1
|
Li Z, Lu J, Pan R, Fu Q, Zhang TY, Xu B. Band gap regulation of MIL-101(Fe) via pyrazine-based ligands substitution for enhanced visible-light adsorption and its photo-Fenton-like application. J Environ Sci (China) 2025; 155:762-772. [PMID: 40246506 DOI: 10.1016/j.jes.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 04/19/2025]
Abstract
Regulating the photo-response region of iron metal-organic frameworks (Fe-MOFs) is a viable strategy for enhancing their practical application in the visible-light driven photo-Fenton-like process. This study developed a novel pyrazine-based Fe-MOFs (MIL-101(Fe)-Pz) by substituting the 1,4-dicarboxybenzene acid ligands in typical MIL-101(Fe) with 2,5-pyrazinedicarboxylic acid (PzDC), in which sodium acetate was used as coordinative modulator to control the crystal size (2-3 µm). The incorporation of Fe-pyridine N coordination structures originated from PzDC ligands gave MIL-101(Fe)-Pz narrowed band gap (1.45 eV) than MIL-101(Fe) (2.54 eV) resulting in improved visible-light adsorption capacity (λ > 420 nm), and also increased the proportion of Fe(II) in the Fe-clusters. Thus MIL-101(Fe)-Pz exhibited a synergistic enhanced photo-Fenton-like catalytic performance under visible-light irradiation. The MIL-101(Fe)-Pz/H2O2/Vis system could degrade 99% of sulfamethoxazole within 30 min, which was 10-fold faster than that of the pristine MIL-101(Fe), it also effectively removed other organic micropollutants with high durability and stability. Mechanistic analysis revealed that the PzDC ligands substitution decreased the band gap of MIL-101(Fe), giving MIL-101(Fe)-Pz appropriate band structure (-0.40∼1.05 V vs. NHE) which can cover several light-driven process for the generation of reactive oxygen species, including Fe(III) reduction and H2O2 activation for accelerating •OH generation, as well as oxygen reduction reaction for generating H2O2, O2•- and 1O2. This study highlights the role of pyridine-N containing ligands in regulating the band structure of Fe-MOFs, providing valuable guidance for the design of Fe-MOFs photocatalysts.
Collapse
Affiliation(s)
- Zongchen Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Qin Z, Peng T, Qin X, Liu G, Zhang H. Colorimetric/fluorescent dual-mode biosensor based on metalloporphyrin covalently modified NH 2-MIL-101(Fe) with highly efficient peroxidase-like activity for the detection of tetracycline in honey samples. Food Chem 2025; 484:144387. [PMID: 40273871 DOI: 10.1016/j.foodchem.2025.144387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Accurate detection of tetracycline residue is of great significance for ensuring product quality and protecting human health. Here, a colorimetric/fluorescent dual-mode biosensor was developed for the detection of tetracycline in honey by using metalloporphyrin [TCPP(Fe)] covalently modified NH2-MIL-101(Fe) [named NH2-MIL-101(Fe)@TCPP(Fe)]. The morphology, chemical structure and peroxidas-like activity of this hybrid nanozyme were comprehensively studied. Based on excellent catalytic activity and intrinsic fluorescence of NH2-MIL-101(Fe)@TCPP(Fe), a colorimetric/fluorescent dual-mode biosensor was developed for the detection of tetracycline. The primary mechanism for this dual mode biosensor was the inhibitory effect of tetracycline on on NH2-MIL-101(Fe)@TCPP(Fe) catalyzed chromatic reaction between H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB)/o-phenylenediamine (OPD), which was ascribed to the consumption of ·OH by tetracycline and the adsorption of tetracycline on the surface of NH2-MIL-101(Fe)@TCPP(Fe). After effective validation, this colorimetric/fluorescent dual mode method was applied to detect tetracycline residues in three actual honey samples.
Collapse
Affiliation(s)
- Zhiyang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tianyue Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
3
|
Pan R, Li Z, Zhang TY, Fu Q, Zheng ZX, Shi J, Lu J, Hu CY, Tang YL, El-Din MG, Xu B. Amino-functionalized MIL-101(Fe)-NH 2 as efficient peracetic acid activator for selective contaminant degradation: Unraveling the role of electron-donating ligands in Fe(IV) generation. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138028. [PMID: 40153961 DOI: 10.1016/j.jhazmat.2025.138028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Peracetic acid-based advanced oxidation processes (PAA-AOPs), which generate various reactive radicals, have garnered substantial attention for degradation emerging contaminants (ECs). However, nonselective radical-based PAA-AOPs often suffer from interference by water matrix components, causing low contaminants removal efficiency. This study explores the use of amino-(NH2)-functionalized metal-organic frameworks (MIL-101(Fe)-NH2) as heterogeneous catalysts for PAA activation, enabling the generation of high-valent iron- (Fe)-oxo species (Fe(IV)) capable of efficiently degrading ECs (80 -100 %, within 30 min). The Fe(II) clusters in MIL-101(Fe)-NH2, modulated by electron-donating -NH2 groups, play a pivotal role in Fe(IV) generation. Scavenger and probe experiments confirmed Fe(IV) as the primary reactive species responsible for ECs degradation. Density functional theory calculations demonstrated that the four-electron transfer to generate Fe(IV) has lower free energy than the two-electron transfer to generate organic radicals (e.g., CH3COO• and CH3C(O)OO•). Furthermore, thermodynamically unfavorable CH3COO• desorption further promotes Fe(IV) generation. The PAA/MIL-101(Fe)-NH2 system efficiently degraded SMX (kapp= 121.2 -287.2 M-1s-1) and other ECs (kapp= 40 -432 M-1s-1) with minimal interference from water matrix components and excellent reusability. This study demonstrates that MIL-101(Fe)-NH2 is a robust catalyst for PAA activation and provides a novel approach for selectively generating Fe(IV) for ECs degradation.
