollutant degradation in landfill leachate treatment. BIORESOURCE TECHNOLOGY 2022; 355:127241. [PMID: 35489571 DOI: 10.1016/j.biortech.2022.127241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
This research investigates the use of propionate-cultured sludge to enhance methane (CH4) production and micropollutant biodegradation in biochemical methane potential (BMP) experiment treating landfill leachate. The experiments were carried out using non-acclimatized and acclimatized seed sludge with variable food to microorganism ratios of 1:1 and 1:2. Under the propionate-cultured sludge bioaugmentation, the concentrations of propionate-cultured sludge were varied between 10, 20, and 30 % (v/v). The acclimatized seed sludge exhibited high microbial abundance and diversity which promoted the CH4 production and micropollutant biodegradation. The modified Gompertz model indicated that the optimal condition was the acclimatized seed sludge with 30% (v/v) propionate-cultured sludge, achieving the lag time (λ), maximum CH4 production rate (Rmax), and maximum CH4 potential yield (Pmax) of 0.57 day, 17.35 NmL/h, and 140.58 NmL/g COD. The research novelty lies in the use of propionate-cultured sludge bioaugmentation in landfill leachate treatment to enhance CH4 production and micropollutant biodegradation.
Collapse
Affiliation(s)
- Khathapon Pinpatthanapong
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chantaraporn Phalakornkule
- Department of Chemical Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Songkeart Phattarapattamawong
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Chairat Treesubsuntorn
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand; Remediation Laboratory, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Nimaradee Boonapatcharoen
- Excellent Center of Waste Utilization and Management, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Kanjana Ketbuppha
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Supaporn Phanwilai
- Department of Knowledge of The Land for Sustainable, School of Integrated Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand.
| |
Collapse
|
32
|
Chen J, Yang Y, Ke Y, Chen X, Jiang X, Chen C, Xie S. Anaerobic sulfamethoxazole-degrading bacterial consortia in antibiotic-contaminated wetland sediments identified by DNA-stable isotope probing and metagenomics analysis. Environ Microbiol 2022; 24:3751-3763. [PMID: 35688651 DOI: 10.1111/1462-2920.16091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Anaerobic degradation has been demonstrated as an important pathway for the removal of sulfonamide (SA) in contaminated environments, and identifying the microorganisms responsible for the degradation of SA is a key step in developing bioaugmentation approaches. In this study, we investigated the anaerobic degradation activity of three SA [sulfadiazine (SDZ), sulfamethazine (SMZ) and sulfamethoxazole (SMX)] and the associated bacterial community in wetland sediments contaminated by aquaculture (in Fujian Province, coded with FJ), livestock farming (in Sichuan Province, coded with SC), or rural wastewaters (in Guangdong Province, coded with GD). Additionally, the combination of DNA-stable isotope probing (SIP) with metagenomics was further applied to assess the active SA-degrading microbes using SMX as a model SA. Among SDZ, SMZ and SMX, only SMX could be effectively dissipated, and the degradation of SMX was relatively fast in the microcosms of sediments with higher levels of SA contamination (FJ and SC). The anaerobic biotransformation pathway of SMX was initiated by hydrogenation with the cleavage of the N-O bond on the isoxazole ring. DNA-SIP revealed that the in situ active anaerobic SMX-degraders (5, 18 and 3 genera in sediments FJ, SC and GD respectively) were dominated by Proteobacteria in sediments FJ and SC, but by Firmicutes (two Family XVIII members) in sediment GD. Mycobacterium, unclassified Burkholderiaceae and Rhodocyclaceae were identified as the dominant active SMX-degrading bacteria in both sediments FJ and SC. Higher proportions of antibiotic resistance gene and genes involved in various functional categories were observed in sediments FJ and SC.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
33
|
Li J, Song B, Yao C, Zhang Z, Wang L, Zhang J. S-Doped NiFe2O4 Nanosheets Regulated Microbial Community of Suspension for Constructing High Electroactive Consortia. NANOMATERIALS 2022; 12:nano12091496. [PMID: 35564204 PMCID: PMC9103806 DOI: 10.3390/nano12091496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022]
Abstract
Iron-based nanomaterials (NMs) are increasingly used to promote extracellular electron transfer (EET) for energy production in bioelectrochemical systems (BESs). However, the composition and roles of planktonic bacteria in the solution regulated by iron-based NMs have rarely been taken into account. Herein, the changes of the microbial community in the solution by S-doped NiFe2O4 anodes have been demonstrated and used for constructing electroactive consortia on normal carbon cloth anodes, which could achieve the same level of electricity generation as NMs-mediated biofilm, as indicated by the significantly high voltage response (0.64 V) and power density (3.5 W m−2), whereas with different microbial diversity and connections. Network analysis showed that the introduction of iron-based NMs made Geobacter positively interact with f_Rhodocyclaceae, improving the competitiveness of the consortium (Geobacter and f_Rhodocyclaceae). Additionally, planktonic bacteria regulated by S-doped anode alone cannot hinder the stimulation of Geobacter by electricity and acetate, while the assistance of lining biofilm enhanced the cooperation of sulfur-oxidizing bacteria (SOB) and fermentative bacteria (FB), thus promoting the electroactivity of microbial consortia. This study reveals the effect of S-doped NiFe2O4 NMs on the network of microbial communities in MFCs and highlights the importance of globality of microbial community, which provides a feasible solution for the safer and more economical environmental applications of NMs.
Collapse
Affiliation(s)
- Jiaxin Li
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongchao Yao
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
| | - Zhihao Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- Correspondence: (L.W.); (J.Z.)
| | - Jing Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
- Correspondence: (L.W.); (J.Z.)
| |
Collapse
|
34
|
Zhou H, Jiang J, Zhao Q, Li L, Wang K, Wei L. Effects of organic loading rates on high-solids anaerobic digestion of food waste in horizontal flow reactor: Methane production, stability and mechanism. CHEMOSPHERE 2022; 293:133650. [PMID: 35063566 DOI: 10.1016/j.chemosphere.2022.133650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
To maximize the methane production efficiency of high-solids anaerobic digestion (HSAD) of food waste (FW), a horizontal flow reactor was operated under mesophilic, semi-continuous condition at organic loading rates (OLRs) ranging from 1.00 to 13.80 kg-VS/(m3 d). The gas production, substrate transformation, and microbial community characteristics of the horizontal flow HSAD reactor were evaluated. The results indicated that the methane yield (0.173-0.516 L/(g d)) fluctuated with the increasing OLR, volumetric methane production rate (0.25-5.69 L/(L d)) increased with increasing OLR, and the volatile solids (VS) reduction rate ranged between 83.30% and 93.05%. The relationship of biogas or methane production with OLR and HRT in the horizontal flow HSAD reactor were characterized with an empirical equation. The concentrations of soluble COD and volatile fatty acid exhibited significant fluctuations, and free ammonia-nitrogen peaked at the OLR of 13.80 kg-VS/(m3 d). Microbial community analysis revealed that the methanogenic metabolic pathway changes along the propelling direction of the horizontal flow HSAD reactor from CH3COOH and H2/CO2 pathways to CH3COOH, H2/CO2, and H2/methyl co-dominant pathways. These results provide theoretical support for stable methane production from FW and deeper insight into horizontal flow HSAD for FW treatment.
Collapse
Affiliation(s)
- Huimin Zhou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Qingliang Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, China.
| | - Lili Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|