1
|
Zheng Z, Yang Y, Wang M, Pan X, Yao M. Ball milling of mackinawite and oxalic acid to fabricate an efficient and stable reductive material for remediation of Cr(Ⅵ)-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124214. [PMID: 39848187 DOI: 10.1016/j.jenvman.2025.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Compared with zero-valent iron, iron sulfide has more diverse reactive species and higher reductivity, but it is still prone to be gradually deactivated due to various passivation factors. In this study, a novel reductive material (BMMW@OA) was prepared by ball milling of mackinawite (MW) as raw material and oxalic acid (OA) as modifier, so as to simultaneously improve its reductivity and stability by continuous releasing reductive species and maintaining freshness of the material surface. The BMMW@OA (w/w of MW/OA = 4/1) effectively removed Cr(Ⅵ) from water with wide pH adaptability. Compared to the BMMW obtained by direct ball milling of MW, BMMW@OA shows good resistance to air exposure, alkaline environment and scale-forming ions. The Freundlich model can accurately describes the Cr(Ⅵ) removal capacity of BMMW@OA. BMMW@OA continuously releases Fe2⁺ and S2⁻ into aqueous solution, thus maintaining the freshness and reactivity of the material surface. The homogeneous reduction by dissolved Fe2⁺ and the heterogeneous reduction by Fe⁰/Fe2⁺ on the surface of BMMW@OA are two primary mechanisms for the efficient removal of Cr(Ⅵ). Adding 2% BMMW@OA reduced the Cr(Ⅵ) content in soil from 989.826 mg/kg to 2.034 mg/kg within 2 h. The horizontal vibration, toxicity characteristic, and synthetic precipitation leaching procedure tests showed that the Cr(Ⅵ) concentration in the soil leachate was as low as 0.005-0.020 mg/L and remained stable in 30 d. This study developed a green and economic viable material for remediation of Cr(Ⅵ)-contaminated soil with high efficiency and stability.
Collapse
Affiliation(s)
- Zhiwei Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Yifan Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Mingxin Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou, 213164, PR China.
| | - Xinxing Pan
- Jiangsu Longhuan Environmental Technology Co., Ltd, Changzhou 213125, PR China
| | - Meng Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| |
Collapse
|
2
|
Arfelis S, Martín-Perales AI, Nguyen R, Pérez A, Cherubin I, Len C, Malpartida I, Bala A, Fullana-I-Palmer P. Linking mechanochemistry with the green chemistry principles: Review article. Heliyon 2024; 10:e34655. [PMID: 39148985 PMCID: PMC11325060 DOI: 10.1016/j.heliyon.2024.e34655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
The need to explore contemporary alternatives for industrial production has driven the development of innovative techniques that address critical limitations linked to traditional batch mechanochemistry. One particularly promising strategy involves the integration of flow processes with mechanochemistry. Three noteworthy technologies in this domain are single-screw extrusion (SSE) and twin-screw extrusion (TSE) and Impact (Induction) in Continuous-flow Heated Mechanochemistry (ICHeM). These technologies go beyond the industrial production of polymers, extending to the synthesis of active pharmaceutical ingredients, the fabrication of (nano)materials, and the extraction of high-added value products through the valorisation of biomass and waste materials. In accordance with the principles of green chemistry, ball milling processes are generally considered greener compared to conventional solvothermal processes. In fact, ball milling processes require less solvent, enhance reaction rates and reaction conversion by increasing surface area and substituting thermal energy with mechanochemical energy, among others. Special attention will be given to the types of products, reactants, size of the milling balls and reaction conditions, selecting 60 articles after applying a screening methodology during the period 2020-2022. This paper aims to compile and analyze the cutting edge of research in utilizing mechanochemistry for green chemistry applications.
