1
|
Liu T, Xiao M, Du R, Li M, Li X, Xi Y, Lv Y, Liu H, Huang Y, Xu T. Cd migration in water-level fluctuation zones of Three Gorges reservoir: Interactions of periphytic biofilms and tryptophan. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104611. [PMID: 40393302 DOI: 10.1016/j.jconhyd.2025.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
Periphytic biofilms (PBs) and dissolved organic matter (DOM) are key factors affecting the migration of Cd at the "water-sediment" interface. However, the specific effects of PBs and protein-like components of DOM on Cd migration within the "water-biofilm-sediment" system remain poorly understood. This study simulates the dissolution and re-immobilization of Cd at the "water-biofilm-sediment" interface in the water-level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR), aiming to clarify the role of PBs in Cd stability. The results indicate that the concentration of dissolved Cd increased by 0.96-fold (R2 = 0.992) with each doubling of L-tryptophan (L-Trp) concentration, as the functional groups of L-Trp (COOH and NH) formed complexes with Fe-Mn oxide-bound Cd in the sediment. In the presence of PBs and at an L-Trp concentration of 150 mg·L-1, PBs utilized L-Trp, resulting in a 16.7 % reduction in dissolved organic carbon (DOC) (p < 0.05) and an increase in protein content. Additionally, PBs contributed to a 35.12 % reduction in the peak concentration of dissolved Cd, thereby stabilizing the final Cd levels. Cd enrichment within PBs, facilitated by functional groups such as >CC<, OH, >CO, and CO, led to a significant increase in Cd content (0.43 mg·kg-1, p < 0.05). These findings suggest that L-Trp degradation and Cd enrichment by PBs act synergistically to promote the re-immobilization of dissolved Cd. This study offers a novel perspective on Cd migration in WLFZs and provides insights that may be applicable to other aquatic environments where PBs are present.
Collapse
Affiliation(s)
- Ting Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Mengting Xiao
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Rongshan Du
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Yichang Three Gorges Reservoir Region Eco-Environment Monitoring Station, Yichang 443005, Hubei, China
| | - Meng Li
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Xinyi Li
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Ying Xi
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yuanfei Lv
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
| | - Honglin Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
| | - Tao Xu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China.
| |
Collapse
|
2
|
Wu W, Yang W, Zheng F, Zhang Q, Ma Q, Zhao Y, Luo S, Yang Y, Zeng Q, Deng X. Strategic attenuation of Cd accumulation in rice through stage-specific flooding: Synergistic coordination of rhizospheric Cd bioavailability, microbial communities, and iron plaque speciation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126455. [PMID: 40373856 DOI: 10.1016/j.envpol.2025.126455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/15/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Continuous flooding (CF) effectively mitigates rice cadmium (Cd) contamination but raises concerns about water scarcity and greenhouse gas emissions, limiting sustainability. Therefore, there is a need for water management strategies that can reduce Cd accumulation in rice without the substantial resource demands of CF. Field trials conducted in Cd-contaminated paddy fields in southern China compared eight water management strategies, including continuous drainage (CD), stage-specific flooding, and CF, to identify alternatives for reducing rice Cd accumulation. Delaying flooding stages and extending flooding duration progressively decreased Cd levels in rice tissues. Although CF achieved the lowest brown rice Cd levels (0.04-0.06 mg/kg), it also caused yield reductions. Among the alternatives, grain-filling stage flooding resulted in a reduction of Cd levels in brown rice compared to vegetative-stage flooding, decreasing the health risks of Cd from intake of brown rice. Specifically, grain-filling stage flooding for 20 days (FG20) was particularly effective, reducing Cd concentrations in brown rice by 82.74 % (YA) and 28.61 % (HG) compared to CD, and by 3.67 %-74.82 % compared to vegetative-stage flooding. FG20 significantly reduced soil Cd bioavailability to levels comparable to CF, while also similarly increasing soil pH and promoting iron plaque formation compared to CD. Additionally, FG20 modulated the soil microbial community, stimulating Cd-immobilizing bacteria (e.g., Clostridium_sensu_stricto_13, Oxobacter) while suppressing Cd-mobilizing bacteria (e.g., Porphyrobacter, Anaerolinea), stabilizing Cd in soil. Collectively, extending the grain-filling stage flooding duration (e.g., to 20 days) in Cd-contaminated rice production areas can both significantly reduce water resource consumption and facilitate practical implementation for farmers.