Collapse
Affiliation(s)
- Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zongchen Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Qi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zheng-Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jun Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Zhang X, Liu Y, Yuan J. Amino-functionalized Fe/Co bimetallic MOFs for accelerated Fe (III)/Fe (II) cycling and efficient degradation of sulfamethoxazole in Fenton-like system. Front Chem 2025; 13:1579108. [PMID: 40224220 PMCID: PMC11986425 DOI: 10.3389/fchem.2025.1579108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
Metal-organic frameworks (MOFs) are recognized as important Fenton-like materials for environmental remediation. However, their applications are often hindered by slow cycling between Fe (III) and Fe (II). This study aimed to address the slow Fe (III)/Fe (II) cycling limitation of Fe-MOFs through dual modification strategy: bimetallic modification and amino functionalization. A series of NH2-MOF(Fe, Co) catalysts with varying Fe/Co ratios were synthesized via a hydrothermal method and evaluated for sulfamethoxazole (SMX) degradation. The optimized NH2-MOF(Fe, Co) catalyst (Fe/Co ratio = 7:3) exhibited substantially enhanced catalytic performance, with SMX removal rate and rate constant in the H2O2 system being 3.2 and 43.5 times higher than those of the Fe-MOF/H2O2 system, respectively. The catalyst demonstrated robust performance across a wide pH range (3.05-7.00), addressing a common limitation of Fenton-like systems. Physicochemical characterization revealed that the enhanced performance was attributed to two key factors: the synergistic effect between Co and Fe in the bimetallic active center, and improved electron transfer to the central metal due to -NH2 functionalization. These modifications effectively addressed the Fe (III)/Fe (II) redox cycling limitation. The proposed reaction mechanism provides insights into SMX degradation pathways in the NH2-MOF(Fe, Co)/H2O2 system. This study presents an efficient and stable MOF-based Fenton-like catalyst with potential applications in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Xianbing Zhang
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Key Laboratory of Ecological Waterway, Chongqing Jiaotong University, Chongqing, China
| | - Yuheng Liu
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Key Laboratory of Ecological Waterway, Chongqing Jiaotong University, Chongqing, China
| | - Jiajia Yuan
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, China
| |
Collapse
|
5
|
Li Z, Li M, Xu R, Jin Z. Efficient photocatalytic hydrogen production by employing a graphdiyne/NH 2-MIL-88B(Fe) composite. Phys Chem Chem Phys 2025; 27:4278-4289. [PMID: 39918343 DOI: 10.1039/d4cp04468a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The electron transfer rate in photocatalysts is one of the factors determining their hydrogen production activity. In this work, NH2-MIL-88B(Fe) (NFM) was synthesized using a one-step hydrothermal synthesis method and NFM/GDY-25 (NFMG-25) was successfully synthesized by loading graphdiyne (GDY) onto the surface of NFM. The hydrogen production performance and the mechanism of the prepared photocatalysts were systematically investigated using XRD, SEM, FT-IR, XPS, UV-Vis, PL and photoelectrochemical tests. The results showed that the hydrogen production of NFMG-25 reached 61.7 μmol in 5 hours. Photoelectrochemical and Mott-Schottky tests demonstrated that the composite catalyst exhibited high photogenerated carrier separation efficiency and single catalysts were n-type semiconductors. The conduction bands of NFM and GDY were -0.36 V and -0.56 V, respectively, while the valence bands were 1.90 V and 1.12 V. NFM acted as an electron acceptor and donor, which accelerated the transfer of the electrons, and enhanced the photocatalytic hydrogen production efficiency of the composite system. This study provides an effective method for using NFM in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Ziyu Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China.
| | - Mei Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China.
| | - Rongsheng Xu
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China.
| |
Collapse
|
6
|
Zhou J, Hu X, Luo Z, Li X, Zhang WX, Deng Z. Nanocellulose encapsulated nZVI@UiO-66-NH 2 aerogel for high-efficiency p-chloronitrobenzene removal with selective reduction. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136520. [PMID: 39550834 DOI: 10.1016/j.jhazmat.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
A poriferous nZVI aerogel (nZVI@UiO-66-NH2/TCNF) was elaborately constructed by in-situ deposition of nZVI on UiO-66-NH2 and coupling with a bio-based TEMPO oxidized cellulose nanofiber (TCNF) substrate, followed by freeze-drying process for p-chloronitrobenzene (p-CNB) degradation. With degradation efficiency of above 85 % within 3 h under a wide pH range of 3-9, the nZVI@UiO-66-NH2/TCNF aerogel presented better p-CNB removal performance than other developed aerogels. Extended to 24 h, superior p-CNB removal performance (99.83 %) and 4-chloroaniline (p-CAN) selectivity (98.84 %) were successfully achieved. This could be attributed to 1) the facilitated mass transfer via concentration-gradient driving force with buffering and drag-reducing hydrated shear layer from porous channels of hydrophilic TCNF; 2) the enhanced adhesion of p-CNB onto UiO-66-NH2 and accelerated electron transfer by Fe-O-Zr bonds, synergistically improving the nitro- reduction of p-CNB using nZVI. This work pioneered a unique paradigm, providing nZVI with both solid bio-based moldability and highly-selective removal for the treatment of chloronitrobenzene containing wastewater.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaolei Hu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhengkun Luo
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaodong Li
- China Shipping Environment Technology (Shanghai) Co., Ltd, Shanghai Ship and Shipping Research Institute, 600 Minsheng Road, Shanghai 200135, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China; China Shipping Environment Technology (Shanghai) Co., Ltd, Shanghai Ship and Shipping Research Institute, 600 Minsheng Road, Shanghai 200135, China.