Collapse
Affiliation(s)
- Sergi Arfelis
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- University Pompeu Fabra, Barcelona, Spain
| | - Ana I Martín-Perales
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Departamento de Química Orgánica, Campus Universitario de Rabanales, Edificio Marie Curie C3, Universidad de Córdoba, Crta. Nnal IV-A, km 396, E-14014, Córdoba, Spain
| | - Remy Nguyen
- Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, CNRS, PSL Research University, 11 rue Pierre et Marie Curie, Paris, F-75005, France
| | | | - Igor Cherubin
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Polytechnique Montreal, Département de Génie Chimique, 2500, chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Christophe Len
- Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, CNRS, PSL Research University, 11 rue Pierre et Marie Curie, Paris, F-75005, France
- Université de Technologie de Compiegne, CS 60319, Compiegne Cedex, 60203, France
| | - Irene Malpartida
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Universidad de Málaga, Departamento Química Inorgánica, Cristalografía y Mineralogía, Av. de Cervantes 2, 29016, Málaga, Spain
| | - Alba Bala
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| | - Pere Fullana-I-Palmer
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Wang K, Wang G, Zhou L, Zeng Y, Zhang Y, Fang Z. Rapid removal of decabromodiphenyl ether by mechanochemically prepared submicron zero-valent iron with FeC 2O 4·2 H 2O layers: Kinetics, mechanisms and pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133309. [PMID: 38185080 DOI: 10.1016/j.jhazmat.2023.133309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
The utilization of nano zero-valent iron (nZVI) in polybrominated diphenyl ethers remediation has been studied extensively. However, challenges in balancing cost and reactivity have been encountered. A submicron zero-valent iron coated with FeC2O4·2 H2O layers (OX-smZVI) was synthesized via a mechanochemical method, aiming to resolve this contradiction. Characterization via SEM, TEM, and XPS confirmed the structure as FeC2O4·2 H2O coated iron lamellate with a surface area 24-fold higher than ball-milled zero-valent iron (smZVI). XRD highlighted an Fe/C eutectic in OX-smZVI, boosting its electron transfer capacity. Decabromodiphenyl ether degradation by OX-smZVI follows a two-stage process, with initial degradation by FeC2O4·2 H2O and a subsequent phase dominated by electron transfer. OX-smZVI exhibits a 4.52-34.40 times faster BDE209 removal rate than nZVI and scaled-up OX-smZVI displayed superior reactivity with preparation costs only 1/680 of nZVI. Given its enhanced reactivity and cost-efficiency, OX-smZVI emerges as a promising replacement for nZVI.
Collapse
Affiliation(s)
- Kuang Wang
- College of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, China
| | - Guan Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Long Zhou
- College of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, China
| | - Yuan Zeng
- College of Environment, South China Normal University, Guangzhou 510006, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Zhanqiang Fang
- College of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, China.
| |
Collapse
|
4
|
Xie L, Chen Q, Liu Y, Ma Q, Zhang J, Tang C, Duan G, Lin A, Zhang T, Li S. Enhanced remediation of Cr(VI)-contaminated soil by modified zero-valent iron with oxalic acid on biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167399. [PMID: 37793443 DOI: 10.1016/j.scitotenv.2023.167399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Hexavalent chromium (Cr(VI)) is carcinogenic and widely presented in soil. In this study, modified zero-valent iron (ZVI) with oxalic acid on biochar (OA-ZVI/BC) was prepared using wet ball milling method for the remediation of Cr(VI)-contaminated soil. Microscopic characterizations showed that ZVI were distributed on the biochar uniformly and confirmed the enhanced interface interaction between biochar and ZVI by wet ball milling. Electrochemical analysis indicated the strong electron transfer ability and enhanced corrosion behavior of OA-ZVI/BC. Moreover, inhibitory efficiencies of Cr(VI) removal with the addition of 1,10-phenanthroline suggested abundant Fe2+ generation in OA-ZVI/BC, which might facilitate the reduction of Cr(VI) to Cr(III). Theory calculation further demonstrated the ZVI modified by oxalic acid was more susceptible to solid-solid interfacial reactions with Cr(VI), and more electrons were transferred to Cr(VI). When applied to Cr(VI)-contaminated soil, OA-ZVI/BC could passivate 96.7 % total Cr(VI) and maintained for 90 days. The toxicity characteristic leaching procedure (TCLP) and simple based extraction test (SBET) were used to evaluate the leaching toxicity and bioaccessibility of Cr(VI), respectively. The TCLP-Cr(VI) decreased to 0.11 mg·L-1 after OA-ZVI/BC treatment, much lower than that of soils with ZVI/BC and OA-ZVI remediation (1.5 mg·L-1 and 4.1 mg·L-1). The bioaccessibility of Cr(VI) reduced by 93.5 % after 3-month remediation. Sequential extraction showed that Cr fractions in the soil after OA-ZVI/BC remediation was converted from acetic acid-extractable (HOAc-extractable) to more stable forms (e.g., residual and oxidizable forms). Benefiting from the synergies of oxalic acid, biochar and wet ball milling, OA-ZVI/BC exhibited an excellent performance on the remediation of Cr(VI)-contaminated soil, whose mechanisms involved adsorption, reduction (Fe0/Fe2+, Fe2+/Fe3+) and co-precipitation. This study herein develops a promising ZVI technology in the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Lihong Xie
