1
|
Tan YY, Abdul Raman AA, Zainal Abidin MII, Buthiyappan A. A review on sustainable management of biomass: physicochemical modification and its application for the removal of recalcitrant pollutants-challenges, opportunities, and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36492-36531. [PMID: 38748350 DOI: 10.1007/s11356-024-33375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Adsorption is one of the most efficient methods for remediating industrial recalcitrant wastewater due to its simple design and low investment cost. However, the conventional adsorbents used in adsorption have several limitations, including high cost, low removal rates, secondary waste generation, and low regeneration ability. Hence, the focus of the research has shifted to developing alternative low-cost green adsorbents from renewable resources such as biomass. In this regard, the recent progress in the modification of biomass-derived adsorbents, which are rich in cellulosic content, through a variety of techniques, including chemical, physical, and thermal processes, has been critically reviewed in this paper. In addition, the practical applications of raw and modified biomass-based adsorbents for the treatment of industrial wastewater are discussed extensively. In a nutshell, the adsorption mechanism, particularly for real wastewater, and the effects of various modifications on biomass-based adsorbents have yet to be thoroughly studied, despite the extensive research efforts devoted to their innovation. Therefore, this review provides insight into future research needed in wastewater treatment utilizing biomass-based adsorbents, as well as the possibility of commercializing biomass-based adsorbents into viable products.
Collapse
Affiliation(s)
- Yan Ying Tan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Izzudin Izzat Zainal Abidin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Lu C, Yang J, Yu Z, Zhang X, Ma X. Low-cost pyrolysis of biomass-derived nitrogen-doped porous carbon: Chlorella vulgaris replaces melamine as a nitrogen source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28494-28506. [PMID: 38561529 DOI: 10.1007/s11356-024-33109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Porous carbon generated from biomass has a rich pore structure, is inexpensive, and has a lot of promise for use as a carbon material for energy storage devices. In this work, nitrogen-doped porous carbon was prepared by co-pyrolysis using bagasse as the precursor and chlorella as the nitrogen source. ZnCl2 acts as both an activator and a nitrogen fixer during activation to generate pores and reduce nitrogen loss. The thermal weight loss experiments showed that the pyrolysis temperatures of bagasse and chlorella overlap, which created the possibility for the synthesis of nitrogen-rich biochar. The optimum sample (ZBC@C-5) possessed a surface area of 1508 m2g-1 with abundant nitrogen-containing functional groups. ZBC@C-5 in the three-electrode system exhibited 244.1F/g at 0.5A/g, which was extremely close to ZBC@M made with melamine as the nitrogen source. This provides new opportunities for the use of low-cost nitrogen sources. Furthermore, the devices exhibit better voltage retention (39%) and capacitance retention (96.3%). The goal of this research is to find a low cost, and effective method for creating nitrogen-doped porous carbon materials with better electrochemical performance for highly valuable applications using bagasse and chlorella.
Collapse
Affiliation(s)
- Changxing Lu
- School of Electric Power, South China University of Technology, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, 510640, China
| | - Jing Yang
- China CEC Engineering Corporation, Changsha, 410000, China
| | - Zhaosheng Yu
- School of Electric Power, South China University of Technology, Guangzhou, 510640, China.
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, 510640, China.