| |
Collapse
|
7
|
Li M, Mao J, Li J, Wang D, Hu J, Zhang Y, Zhang J, Xiao H. Engineering cellulose aerogel composites for mercury ion sequestration and aquatic real time monitoring based on the immobilization of metal-organic frameworks. Int J Biol Macromol 2024; 283:137652. [PMID: 39547620 DOI: 10.1016/j.ijbiomac.2024.137652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Industrial wastewater effluents containing elevated levels of mercury are a significant menace to both the ecosystem and human health. Despite the advent of metal-organic frameworks (MOFs) as promising adsorbents, their application in treatment of industrial wastewater has been impeded by the challenges associated with handling their powdered form. In this work, we introduce a straightforward method for fabricating MOF composite cellulose aerogels (5MM-101@CA). The resulting adsorbent showed a high adsorption capacity of 409.84 mg/g for Hg (II), with over 75 % removal efficiency maintained after five consecutive adsorption-desorption cycles. Furthermore, the material exhibited high sensitivity for the real-time detection of Hg (II), with a detection limit as low as 6.89×10-8 M. The adsorbent also showed remarkable fluorescence stability for up to a week, indicative of its excellent optical performance. Dynamic adsorption demonstrated the adsorbent's ability to sustain continuous and stable system operation without compromising adsorption efficiency. These findings underscore the effectiveness of post-synthetic modification (PSM) technology in enhancing the performance of MOFs, while highlighting the utility of low-cost cellulose as an effective carrier. Thus, the composite material developed in this work is promising as it not only maximizes the adsorption capabilities of MOFs but also circumvents the risk of secondary pollution.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Jianwei Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianfeng Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Dongqing Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianing Hu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Jinghong Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada.
| |
Collapse
|
8
|
Wang Q, Xu Y, Ma J, Xia K, Ma D, Fang L, Hu X, Sun D. Interfacial and electronic dual regulation of metal organic frameworks for enhanced catalytic oxidation of peroxymonosulfate into dyes. J Colloid Interface Sci 2024; 680:723-733. [PMID: 39580924 DOI: 10.1016/j.jcis.2024.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
In heterogeneous advanced oxidation processes, it is important to improve the catalytic performance, which can be achieved by increasing the mass transfer of catalysts and utilization efficiency of reactive oxygen species (ROSs). Herein, the functional groups, amino group (NH2) and hydroxyl group (OH), were introduced onto the surface of metal organic frameworks (MOFs), FeBDC (Iron terephthalate) by ligand exchange. The synthesized MOFs were used as catalysts to activate peroxymonosulfate (PMS) for the efficient removal of dye from wastewater. The NH2/-OH groups accumulated at the surface of MOFs to significantly enhanced their hydrophilicity, which favored dye adsorption efficiency on the surface of MOFs from aqueous solution. This dye enrichment was benefited to the high utilization of ROSs due to the shorter transfer distance in solution. Additionally, the introduction of NH2/OH favored the reduction in electrochemical resistance both within the bulk and at the interface of the MOFs, thereby facilitating the electron transfer from the MOFs to PMS. The efficient utilization of ROSs (the radicals (SO4- and O2-) and non-radical (1O2)) generated by PMS removed nearly all RB171 (96.2-98.5 %) by oxidation reaction. The azo bonds and aromatic rings of dye molecules were susceptible to the attack by these ROSs. At the utilization of 5 cycles, iron leaching from MOFs/PMS was very low, satisfying the value of discharge standards. This work demonstrates that the functional groups presented in MOFs effectively facilitate the dual regulation of dye enrichment and catalytic activity in heterogeneous advanced oxidation processes.