Collapse
Affiliation(s)
- Weijian Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Yuelushan Laboratory, Changsha, Hunan, 410128, China
| | - Wenjun Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Yuelushan Laboratory, Changsha, Hunan, 410128, China
| | - Feiyu Zheng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qiying Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Yuelushan Laboratory, Changsha, Hunan, 410128, China
| | - Qiao Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yingyue Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Yuelushan Laboratory, Changsha, Hunan, 410128, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Yuelushan Laboratory, Changsha, Hunan, 410128, China
| | - Qingru Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Yuelushan Laboratory, Changsha, Hunan, 410128, China
| | - Xiao Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China; Yuelushan Laboratory, Changsha, Hunan, 410128, China.
| |
Collapse
|
3
|
Chen W, Cheng Y, Zhang H, Farooq U, Ni J, Chen H, Si Y, Qi Z. Molecular insight into biomass-burning smoke water-soluble organic matter binding with Cd(II): Comprehensive analysis from fluorescence EEM-PARAFAC, FT-ICR-MS and two-dimensional correlation spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135754. [PMID: 39243541 DOI: 10.1016/j.jhazmat.2024.135754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The deposition of biomass-burning smoke water-soluble organic matter (BBS-WSOM) significantly affects the environmental behavior of heavy metals in aqueous environments. However, the interactions between BBS-WSOM and heavy metals at the molecular level remain unknown. This study combined FT-ICR-MS, fluorescence spectrum, FTIR, and two-dimensional correlation spectroscopy to anatomize the molecular characteristics of BBS-WSOM binding with Cd(II). The results show that CHO and CHOP compounds were responsible for the fluorescence response of BBS-WSOM at Ex: 225 nm and 275 nm/Em: 325 nm, and abundant proteins or CHON compounds were responsible for the fluorescence response of BBS-WSOM at Ex: 225-250 nm/Em: 350-450 nm and Ex: 300-350 nm/Em: 350-450 nm, which was very different from the fluorescence molecules in natural organic matters. Fluorescence change after Cd(II) addition indicated that CHOP and CHOS compounds enhanced BBS-WSOM binding with Cd(II). Differently, the CHON compounds could weaken the binding of other compounds with Cd(II). Different compounds binding with Cd(II) generally followed the order: CHON/CHOS compounds>CHOP compounds>CHO compounds, and the chemical groups binding with Cd(II) generally followed the prioritization: -COO-> -NH/SO>P = O/P-O>aromatic ring>CO>C-OH of phenol/alcohol>C-O-C. This study provides a profound insight into the interaction between BBS-WSOM and Cd(II) at the molecular level.
Collapse
Affiliation(s)
- Weifeng Chen
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yue Cheng
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huiying Zhang
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jinzhi Ni
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Hui Chen
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Youtao Si
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Jiao Y, Jia J, Gu J, Wang S, Zhou Q, Li H, Li L. Insights into the enhanced adsorption of glyphosate by dissolved organic matter in farmland Mollisol: effects and mechanisms of action. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:459. [PMID: 39348086 DOI: 10.1007/s10653-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Dissolved organic matter (DOM) is easy to combine with residual pesticides and affect their morphology and environmental behavior. Given that the binding mechanism between DOM and the typical herbicide glyphosate in soil is not yet clear, this study used adsorption experiments, multispectral techniques, density functional theory, and pot experiments to reveal the interaction mechanism between DOM and glyphosate on Mollisol in farmland and their impact on the environment. The results show that the adsorption of glyphosate by Mollisol is a multilayer heterogeneous chemical adsorption process. After adding DOM, due to the early formation of DOM and glyphosate complex, the adsorption process gradually became dominated by single-layer chemical adsorption, and the adsorption capacity increased by 1.06 times. Glyphosate can quench the endogenous fluorescence of humic substances through a static quenching process dominated by hydrogen bonds and van der Waals forces, and instead enhance the fluorescence intensity of protein substances by affecting the molecular environment of protein molecules. The binding of glyphosate to protein is earlier, of which affinity stronger than that of humic acid. In this process, two main functional groups (C-O in aromatic groups and C-O in alcohols, ethers and esters) exist at the binding sites of glyphosate and DOM. Moreover, the complexation of DOM and glyphosate can effectively alleviate the negative impact of glyphosate on the soil. This study has certain theoretical guidance significance for understanding the environmental behavior of glyphosate and improving the sustainable utilization of Mollisol.