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingjun Chen
- China National Petroleum and Chemical Planning Institute, Beijing 100013, China
| | - Yiyang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiyan Ma
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenliu Tang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Yang Y, Wang N, Gu H. Synthesis of submicron ferrous oxalate from red mud with high Fenton catalytic performance on degradation of methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85210-85222. [PMID: 37386219 DOI: 10.1007/s11356-023-28308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Ferrous oxalate dihydrate (FOD) can be used as a photo-Fenton catalyst with remarkable photo-Fenton catalytic and photocatalytic performances on organic pollutant degradation. Various reduction processes were compared in the current study to synthesize FODs from ferric oxalate solution utilizing the iron source in alumina waste red mud (RM), including natural light exposure (NL-FOD), UV light irradiation (UV-FOD), and hydroxylamine hydrochloride hydrothermal method (HA-FOD). The FODs were characterized and employed as photo-Fenton catalysts for methylene blue (MB) degradation, and the effects of HA-FOD dosage, H2O2 dosage, MB concentration, and the initial pH were investigated. The results show that HA-FOD has submicron sizes and lower impurity contents with more rapid degradation rates and higher degradation efficiencies compared with the other two FOD products. When using 0.1 g/L of each obtained FOD, 50 mg/L of MB can be rapidly degraded by HA-FOD by 97.64% within 10 min with 20 mg/L of H2O2 at pH of 5.0, while NL-FOD and UV-FOD achieve 95.52% in 30 min and 96.72% in 15 min at the same conditions, respectively. Meanwhile, HA-FOD exhibits strong cyclic stability after two recycling experiments. Scavenger experiments reveal that the predominant reactive oxygen species responsible for MB degradation are hydroxyl radicals. These findings demonstrate that submicron FOD catalyst can be synthesized using hydroxylamine hydrochloride hydrothermal process from ferric oxalate solution with high photo-Fenton degradation efficiency and reduced reaction time for wastewater treatment. The study also provides a new pathway of efficient utilization for RM.
Collapse
Affiliation(s)
- Yuxin Yang
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Wang
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hannian Gu
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Zhang Y, Ma Z, Xie X, Wu D, Peng X, Li J. Mechanochemically synthesized silicotungsten acidified ZVI composite for persulfate activation: Enhancement of the electron transfer and Fe slowly release mechanism. CHEMOSPHERE 2023:139254. [PMID: 37331659 DOI: 10.1016/j.chemosphere.2023.139254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Zero-valent iron (ZVI) is a promising technology for groundwater treatment, and its efficiency primarily depends on the electron transfer. However, there are still some problems such as low electron efficiency of ZVI particles and high yield of iron sludge that limits the performance, which warrant further investigation. In our study, a silicotungsten acidified ZVI composite (m-WZVI) was synthesized by ball milling to activate PS to degrade phenol. m-WZVI has a better performance on phenol degradation (with a removal rate of 91.82%) than ball mill ZVI(m-ZVI) with persulfate (PS) (with a removal rate of 59.37%). Compared with m-ZVI, the first-order kinetic constant (kobs) of m-WZVI/PS is 2-3 times higher than that of the others. Iron ion was gradually leached in m-WZVI/PS system, being only 2.11 mg/L after 30 min, having to avoid excessive consumption of active substances. The underlying mechanisms of m-WZVI for PS activation mainly include: 1) were elucidated through different characterizations analyses that accounted for silictungstic acid (STA) can be combined with ZVI, and a new electron donor (SiW124-) was obtained, which improved the transfer rate performance of electrons for activating PS; 2) singlet oxygen (1O2) is the main active substance for phenol degradation, but other radicals also played an important role. Therefore, m-WZVI has good prospects for improving the electron utilization of ZVI.