Collapse
Affiliation(s)
- Qi Wang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Yiling Xu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Jingjing Ma
- State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Kai Xia
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Delong Ma
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Long Fang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiude Hu
- State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Deshuai Sun
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Zahid M, Ismail A, Ullah R, Ali U, Raziq F, Alrebdi TA, Alodhayb AN, Ali S, Qiao L. Pt-N catalytic centres concisely enhance interfacial charge transfer in amines functionalized Pt@MOFs for selective conversion of CO 2 to CH 4. J Colloid Interface Sci 2024; 672:370-382. [PMID: 38850864 DOI: 10.1016/j.jcis.2024.05.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Improving ligand-to-active metal charge transfer (LAMCT) by finely tuning the organic ligand is a decisive strategy to enhance charge transfer in metal organic frameworks (MOFs)-based catalysts. However, in most MOFs loaded with active metal catalysts, electron transmission encounters massive obstacle at the interface between the two constituents owing to poor LAMCT. Herein, amines (-NH2) functionalized MOFs (NH2-MIL-101(Cr)) encapsulated active metal Pt nanoclusters (NCs) catalysts are synthesized by the polyol reduction method and utilized for the photoreduction of CO2. Surprisingly, the introduction of -NH2 (electron donating) groups within the matrix of MIL-101(Cr) improved the electron migration through the LAMCT process, fostering a synergistic interaction with Pt. The combined experimental analysis exposed the high number of metallic Pt (Pt0) in Pt@NH2-MIL-101(Cr) catalyst through seamless electron shuttling from N of -NH2 group to excited Pt generating versatile hybrid Pt-N catalytic centres. Consequently, these versatile hybrid catalytic centres act as electro-nucleophilic centres, which enable the efficient and selective conversion of CO bond in CO2 to harvest CH4 (131.0 µmol.g-1) and maintain excellent stability and selectivity for consecutive five rounds, superior to Pt@MIL-101(Cr) and most reported catalysts. Our study verified that the precise tuning of organic ligands in MOFs immensely improves the surface-active centres, electron migration, and catalytic selectivity of the excited Pt NCs catalysts encaged inside MOFs through an improved LAMCT pathway.
Collapse
Affiliation(s)
- Muhammad Zahid
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Ahmed Ismail
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Rizwan Ullah
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Usman Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Tahani A Alrebdi
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sharafat Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
10
|
Wang TH, Lai YS, Tsai CK, Fu H, Doong RA, Westerhoff P, Rittmann BE. Efficient CO 2 Conversion through a Novel Dual-Fiber Reactor System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13717-13725. [PMID: 39066729 DOI: 10.1021/acs.est.3c10274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Carbon dioxide (CO2) can be converted to valuable organic chemicals using light irradiation and photocatalysis. Today, light-energy loss, poor conversion efficiency, and low quantum efficiency (QE) hamper the application of photocatalytic CO2 reduction. To overcome these drawbacks, we developed an efficient photocatalytic reactor platform for producing formic acid (HCOOH) by coating an iron-based metal-organic framework (Fe-MOF) onto side-emitting polymeric optical fibers (POFs) and using hollow-fiber membranes (HFMs) to deliver bubble-free CO2. The photocatalyst, Fe-MOF with amine-group (-NH2) decoration, provided exceptional dissolved inorganic carbon (DIC) absorption. The dual-fiber system gave a CO2-to-HCOOH conversion rate of 116 ± 1.2 mM h-1 g-1, which is ≥18-fold higher than the rates in photocatalytic slurry systems. The 12% QE obtained using the POF was 18-fold greater than the QE obtained by a photocatalytic slurry. The conversion efficiency and product selectivity of CO2-to-HCOOH were up to 22 and 99%, respectively. Due to the dual efficiencies of bubble-free CO2 delivery and the high QE achieved using the POF platform, the dual-fiber system had energy consumption of only 0.60 ± 0.05 kWh mol-1, 3000-fold better than photocatalysis using slurry-based systems. This innovative dual-fiber design enables efficient CO2 valorization without the use of platinum group metals or rare earth elements.
Collapse
Affiliation(s)
- Tzu-Heng Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Cheng-Kuo Tsai
- Emergency Response Information Center, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Han Fu
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Paul Westerhoff
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
11
|
Guo W, Shi P, Feng M, Li S. Performance and Mechanism of the Modified Group Regulated the MIL-101(Fe) Type Fenton-like Catalysts. ACS OMEGA 2024; 9:32864-32872. [PMID: 39100345 PMCID: PMC11292831 DOI: 10.1021/acsomega.4c03616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
In order to avoid the disadvantages of the Fenton process in wastewater treatment and reduce the cost of wastewater treatment, a series of MIL-101(Fe)-X (X = -OH, -NH2, -NO2, -H) solid Fenton catalysts were successfully prepared. The performance of these Fenton-like catalysts was studied with the Fenton experiment as a reference and methylene blue (MB) as an organic pollutant. The effects of the H2O2 concentration, catalyst dosage, and reaction pH on catalytic performance were systematically studied. The research had shown that the optimal concentration of H2O2 for catalytic reactions was 0.10 mmol/L and the pH was 3. At this point, their catalytic degradation MB performance was superior to the Fenton reaction and photocatalytic reaction. When the H2O2 participated in the reaction, the performance of MIL-101(Fe)-X (X = -OH, -NH2, -NO2, -H) in catalyzing the degradation of MB followed the rule of -OH > -NH2 > -NO2 > -H. This was due to the synergistic effect of Fenton-like catalysis and photocatalytic degradation in the catalytic degradation of MB. In addition, the electron paramagnetic resonance and electrospray ionization mass spectrometry showed that the hydroxyl radical (·OH) generated during the catalytic process first underwent a redox reaction with the highly electronegative functional groups in the MB molecule, and finally oxidized it to CO2 and H2O. This study successfully prepared commercially applicable Fenton-like catalysts and explored their optimal reaction conditions. This provides a technical reference for wastewater treatment.