Collapse
Affiliation(s)
- Yaqi Jiao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Junxin Jia
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Jiaying Gu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Sa Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Qin Zhou
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Hui Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Li Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China.
| |
Collapse
|
5
|
Huang W, Cao L, Ge R, Wan Z, Zheng D, Li F, Li G, Zhang F. Higher thermal remediation temperature facilitates the sequential bioaugmented reductive dechlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134825. [PMID: 38876014 DOI: 10.1016/j.jhazmat.2024.134825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The coupling of thermal remediation with microbial reductive dechlorination (MRD) has shown promising potential for the cleanup of chlorinated solvent contaminated sites. In this study, thermal treatment and bioaugmentation were applied in series, where prior higher thermal remediation temperature led to improved TCE dechlorination performance with both better organohalide-respiring bacteria (OHRB) colonization and electron donor availability. The 60 °C was found to be a key temperature point where the promotion effect became obvious. Amplicon sequencing and co-occurrence network analysis demonstrated that temperature was a more dominating factor than bioaugmentation that impacted microbial community structure. Higher temperature of prior thermal treatment resulted in the decrease of richness, diversity of indigenous microbial communities, and simplified the network structure, which benefited the build-up of newcoming microorganisms during bioaugmentation. Thus, the abundance of Desulfitobacterium increased from 0.11 % (25 °C) to 3.10 % (90 °C). Meanwhile, released volatile fatty acids (VFAs) during thermal remediation functioned as electron donors and boosted MRD. Our results provided temperature-specific information on synergistic effect of sequential thermal remediation and bioaugmentation, which contributed to better implementation of the coupled technologies in chloroethene-impacted sites.
Collapse
Affiliation(s)
- Wan Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lifeng Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Runlei Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ziren Wan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Di Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fangzhou Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Fang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
6
|
Yang Z, Xia H, Guo Z, Xie Y, Liao Q, Yang W, Li Q, Dong C, Si M. Development and application of machine learning models for prediction of soil available cadmium based on soil properties and climate features. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124148. [PMID: 38735457 DOI: 10.1016/j.envpol.2024.124148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Identifying the key influencing factors in soil available cadmium (Cd) is crucial for preventing the Cd accumulation in the food chain. However, current experimental methods and traditional prediction models for assessing available Cd are time-consuming and ineffective. In this study, machine learning (ML) models were developed to investigate the intricate interactions among soil properties, climate features, and available Cd, aiming to identify the key influencing factors. The optimal model was obtained through a combination of stratified sampling, Bayesian optimization, and 10-fold cross-validation. It was further explained through the utilization of permutation feature importance, 2D partial dependence plot, and 3D interaction plot. The findings revealed that pH, surface pressure, sensible heat net flux and organic matter content significantly influenced the Cd accumulation in the soil. By utilizing historical soil surveys and climate change data from China, this study predicted the spatial distribution trend of available Cd in the Chinese region, highlighting the primary areas with heightened Cd activity. These areas were primarily located in the eastern, southern, central, and northeastern China. This study introduces a novel methodology for comprehending the process of available Cd accumulation in soil. Furthermore, it provides recommendations and directions for the remediation and control of soil Cd pollution.