| | - Xikui Zhang
- School of Electric Power, South China University of Technology, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, 510640, China
| | - Xiaoqian Ma
- School of Electric Power, South China University of Technology, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, 510640, China
| |
Collapse
|
3
|
Chen C, He E, Jia W, Xia S, Yu L. Preparation of magnetic sodium alginate/sodium carboxymethylcellulose interpenetrating network gel spheres and use in superefficient adsorption of direct dyes in water. Int J Biol Macromol 2023; 253:126985. [PMID: 37730008 DOI: 10.1016/j.ijbiomac.2023.126985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
The rapid development of the printing and dyeing industry has led to the production of a large amount of high-density printing and dyeing wastewater, and technology for its effective treatment has become a focus of research. To construct a polymeric adsorbent material with abundant functional groups for the efficient adsorption of dye wastewater, a novel magnetic sodium alginate/carboxymethylcellulose interpenetrating network gel sphere (Fe3O4@SA/CMC-Fe) was prepared by co-blending sodium alginate (SA) and sodium carboxymethylcellulose (CMC) with Fe3O4; Fe3O4@SA/CMC-Fe was characterized by SEM-EDS, XRD, TGA, FT-IR, UV-Vis, VSM, BET-BJH and XPS. Static adsorption experiments showed that the optimal rates for adsorption of DV 51 and DR 23 from solutions with neutral pH values by Fe3O4@SA/CMC-Fe were up to 96 %, the adsorption process exhibited a Langmuir adsorption isotherm, and the dynamic adsorption process was accurately described by the pseudo-second-order kinetic model. A thermodynamic study showed that the adsorption reactions were all spontaneous exothermic reactions with increasing entropy. The mechanism for adsorption of the dyes by Fe3O4@SA/CMC-Fe involved hydrogen bonding, complexation and electrostatic adsorption. In summary, Fe3O4@SA/CMC-Fe is a green, simple, recyclable and highly efficient magnetic adsorbent that is expected to be widely used in treating dye wastewaters over a wide pH range.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Enhui He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Weina Jia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuwei Xia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
4
|
Zhao Y, Liu X, Li W, Pei S, Ren Y, Li X, Qu C, Wu C, Liu J. Efficient and Selective Adsorption of Cationic Dye Malachite Green by Kiwi-Peel-Based Biosorbents. Molecules 2023; 28:5310. [PMID: 37513184 PMCID: PMC10385289 DOI: 10.3390/molecules28145310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, pristine kiwi peel (KP) and nitric acid modified kiwi peel (NA-KP) based adsorbents were prepared and evaluated for selective removal of cationic dye. The morphology and chemical structure of KP and NA-KP were fully characterized and compared, and results showed nitric acid modification introduced more functional groups. Moreover, the adsorption kinetics and isotherms of malachite green (MG) by KP and NA-KP were investigated and discussed. The results showed that the adsorption process of MG onto KP followed a pseudo-second-order kinetic model and the Langmuir isotherm model, while the adsorption process of MG onto NA-KP followed a pseudo-first-order kinetic model and the Freundlich isotherm model. Notably, the Langmuir maximum adsorption capacity of NA-KP was 580.61 mg g-1, which was superior to that of KP (297.15 mg g-1). Furthermore, thermodynamic studies demonstrated the feasible, spontaneous, and endothermic nature of the adsorption process of MG by NA-KP. Importantly, NA-KP showed superior selectivity to KP towards cationic dye MG against anionic dye methyl orange (MO). When the molar ratio of MG/MO was 1:1, the separation factor (αMG/MO) of NA-KP was 698.10, which was 5.93 times of KP. In addition, hydrogen bonding, π-π interactions, and electrostatic interaction played important roles during the MG adsorption process by NA-KP. This work provided a low-cost, eco-friendly, and efficient option for the selective removal of cationic dye from dyeing wastewater.
Collapse
Affiliation(s)
- Yanjun Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xintong Liu
- School of Light Industry, Beijing Technology and Business University, No. 33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Wenhui Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Suyun Pei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yifan Ren
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xinyang Li
- China Testing & Certification International Group Co., Ltd., No. 1 Guanzhuang Road, Chaoyang District, Beijing 100024, China
| | - Chen Qu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Institute of Graphic Communication, No. 1 Xinghua Street (Section 2), Daxing District, Beijing 102600, China
| |
Collapse
|
5
|
Deniz F, Tezel Ersanli E. An efficient biosorbent material for green remediation of contaminated water medium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:1-10. [PMID: 37191258 DOI: 10.1080/15226514.2023.2191742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The discharge of large amounts of wastewater carrying various contaminants from many anthropogenic activities into the receiving water environment is a multidimensional issue negatively affecting the ecological system and natural balance in many ways. The removal of pollutants by the biologically-originated materials is an emerging area of interest due to profoundly their environmental friendliness, renewability, sustainability, readily availability, biodegradability, multiplicity, low (or no) economic cost, high affinity, capacity, and stability. In the present study, a popular ornamental plant, Pyracantha coccinea M. J. Roemer, was converted into a green sorbent material with the goal to effectively remove a widespread contaminant (synthetic dye, C. I. Basic Red 46) from synthetic wastewater. The physicochemical characteristics of the prepared biosorbent were determined by the instrumental analyses of FTIR and SEM. The batch experiments of various operational influence parameters were conducted to maximize the system efficiency. The wastewater remediation behavior by the material was investigated by the kinetics, thermodynamics, and isotherm experiments. The biosorbent had a non-uniform and rough surface architecture with a diversity of functional groups. The maximum remediation yield was achieved with the contact duration of 360 min, the pollutant load of 30 mg L-1, the pH of 8, and the biosorbent quantity of 10 mg (0.1 g L-1). The kinetics of the contaminant removal showed good agreement with the pseudo-second-order model. Thermodynamics study indicated that the treatment process was spontaneous and occurred by physisorption. Langmuir model fitted the isotherm data of the biosorption operation well and the maximum pollutant cleanup capacity of the material was determined to be 169.354 mg g-1. These outcomes showed that P. coccinea M. J. Roemer could be used as a promising material for low-cost and green treatment of wastewater.