Collapse
Affiliation(s)
- Wei Guo
- School
of Mechanical and Resource Engineering, Wuzhou University, Wuzhou, Guangxi 543003, P. R. China
- School
of Resources Environment and Materials, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ping Shi
- School
of Mechanical and Resource Engineering, Wuzhou University, Wuzhou, Guangxi 543003, P. R. China
| | - Meiling Feng
- School
of Mechanical and Resource Engineering, Wuzhou University, Wuzhou, Guangxi 543003, P. R. China
| | - Shixiong Li
- School
of Mechanical and Resource Engineering, Wuzhou University, Wuzhou, Guangxi 543003, P. R. China
- School
of Resources Environment and Materials, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
12
|
Yang N, Pu H, Sun DW. Developing a magnetic SERS nanosensor utilizing aminated Fe-Based MOF for ultrasensitive trace detection of organophosphorus pesticides in apple juice. Food Chem 2024; 446:138846. [PMID: 38460279 DOI: 10.1016/j.foodchem.2024.138846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
The unreasonable use of organophosphorus pesticides leads to excessive pesticide residues in food, seriously threatening public health, and the potential of surface-enhanced Raman spectroscopy (SERS) technology, incorporating a metal-organic framework, is substantial for the rapid detection of trace pesticide residues. Here, a novel Fe3O4@NH2-MIL-101(Fe)@Ag (FNMA) SERS nanosensor was developed. Results indicated that the FNMA had a high enhancement factor of 1.53 × 108, a low limit of detection (LOD) of 4.55 × 10-12 M, and a relative standard deviation of 7.73 % for 4-nitrothiophenol, demonstrating its good SERS sensitivity and uniformity, and also possessed good storage stability for one month. In quantifying fenthion and methyl parathion in standard solutions and apple juice in the range of 0.05/0.02-20 mg/L, it showed LODs of 3.02 × 10-3 mg/L and 1.43 × 10-3 mg/L, and 0.0407 and 0.0075 mg/L, respectively, demonstrating potentials in ultrasensitive trace detection of pesticides in food.
Collapse
Affiliation(s)
- Nengjing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
13
|
Li Z, Lu J, Zhang T, Liu Y, Pan R, Fu Q, Liu X, Mao S, Xu B. Pyrazine-based iron metal organic frameworks (Fe-MOFs) with modulated O-Fe-N coordination for enhanced hydroxyl radical generation in Fenton-like process. J Colloid Interface Sci 2024; 674:279-288. [PMID: 38936084 DOI: 10.1016/j.jcis.2024.06.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Rational design of coordination environment of Fe-based metal-organic frameworks (Fe-MOFs) is still a challenge in achieving enhanced catalytic activity for Fenten-like advanced oxidation process. Here in, novel porous Fe-MOFs with modulated O-Fe-N coordination was developed by configurating amino terephthalic acid (H2ATA) and pyrazine-dicarboxylic acid (PzDC) (Fe-ATA/PzDC-7:3). PzDC ligands introduce pyridine-N sites to form O-Fe-N coordination with lower binding energy, which affect the local electronic environment of Fe-clusters in Fe-ATA, thus decreased its interfacial H2O2 activation barrier. O-Fe-N coordination also accelerate Fe(II)/Fe(III) cycling of Fe-clusters by triggering the reactive oxidant species mediated Fe(III) reduction. As such, Fe-ATA/PzDC-7:3/H2O2 system exhibited excellent degradation performance for typical antibiotic sulfamethoxazole (SMX), in which the steady-state concentration of hydroxyl radical (OH) was 1.6 times higher than that of unregulated Fe-ATA. Overall, this study highlights the role of O-Fe-N coordination and the electronic environment of Fe-clusters on regulating Fenton-like catalytic performance, and provides a platform for precise engineering of Fe-MOFs.
Collapse
Affiliation(s)
- Zongchen Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Jian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Qi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Xinru Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| |
Collapse
|
14
|
Wang C, Feng X, Tian Y, Huang X, Shang S, Liu H, Song Z, Zhang H. Facile synthesis of lignin-based Fe-MOF for fast adsorption of methyl orange. ENVIRONMENTAL RESEARCH 2024; 251:118651. [PMID: 38479718 DOI: 10.1016/j.envres.2024.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
To rapidly remove dyes from wastewater, iron-based metal-organic frameworks modified with phenolated lignin (NH2-MIL@L) were prepared by a one-step hydrothermal method. Analyses of the chemical structure and adsorption mechanism of the NH2-MIL@L proved the successful introduction of lignin and the enhancement of its adsorption sites. Compared with NH2-MIL-101-Fe without phenolated lignin, the modification with lignin increased the methyl orange (MO) adsorption rate of NH2-MIL@L. For the best adsorbent, NH2-MIL@L4, the MO adsorption efficiency in MO solution reached 95.09% within 5 min. NH2-MIL@L4 reached adsorption equilibrium within 90 min, exhibiting an MO adsorption capacity of 195.31 mg/g. The process followed pseudo-second-order kinetics and the Dubinin-Radushkevich model. MO adsorption efficiency of NH2-MIL@L4 was maintained at 89.87% after six adsorption-desorption cycles. In mixed solutions of MO and methylene blue (MB), NH2-MIL@L4 achieved an MO adsorption of 94.02% at 5 min and reached MO adsorption equilibrium within 15 min with an MO adsorption capacity of 438.6 mg/g, while the MB adsorption equilibrium was established at 90 min with an MB adsorption rate and capacity of 95.60% and 481.34 mg/g, respectively. NH2-MIL@L4 sustained its excellent adsorption efficiency after six adsorption-desorption cycles (91.2% for MO and 93.4% for MB). The process of MO adsorption by NH2-MIL@L4 followed the Temkin model and pseudo-second-order kinetics, while MB adsorption followed the Dubinin-Radushkevich model and pseudo-second-order kinetics. Electrostatic interactions, π-π interactions, hydrogen bonding, and synergistic interactions affected the MO adsorption process of NH2-MIL@L4.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Yabing Tian
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China.