Collapse
Affiliation(s)
- Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Hui Xia
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Ziyun Guo
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Yanyan Xie
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Qingzhu Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - ChunHua Dong
- Soil and Fertilizer Institute of Hunan Province, 410125, Changsha, China
| | - Mengying Si
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China.
| |
Collapse
|
7
|
He Y, Mi B, Luo C, Zhao W, Zhu Y, Chen L, Tu N, Wu F. Mechanisms insights into Cd passivation in soil by lignin biochar: Transition from flooding to natural air-drying. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134565. [PMID: 38743974 DOI: 10.1016/j.jhazmat.2024.134565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Biochar shows great potential in soil cadmium pollution treatment, however, the effect and mechanisms of biochar on cadmium passivation (CP) during the long-term process of soil from flooding to natural air-drying are not clear. In this study, a 300-day experiment was conducted to keep the flooded water level constant for the first 100 days and then dried naturally. Mechanisms of CP by lignin biochar (LBC) were analyzed through chemical analysis, FTIR-2D-COS, EEMs-PARAFAC, ultraviolet spectroscopy characterizations, and microbial community distribution of soil. Results showed that application of LBC results in rapid CP ratio in soil within 35 days, mainly in the residual and Fe-Mn bound states (total 72.80%). CP ratio further increased to 90.89% with water evaporation. The CP mechanisms include precipitation, electrostatic effect, humus complexation, and microbial remediation by promoting the propagation of fungi such as Penicillium and Trichoderma. Evaporation of water promoted the colonization of aerobic microorganisms and then increased the degree of soil humification and aromatization, thereby enhancing the cadmium passivation. Simultaneously, the biochar could reduce the relative abundance of plant pathogens in soil from 1.8% to 0.03% and the freshness index (β/α) from 0.64 to 0.16, favoring crop growth and promoting carbon sequestration and emission reduction.
Collapse
Affiliation(s)
- Yanying He
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Baobin Mi
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Research Institute of Vegetables, Hunan Academy of Agriculture Sciences, Changsha 410125, China.
| | - Cheng Luo
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjie Zhao
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yule Zhu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Long Chen
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Naimei Tu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
8
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
9
|
Cai YH, Gopalakrishnan A, Dong Q, Schäfer AI. Removal of strontium by nanofiltration: Role of complexation and speciation of strontium with organic matter. WATER RESEARCH 2024; 253:121241. [PMID: 38377922 DOI: 10.1016/j.watres.2024.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Strontium (Sr) removal from water is required because excessive naturally occurring Sr exposure is hazardous to human health. Climate and seasonal changes cause water quality variations, in particular quality and quantity of organic matter (OM) and pH, and such variations affect Sr removal by nanofiltration (NF). The mechanisms for such variations are not clear and thus OM complexation and speciation require attention. Sr removal by NF was investigated with emphasis on the role of OM (type and concentration) and pH (2-12) on possible removal mechanisms, specifically size and/or charge exclusion as well as solute-solute interactions. The filtration results show that the addition of various OM (10 types) and an increase of OM concentration (2-100 mgC.L-1) increased Sr removal by 10-15%. The Sr-OM interaction was enhanced with increasing OM concentration, implying enhanced size exclusion via Sr-OM interaction as the main mechanism. Such interactions were quantified by asymmetric flow field-flow fractionation (FFFF) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). Both extremely low and high pH increased Sr removal due to the enhanced charge exclusion and Sr-OM interactions. This work elucidated and verified the mechanism of OM and pH on Sr removal by NF membranes.