Collapse
Affiliation(s)
- Fatih Deniz
- Environmental Protection Technologies Department, Vocational School of Bozova, University of Harran, Sanliurfa, Turkey
| | - Elif Tezel Ersanli
- Biology Department, Faculty of Arts and Science, University of Sinop, Sinop, Turkey
| |
Collapse
|
6
|
Wang B, Lan J, Ou J, Bo C, Gong B. Ganoderma lucidum bran-derived blue-emissive and green-emissive carbon dots for detection of copper ions. RSC Adv 2023; 13:14506-14516. [PMID: 37188255 PMCID: PMC10176043 DOI: 10.1039/d3ra02168h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Ganoderma lucidum bran (GB) has a broad application prospect in the preparation of activated carbon, livestock feed, and biogas, but the preparation of carbon dots (CDs) from GB has never been reported. In this work, GB was applied as a carbon source and nitrogen source to prepare both blue fluorescent CDs (BCDs) and green fluorescent CDs (GCDs). The former were prepared at 160 °C for 4 h by a hydrothermal approach, while the latter were acquired at 25 °C for 24 h by chemical oxidation. Two kinds of as-synthesized CDs exhibited unique excitation-dependent fluorescence behavior and high fluorescent chemical stability. Based on the fantastic optical behavior of the CDs, they were utilized as probes for fluorescent determination of copper ions (Cu2+). In the range of 1-10 μmol L-1, the fluorescent intensity of BCDs and GCDs decreased linearly with the increase of Cu2+ concentration; the linear correlation coefficient reached 0.9951 and 0.9982, and the limit of detection (LOD) was 0.74 and 1.08 μmol L-1, respectively. In addition, these CDs remained stable in 0.001-0.1 mmol L-1 salt solutions; BCDs were more stable in the neutral pH range, but GCDs were more stable in neutral to alkaline conditions. The CDs prepared from GB are not only simple and low-cost, but also can realize the comprehensive utilization of biomass.
Collapse
Affiliation(s)
- Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| | - Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| |
Collapse
|
7
|
Grigoraș CG, Simion AI, Favier L. Exploration of Reactive Black 5 Dye Desorption from Composite Hydrogel Beads—Adsorbent Reusability, Kinetic and Equilibrium Isotherms. Gels 2023; 9:gels9040299. [PMID: 37102910 PMCID: PMC10137732 DOI: 10.3390/gels9040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
A low-cost adsorbent was prepared by using cherry stones powder and chitosan and used to retain Reactive Black 5 dye from aqueous solution. Then, the spent material was submitted to a regeneration process. Five different eluents (water, sodium hydroxide, hydrochloric acid, sodium chloride and ethanol) were tested. Among them, sodium hydroxide was selected for an advanced investigation. Values of three working conditions, namely the eluent volume, its concentration and the desorption temperature, were optimized by Response Surface Methodology-Box–Behnken Design. In the established settings (NaOH volume: 30 mL, NaOH concentration: 1.5 M, working temperature: 40 °C), three successive cycles of adsorption/desorption were conducted. The analysis performed by Scanning Electron Microscopy and by Fourier Transform Infrared Spectroscopy revealed the evolution of the adsorbent throughout the dye elution from the material. Pseudo-second-order kinetic model and Freundlich equilibrium isotherm were able to accurately describe the desorption process. Based on the acquired results, our outcomes sustain the suitability of the synthesized material as dye adsorbent and the possibility of efficaciously recycling and reusing it.