| |
Collapse
|
15
|
Ouyang J, Zhang X, Qi X, Wang C, Yuan Y, Xie X, Qiao J, Guo X, Wu Y. Enhanced sorption and fluorescent detection of bisphenol A by using sodium alginate/cellulose nanofibrils/ZIF-8 composite hydrogel. Int J Biol Macromol 2024; 271:132198. [PMID: 38821789 DOI: 10.1016/j.ijbiomac.2024.132198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
To address the issue of bisphenol A (BPA) contamination in wastewater, a novel hydrogel, sodium alginate/cellulose nanofibrils/ZIF-8 composite hydrogel (SCZC), was synthesized for efficient BPA removal. The SCZC exhibited an exceptional adsorption capacity of 1696 mg/g, aligning well with both Langmuir and pseudo-second-order models. Furthermore, it exhibited remarkable regeneration properties, maintaining 89.1 % of its adsorption capacity even after undergoing five adsorption-desorption cycles. The synthesized SCZC also acted as a fluorescent sensor for detecting BPA, employing dynamic quenching and offering linear detection ranges of 10-100 mg/L and 0.2-1.0 μg/L, with a low detection limit of 0.06 μg/L. Analysis of adsorption and detection mechanisms revealed that SCZC's exceptional performance could be attributed to the three-dimensional (3D) porous structure formed by sodium alginate and cellulose nanofibrils. Economic analysis indicated that SCZC, in comparison to commercially activated carbon, was relatively inexpensive. This study introduces a novel approach for designing and preparing a sodium alginate-based hydrogel incorporating metal-organic frameworks, offering simultaneous BPA detection and removal capabilities.
Collapse
Affiliation(s)
- Jiayu Ouyang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinmiao Qi
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Caichao Wang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yao Yuan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangjing Xie
- College of Textiles and Clothing, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Jianzheng Qiao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
16
|
Shah SJ, Luan X, Yu X, Su W, Wang Y, Zhao Z, Zhao Z. Construction of 3D-graphene/NH 2-MIL-125 nanohybrids via amino-ionic liquid dual-mode bonding for advanced acetaldehyde photodegradation under high humidity. J Colloid Interface Sci 2024; 663:491-507. [PMID: 38422975 DOI: 10.1016/j.jcis.2024.02.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
The development of metal organic framework (MOF)-based π-π conjugated structures capable of effectively transforming H2O from humid air to •OH radicals for VOCs photodegradation is a significant but difficult task. Herein, an amino-ionic liquid (NH2-IL) based dual-mode bridging strategy was proposed to connect 3D-graphene with NH2-MIL-125 forming IL-3DGr/NM(Ti) nanohybrids for advanced acetaldehyde photodegradation. The rational integration of these components was responsible for: (1) maintaining π-π conjugated electron transport system; (2) generating abundant coordinatively unsaturated sites and oxygen vacancies; (3) increasing surface area of the nanohybrids. With these attributes, IL-3DGr/NM(Ti) demonstrated enhanced charge separation and transportation electrochemical impedance spectroscopy (EIS): 7-times), acetaldehyde adsorption (22 %), light absorption (bandgap: 1.51 eV). The rapid H2O adsorption and photoconversion to •OH radicals by IL-3DGr/NM(Ti) enabled it to demonstrate superior CH3CHO photodegradation rate under high humidity, surpassing many state-of-the-art photocatalysts by 9 to 187 times under static air conditions and with nearly similar catalyst dosages* (photocatalyst weight and initial acetaldehyde concentration (mg ppm-1) ratio). Interestingly, the IL-3DGr/NM(Ti) photocatalytic activity was enhanced by increasing RH% up-to 80 %. Besides, the nanohybrids demonstrated tremendous stability, with only a 3.9 % decline observed after 5 consecutive-cycles. This strategy provides new prospects to improve the compatibility of graphene/MOF materials for futuristic photoelectrical applications under high humidity.
Collapse
Affiliation(s)
- Syed Jalil Shah
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
| | - Xinqi Luan
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Xin Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Weige Su
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Yucheng Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Zhongxing Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China.
| |
Collapse
|
17
|
Mo L, Chen G, Wang H. Degradation of Orange G Using PMS Triggered by NH 2-MIL-101(Fe): An Amino-Functionalized Metal-Organic Framework. Molecules 2024; 29:1488. [PMID: 38611767 PMCID: PMC11013255 DOI: 10.3390/molecules29071488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
As an azo dye, OG has toxic and harmful effects on ecosystems. Therefore, there is an urgent need to develop a green, environmentally friendly, and efficient catalyst to activate peroxymonosulfate (PMS) for the degradation of OG. In this study, the catalysts MIL-101(Fe) and NH2-MIL-101(Fe) were prepared using a solvothermal method to carry out degradation experiments. They were characterized by means of XRD, SEM, XPS, and FT-IR, and the results showed that the catalysts were successfully prepared. Then, a catalyst/PMS system was constructed, and the effects of different reaction systems, initial pH, temperature, catalyst dosing, PMS concentration, and the anion effect on the degradation of OG were investigated. Under specific conditions (100 mL OG solution with a concentration of 50 mg/L, pH = 7.3, temperature = 25 °C, 1 mL PMS solution with a concentration of 100 mmol/L, and a catalyst dosage of 0.02 g), the degradation of OG with MIL-101(Fe) was only 36.6% within 60 min; as a comparison, NH2-MIL-101(Fe) could reach up to 97.9%, with a reaction constant k value of 0.07245 min-1. The NH2-MIL-101 (Fe)/PMS reaction system was able to achieve efficient degradation of OG at different pH values (pH = 3~9). The degradation mechanism was analyzed using free-radical quenching tests. The free-radical quenching tests showed that SO4•-, •OH, and 1O2 were the main active species during the degradation of OG.