Collapse
Affiliation(s)
- Yang-Hui Cai
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Qilin Dong
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
10
|
Fan J, Ge C, Li A, Ren G, Deng H, Wu D, Luo J, He Y, Zhao Y, Li J, Feng D, Yu H. The structural transformation reversibility of biogas slurry derived dissolved organic matter and its binding properties with norfloxacin under temperature fluctuation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115953. [PMID: 38244512 DOI: 10.1016/j.ecoenv.2024.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
The widespread use of biogas slurry could potentially raise the environmental risk of antibiotics. Dissolved organic matter (DOM), as the most active part of biogas slurry, was able to interact with antibiotics and play a crucial role in the structure and function of soil and aquatic ecosystems. The recent shifts in global climate patterns have garnered significant attention due to their substantial impact on temperature, thereby exerting a direct influence on the characteristics of DOM and subsequently on the environmental behavior of antibiotics. However, there is limited research concerning the impact of temperature on the binding of DOM and antibiotics. Thus, this study aimed to explore the temperature-dependent structural transformation and driving factors of biogas slurry-derived DOM (BSDOM). Additionally, the binding characteristics between BSDOM and the commonly used antibiotic norfloxacin (NOR) at different temperatures were studied by using multi spectroscopic methods and two-dimensional correlation spectroscopy (2D-COS) analysis. The results suggested that the temperature-dependent structural transformation of BSDOM was reversible, with a slight lag in the transition temperature under cooling (13 °C for heating and 17 °C for cooling). Heating promoted the conversion of protein-like to humic-like substances while cooling favored the decomposition of humic-like substances. BSDOM and NOR were static quenching, with oxygen-containing functional groups such as C-O and -OH playing an important role. Temperature influenced the order of binding, the activity of the protein fraction, and its associated functional groups. At temperatures of 25 °C and 40 °C, the fluorescent components were observed to exhibit consistent binding preferences, whereby the humic-like component demonstrated a greater affinity for NOR compared to the protein-like component. However, the functional group binding order exhibited an opposite trend. At 10 °C, a new protein-like component appeared and bound preferentially to NOR, when no C-O stretch corresponding to the amide was observed. The finding will contribute to a comprehensive understanding of the interaction mechanisms between DOM and antibiotics under climate change, as well as providing a theoretical basis to reduce the environmental risks of biogas slurry and antibiotics.
Collapse
Affiliation(s)
- Jinluo Fan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Ailing Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Guoliang Ren
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Dongming Wu
- Hainan Key Laboratory of Tropical Eco-circuling Agriculture, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Ministry Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Yanhu He
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Dan Feng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| |
Collapse
|
11
|
Hu X, Qu C, Han Y, Sun P, Cai P, Chen W, Huang Q. Elevated temperature induces contrasting transformation of exogenous copper to soil solution and solid phases in an arable soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114744. [PMID: 36931086 DOI: 10.1016/j.ecoenv.2023.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal contamination of soils has been a global environmental issue over the past decades, threatening food security and human health. Understanding the migration and transformation of heavy metals in soils is critical for restoring an impaired environment and developing sustainable agriculture, particularly in the face of global warming. However, little effort has been devoted to investigating the impact of elevated temperatures on the migration and distribution of exogenous heavy metals in soils. This study experimented with a 180-day incubation at 15 °C, 30 °C, and 45 °C with an arable soil (Alfisol) of Huang-Huai-Hai River Basin, China, which was initially spiked with copper (Cu). A comparison of the results revealed that the percentage of soil water-soluble Cu doubled at 45 °C compared with 15 °C. The percentage of protein-like substances in dissolved organic matter (DOM) was the highest at 45 °C, suggesting that proteinaceous components play a more significant role in controlling the dissolution of Cu into DOM. Moreover, by sequential extraction and micro-X-ray fluorescence (μ-XRF), Cu was facilitatively transformed from exchangeable, and specifically adsorbed fractions, to iron (Fe)/manganese (Mn) oxides bound species by 7.75%23.63% with the elevation of temperature from 15 °C to 45 °C. The conversion of Cu speciation is attributed to the significant release of organic carbon from Fe/Mn oxides, especially the Mn oxide components, which are available for Cu binding. The findings of this work will provide an in-depth understanding of the fate of Cu in soils, which is fundamental for the risk assessment and remediation of Cu-polluted soils in the Huang-Huai-Hai River Basin under the context of global warming.