Collapse
Affiliation(s)
- Cristina-Gabriela Grigoraș
- Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Andrei-Ionuț Simion
- Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Lidia Favier
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, UMR 6226, CEDEX 7, 35708 Rennes, France
| |
Collapse
|
8
|
Liu Z, Khan TA, Islam MA, Tabrez U. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. BIORESOURCE TECHNOLOGY 2022; 354:127168. [PMID: 35436542 DOI: 10.1016/j.biortech.2022.127168] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Printing and dyeing wastewater (PDW) has characteristics of large amount of water, elevated content of residual dyes, poor biodegradability, high alkalinity and large change of water quality, making its treatment difficult. Development of efficient and economic PDW treatment technology has gained considerable interest in the field of environmental protection. Use of plant biomass carbon (PBC) for the adsorption of dyes is a feasible and economical technology. This review summarizes current literature discussing the preparation method and physicochemical characteristics of PBC prepared from different plant species, the effect of PBC on the removal of dyes, influencing factors affecting the removal, and relevant adsorption models. The shortcomings of current research and the direction of future research are also pointed out in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Md Azharul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Unsha Tabrez
- Chegg India Pvt. Ltd., 401, Baani Corporate One, Jasola, New Delhi 110 025, India
| |
Collapse
|
9
|
A highly efficient biomass-based adsorbent fabricated by graft copolymerization: Kinetics, isotherms, mechanism and coadsorption investigations for cationic dye and heavy metal. J Colloid Interface Sci 2022; 616:12-22. [DOI: 10.1016/j.jcis.2022.02.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
|
10
|
Hartanto D, Yuhaneka G, Utomo WP, Rozafia AI, Kusumawati Y, Dahani W, Iryani A. Unveiling the charge transfer behavior within ZSM-5 and carbon nitride composites for enhanced photocatalytic degradation of methylene blue. RSC Adv 2022; 12:5665-5676. [PMID: 35425563 PMCID: PMC8981822 DOI: 10.1039/d1ra09406h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
ZSM-5/graphitic carbon nitride (g-C3N4) composites were successfully prepared using a simple solvothermal method. By varying the amount of ZSM-5 and g-C3N4 in the composites, the charge carrier (electrons and holes) transfer within the materials, which contributes to the enhanced photocatalytic performance, was unraveled. The X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and scanning electron microscopy (SEM) analysis revealed that more ZSM-5 component leads to a stronger interaction with g-C3N4. The photocatalytic performance test toward methylene blue (MB) degradation shows that more ZSM-5 in the composites is beneficial in enhancing photocatalytic activity. Meanwhile, the impedance electron spectroscopy (EIS) and photoluminescence (PL) analysis revealed that ZSM-5 facilitates the charge carrier transfer of photogenerated electrons and holes from g-C3N4 to the catalyst surface due to its lower charge transfer resistance. During the charge carrier migration, the interface between g-C3N4 and ZSM-5 particles may induce higher resistance for the charge carrier transfer, however after passing through the interface from g-C3N4 to ZSM-5 particles, the charge carrier can be efficiently transferred to the surface, hence suppressing the charge carrier recombination.
Collapse
Affiliation(s)
- Djoko Hartanto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Grace Yuhaneka
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia .,Study Program of Laboratory Testing Analysis SMK Negeri 1 Driyorejo Gresik 61177 Indonesia
| | - Wahyu Prasetyo Utomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia .,School of Energy and Environment, City University of Hong Kong Kowloon 999077 Hong Kong SAR
| | - Ade Irma Rozafia
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo Surabaya 60111 Indonesia
| | - Wiwik Dahani
- Department of Mining Engineering, Trisakti University Jakarta Indonesia
| | - Ani Iryani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Pakuan University Bogor Indonesia
| |
Collapse
|