Collapse
Affiliation(s)
- Lijie Mo
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilization, Anhui Jianzhu University, Hefei 230601, China
- Anhui Key Laboratory of Water Pollution Control and Waste Water Recycling, Anhui Jianzhu University, Hefei 230601, China
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Guangzhou Chen
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilization, Anhui Jianzhu University, Hefei 230601, China
- Anhui Key Laboratory of Water Pollution Control and Waste Water Recycling, Anhui Jianzhu University, Hefei 230601, China
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Research Academy of Ecological Civilization, Anhui Jianzhu University, Hefei 230601, China
| | - Hua Wang
- Gansu Tobacco Industry Company Limited, Lanzhou 730050, China
| |
Collapse
|
18
|
Fang Y, Cao Y, Chen Q. Asymmetric Fe-O 2-Ti structures accelerate reduced-layer-Fe II "electron" conversion: Facilitating photocatalytic nitrogen fixation. J Colloid Interface Sci 2024; 658:401-414. [PMID: 38118187 DOI: 10.1016/j.jcis.2023.12.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
As a green and sustainable method for ammonia production, solar photocatalytic nitrogen fixation (PNRR) provides a new approach to slowing down the consumption of non-renewable energy resources. Given the extremely huge energy required to activate inert nitrogen, a rational design of efficient nitrogen fixation catalytic materials is essential. This study constructs defective Ti3+-Ti3C2Ox to regulate the NH2-MIL-101(Fe) reduced layer-FeII 'electron' transition; meanwhile, the heterojunction interface electronic structure formed by coupling promotes catalytic charges' transfer/separation, while the interface-asymmetric Fe-O2-Ti structure accelerates the response with nitrogen. It is shown that the heterojunction NM-101(FeII/FeIII)-1.5 exhibits a 75.1 % FeII enrichment (FeII:FeIII), which successfully impedes the fouling relationship between the two (FeII/FeIII). Mössbauer spectroscopy analysis demonstrates that the presence of D1-high spin state FeIII and D2-low/medium spin state FeII structures in the heterojunction boosts the PNRR activity. Furthermore, it is found that the defective state Ti3+-Ti3C2Ox modulation enhances the reduced nitrogen fixation capacity of the heterojunction (CB = -0.84 eV) and decreases the interfacial charge transfer resistance, yielding 450 umol·g-1·h-1 ammonia. Furthermore, this study modulates the charge ration of the catalyst reduction layer by constructing a charge-asymmetric structure with Ti3+-deficient carriers; this method provides a potential opportunity for enhancing photocatalytic nitrogen fixation in the future.
Collapse
Affiliation(s)
- Yu Fang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; School of Materials and Construction Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Qianlin Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
19
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
20
|
Khasevani S, Nikjoo D, Chaxel C, Umeki K, Sarmad S, Mikkola JP, Concina I. Empowering Adsorption and Photocatalytic Degradation of Ciprofloxacin on BiOI Composites: A Material-by-Design Investigation. ACS OMEGA 2023; 8:44044-44056. [PMID: 38027367 PMCID: PMC10666137 DOI: 10.1021/acsomega.3c06243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Binary and ternary composites of BiOI with NH2-MIL-101(Fe) and a functionalized biochar were synthesized through an in situ approach, aimed at spurring the activity of the semiconductor as a photocatalyst for the removal of ciprofloxacin (CIP) from water. Experimental outcomes showed a drastic enhancement of the adsorption and the equilibrium (which increased from 39.31 mg g-1 of bare BiOI to 76.39 mg g-1 of the best ternary composite in 2 h time), while the kinetics of the process was not significantly changed. The photocatalytic performance was also significantly enhanced, and the complete removal of 10 ppm of CIP in 3 h reaction time was recorded under simulated solar light irradiation for the best catalyst of the investigated batch. Catalytic reactions supported by different materials obeyed different reaction orders, indicating the existence of different mechanisms. The use of scavengers for superoxide anion radicals, holes, and hydroxyl radicals showed that although all these species are involved in CIP photodegradation, the latter play the most crucial role, as also confirmed by carrying out the reaction at increasing pH conditions. A clear correlation between the reduction of BiOI crystallite sizes in the composites, as compared to the bare material, and the material performance as both adsorbers and photocatalyst was identified.