Collapse
Affiliation(s)
- Yingqian Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Daishe Wu
- School of Materials and Chemical Engineering,Pingxiang University,Pingxiang, 337000,China
| | - Xing Peng
- Hunan United Kitchen Waste Treatment Co., Ltd, Changsha, 410022, China
| | - Jianlong Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
7
|
Wu S, Deng S, Xia F, Han X, Ju T, Xiao H, Xu X, Yang Y, Jiang Y, Xi B. A novel thermosensitive persulfate controlled-release hydrogel based on agarose/silica composite for sustained nitrobenzene degradation from groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130619. [PMID: 37056022 DOI: 10.1016/j.jhazmat.2022.130619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/14/2022] [Indexed: 06/19/2023]
Abstract
The increasing risk of organic contamination of groundwater poses a serious threat to the environment and human health, causing an urgent need to develop long-lasting and adaptable remediation materials. Controlled-release materials (CRMs) are capable of encapsulating oxidants to achieve long-lasting release properties in aquifers and considered to be effective strategies in groundwater remediation. In this study, novel hydrogels (ASGs) with thermosensitive properties were prepared based on agarose and silica to achieve controlled persulfate (PS) release. By adjusting the composition ratio, the gelation time and internal pore structure of the hydrogels were regulated for groundwater application, which in turn affected the PS encapsulated amount and release properties. The hydrogels exhibited significant temperature responsiveness, with 6.8 times faster gelation rates and 2.8 times longer controlled release ability at 10 ℃ than at 30 ℃. The ASGs were further combined with zero-valent iron to achieve long-lasting degradation of the typical nitrobenzene compound 2,4-dinitrotoluene (2,4-DNT), and the degradation performance was maintained at 50 % within 14 PV, which was significantly improved compared with that of the PS/ZVI system. This study provided new concepts for the design of controlled-release materials and theoretical support for the remediation of organic contamination.
Collapse
Affiliation(s)
- Shuxuan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fu Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianyu Ju
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Han Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Gong L, Zhang L. Oxyanion-modified zero valent iron with excellent pollutant removal performance. Chem Commun (Camb) 2023; 59:2081-2089. [PMID: 36723230 DOI: 10.1039/d2cc06814a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxyanion-modified zero valent iron (OM-ZVI), including oxyanion-modified microscale ZVI (OM-mZVI) and nanoscale zero valent iron (OM-nZVI), has attracted growing interest in recent years for their excellent pollutant removal performance. This feature article summarizes the recent progress of OM-ZVI materials, including their synthesis, characterization, enhanced pollutant removal performance, and structure-property relationships. Generally, OM-ZVI could be synthesized with wet chemical and mechanochemical (ball-milling) methods and then characterized with state-of-the-art characterization techniques (e.g., X-ray-based spectroscopy, electron microscopy) to reveal their structure and physicochemical properties. We found that phosphate modification could form iron-phosphate on the nZVI surface, facilitating Cr(VI) removal, while the phosphorylation process could induce tensile hoop stress to produce numerous radial nanocracks in the structurally-dense spherical nZVI for enhanced Ni(II) removal via a boosted Kirkendall effect. Oxalate modification could trigger electron delocalization to increase electron cloud density and surface-bound Fe(II) of mZVI for enhanced Cr(VI) removal, while oxalated mZVI exhibited more efficient Cr(VI) removal performance via an in situ formed FeC2O4·2H2O shell of high proton conductivity, favoring Cr(VI) reduction. Differently, the mechanochemical treatment of mZVI with B2O3 could exert tensile strain on it through interstitial boron doping, thereby promoting the release and transfer of electrons from its Fe(0) core to its iron oxide shell for dramatic Cr(VI) reduction. This article aims to demonstrate the potential of OM-ZVI for pollution control and environmental remediation.