Collapse
Affiliation(s)
- Xiping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafeng Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
12
|
Han C, Li W, Li M, Guo Y, Li M, Wu H. Investigating the vertical distribution of dissolved organic matter in 5-m soil profiles in farmland and typical woodland on the southern loess plateau. ENVIRONMENTAL RESEARCH 2023; 219:115017. [PMID: 36495959 DOI: 10.1016/j.envres.2022.115017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
With the implementation of the 'Grain-for-Green' program on the Chinese Loess Plateau (CLP), drought-tolerant deep-rooted plants have been increasingly introduced to the northwest in China. However, the vertical features of dissolved organic matter (DOM) in deep soil profiles on CLP during the 'Grain-for-Green' program is still not well understood. In the study, ultraviolet-visible (UV-Vis) spectroscopy and three-dimensional fluorescence excitation-emission matrices (3D-EEMs) with parallel factor analysis (PARAFAC) were used to characterize DOM in 5-m profile of farmland and forestland (Pinus tabulaeformis and Robinia pseudoacacia) in the southern CLP. The results demonstrated that the average dissolved organic carbon (DOC) content of the surface layer of farmland (119.3 mg kg-1 soil) was lower than that of forestland (Pinus tabulaeformis 175.5 mg kg-1 soil; Robinia pseudoacacacia 166.4 mg kg-1 soil). The DOC content gradually decreased with increasing soil depth and reached stability after 2 m depth. Three substances, including tryptophan-like substances (C1) and two humic acid-like substances (C2, C3), were detected from all samples. Tryptophan-like substances (C1) significantly increased with soil depth while humic acid-like substances (C2, C3) significantly decreased particularly in farmland. The humic acid-like content of surface soils (Robinia pseudoacacia) was relatively higher, but the difference between the two vegetation soils was not significant. The freshness index (β/α) values of DOM as well as biological index (BIX) values were significantly higher in farmland than that in forestland, and the humification index (HIX) values were lower than in forestland soils, indicating that the change of soil DOM in farmland was more active than that in forestland and more dependent on local terrestrial sources. These results could contribute to a better understanding of the vertical distribution and features of soil DOM during the 'Grain-for-Green' program of CLP.
Collapse
Affiliation(s)
- Chunxiao Han
- College of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Wen Li
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Man Li
- Shandong Provincial Center for Soil Pollution Control, Jinan 250012, PR China
| | - Yujie Guo
- Liaocheng City Ecological Environment Bureau, Liaocheng 252000, PR China
| | - Ming Li
- College of Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Haiming Wu
- College of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
13
|
Zhu Y, Guan Q, Kong L, Yang R, Wang W, Jin Y, Liu X, Qu J. Overlooked mechanism of Pb immobilization on montmorillonite mediated by dissolved organic matter in manure compost. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120706. [PMID: 36427824 DOI: 10.1016/j.envpol.2022.120706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this study, three kinds of dissolved organic matter (DOM) derived from fresh chicken manure (FDOM), immature compost (IDOM) and mature compost (MDOM) were employed to compare their effects on Pb adsorption onto montmorillonite (MMT). The potential mechanism was revealed by characterization of mineral structure and calculation of interface force. The results demonstrated that the adsorption capacity (qmax) of Pb onto MMT was decreased by 14.3% and 29.8% in the presence of FDOM and IDOM, respectively, while increased by 44.4% in the presence of MDOM, resulting from the release or co-adsorption of DOM-Pb complexes. Parallel factor (PARAFAC) further indicated that Pb mainly bound to protein-like substances in FDOM and IDOM, and fulvic-like in MDOM. The X-ray diffraction (XRD) analysis proved that MDOM-Pb complex had a stronger ability to enter into the interlayer of MMT. The van der Waals force dominated the adsorption of FDOM-Pb and IDOM-Pb, while ligand exchange was involved in the case of MDOM-Pb. This study provided a comprehensive insight into the geochemical behavior of livestock manure and its compost as well as their interactions with heavy metal and soil mineral.
Collapse
Affiliation(s)
- Yuanchen Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Linghui Kong
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Academy of Agriculture and Science, Soil Fertilizer and Environment Resource Institute, Harbin, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|