Collapse
Affiliation(s)
- Li Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. .,Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
9
|
Wang X, Zhang Y, Zhang Y, Xu C. Remediation of Cr(VI)-contaminated soil by sulfidated zero-valent iron: The effect of citric acid as eluant and modifying agent. CHEMOSPHERE 2023; 313:137436. [PMID: 36462563 DOI: 10.1016/j.chemosphere.2022.137436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Leaching and chemical reduction are two commonly used methods for Cr(VI)-contaminated soil remediation. Leaching focuses more on leaching Cr(VI) out of the soil. Chemical reduction has the disadvantages of poor fluidity of reductant. Combining these two remediation methods, this study investigated the performance of Cr(VI)-contaminated soil when H2O and citric acid were used as eluant separately and sulfidated zero-valent iron (SZVI) as reductant. And based on the properties of Cr(VI) chelated with -COOH to form a complex and the characteristics of -OH anchored to FeSx, citric acid modified SZVI (Cit-SZVI) was prepared. The prepared Cit-SZVI was characterized by SEM-EDS, XPS, XRD to study its surface properties. The transformation of Cr species in soil was explored by BCR sequential extraction. The results indicated Cr(VI) removal by SZVI was significantly promoted when citric acid as eluant compared with H2O. With SZVI dosage of 2.0 wt%, 23.1 mg/L Cr(VI) was basically removed within 60 min when citric acid as eluant, while only 60% Cr(VI) was removed when H2O as eluant even after 3 h. The kobs of Cit-SZVI was 1.4 times that of SZVI when H2O as eluant. The characterization of Cit-SZVI showed that more FeSx was formed on the surface of the Cit-SZVI, and more -OH of citric acid was anchored to FeSx, leaving -COOH available to chelate Cr(VI). Compared with H2O as eluant and SZVI/Cit-SZVI as reducing agent, the removal effect of Cr(VI) was the best when citric acid as eluant and SZVI as reducing agent. BCR sequential extraction showed that Cr(VI) was effectually fixed, weak acid extractable Cr proportion decreased significantly and residual Cr proportion increased in the treated soil. The combination of leaching and chemical reduction proposed in this study can greatly enhance the Cr(VI) removal effect in soil, which is important for the remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yanshi Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Li X, Song C, Sun B, Gao J, Liu Y, Zhu J. Kinetics of zero-valent iron-activated persulfate for methylparaben degradation and the promotion of Cl . JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115973. [PMID: 36104884 DOI: 10.1016/j.jenvman.2022.115973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Methylparaben (MP) is an emerging pollutant, and the optimal conditions and kinetics of MP degradation using nano-zero-valent iron-activated persulfate (nZVI/PDS) need to be further investigated. This paper firstly investigated the response surface methodology (RSM) analysis of MP degradation by the heterogeneous system nZVI/PDS and concluded that the initial pH had the most significant effect on MP degradation. The optimal experimental conditions predicted by the RSM were as follows: initial pH 2.75, [nZVI]0 = 2.87 mM, [PDS]0 = 2.18 mM (MP degradation level of 95.30%). First- and second-order kinetic fits were performed for different initial pH levels and different concentrations of MP, nZVI, and PDS. It was determined that k = 0.0365 min-1 (R2 = 0.984) when the initial pH was 3, [PDS]0 = 2 mM, [MP]0 = 20 mg L-1, and [nZVI]0 = 3 mM (MP degradation level of 94.25%). The rest of the conditions were more closely fitted to the second-order reactions. The effects of different concentrations of anions and humic acid (HA) on the MP degradation level and k were examined, and it was found that Cl- could promote MP degradation to 97.69% (increased by 3.65%) and increase the k in accordance with the first-order reaction kinetics (0.0780 min-1, R2 = 0.991). Finally, the analysis of intermediates revealed 5 reaction pathways and 7 reaction intermediates, which inferred a possible reaction mechanism with the recycling performance of nZVI. In this paper, the superiority of nZVI/PDS for the purposes of activating MP degradation was affirmed. The presence of Cl- can enhance the level of MP degradation was confirmed, which provides a new direction for future practical engineering applications.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuang Song
- Tieling Ecological Environment Bureau, Tieling, 112008, China
| | - Beibei Sun
- Sinopec Ningbo Engineering CO., LTD., Ningbo, 315000, China
| | - Jingsi Gao
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Yanping Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|