Collapse
Affiliation(s)
- Sepideh
G. Khasevani
- Department
of Engineering Sciences and Mathematics, Luleå University of Technology, 98187 Luleå, Sweden
| | - Dariush Nikjoo
- Department
of Engineering Sciences and Mathematics, Luleå University of Technology, 98187 Luleå, Sweden
| | - Cécile Chaxel
- Department
of Engineering Sciences and Mathematics, Luleå University of Technology, 98187 Luleå, Sweden
| | - Kentaro Umeki
- Department
of Engineering Sciences and Mathematics, Luleå University of Technology, 98187 Luleå, Sweden
| | - Shokat Sarmad
- Wallenberg
Wood Science Center, Department of Chemistry Technical Chemistry,
Department of Chemistry, Chemical-Biological Centre, Umeå University, SE-90871 Umeå, Sweden
| | - Jyri-Pekka Mikkola
- Wallenberg
Wood Science Center, Department of Chemistry Technical Chemistry,
Department of Chemistry, Chemical-Biological Centre, Umeå University, SE-90871 Umeå, Sweden
- Industrial
Chemistry & Reaction Engineering, Johan Gadolin Process Chemistry
Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Isabella Concina
- Department
of Engineering Sciences and Mathematics, Luleå University of Technology, 98187 Luleå, Sweden
| |
Collapse
|
21
|
Shao L, He W, Zhang B, Fan F, Fu Y, Qi W, Li WZ. Ultrafast and Scalable Fabrication of Coordination Polymer Films on Network Substrates via Thermal Current-Induced Dewetting. Inorg Chem 2023; 62:17783-17790. [PMID: 37844277 DOI: 10.1021/acs.inorgchem.3c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Coordination polymers are among the most favored active materials by researchers due to their broad application prospects. However, most of them are usually difficult to directly process into applicable devices because of their unsatisfied processability. One process of great concern for researchers is the in situ preparation of the coordination polymer on the applicable substrate, especially for the favored network substrates with good mechanical properties and 3D porous structure, which could provide obvious convenience and facilitation in the application process. Herein, we present an ultrafast and scalable thermal current-induced dewetting strategy to obtain uniform coordination polymer film in situ on network substrates, which could enable unprecedented convenience to obtain directly usable coordination polymer composites such as practical catalytic electrodes with excellent electrocatalytic performance. The proposed thermal current-induced dewetting method provides a highly adaptable and efficient practical production approach to integrate coordination polymer materials with network substrates and also provides new inspiration for understanding and applying the dewetting process on complex 3D network substrates.
Collapse
Affiliation(s)
- Lei Shao
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wenxiu He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Bing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wei Qi
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
22
|
Wang Z, Cheng Y, Wang C, Guo R, You J, Zhang H. Optimizing the performance of Fe-based metal-organic frameworks in photo-Fenton processes: Mechanisms, strategies and prospects. CHEMOSPHERE 2023; 339:139673. [PMID: 37536536 DOI: 10.1016/j.chemosphere.2023.139673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Contaminants in water pose a significant challenge as they are harmful and difficult to treat using conventional methods. Therefore, various new methods have been proposed to degrade organic pollutants in water, among which the photo-Fenton process is considered promising. In recent years, Fe-based metal-organic frameworks (Fe-MOFs) have gained attention and found applications in different fields due to their cost-effectiveness, non-toxic nature, and unique porous structure. Many researchers have applied Fe-MOFs to the photo-Fenton process in recent years and achieved good results. This review focuses on describing different strategies for enhancing the performance of Fe-MOFs in the photo-Fenton process. Also, the mechanism of MOF in the photo-Fenton process is described in detail. Finally, prospects for the application of Fe-MOFs in photo-Fenton systems for the treatment of organic pollutants in water are presented. This study provides information and ideas for researchers to use Fe-MOFs to remove organic pollutants from water by photo-Fenton process.
Collapse
Affiliation(s)
- Zhaobo Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ying Cheng
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Chen Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Hangzhou Zhang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
23
|
Yuan Z, Chen Y, Qiu C, Li MC, Qi J, de Hoop CF, Zhao A, Lai J, Zhang X, Huang X. Simple ultrasonic integration of shapeable, rebuildable, and multifunctional MIL-53(Fe)@cellulose composite for remediation of aqueous contaminants. Int J Biol Macromol 2023; 249:126118. [PMID: 37541474 DOI: 10.1016/j.ijbiomac.2023.126118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Metal-organic frames (MOFs) have been recognized as one of the best candidates in the remediation of aqueous contaminants, while the fragile powder shape restricts the practical implementation. In this work, a shapeable, rebuildable, and multifunctional MOF composite (MIL-53@CF) was prepared from MIL-53 (Fe) and cellulose fiber (CF) using a simple ultrasonic method for adsorption and photocatalytic degradation of organic pollutants in wastewater. The results showed MIL-53(Fe) crystals were uniformly growth on CF surfaces and bonded with surface nanofibrils of CF through physical crosslinking and hydrogen bonding. Because of the high bonding strength, the MIL-53@CF composite exhibited an excellent compressive strength (3.53 MPa). More importantly, the MIL-53@CF composite was rebuildable through mechanical destruction followed by re-ultrasonication, suggesting the excellent reusability of MIL-53@CF for water remediation. The MIL-53@CF composite also had high adsorption capacities for methyl orange (884.6 mg·g-1), methylene blue (198.3 mg·g-1), and tetracycline (106.4 mg·g-1). MIL-53@CF composite could degrade TC through photocatalysis. The photocatalytic degradation mechanism was attributed to the Fe(II)/Fe(III) transform cycle reaction of MIL-53 crystal located on MIL-53@CF. Furthermore, the mechanical property and remoldability of MIL-53@CF composite increased its practicability. Comprehensively, MIL-53@CF composite provided a possible strategy to practically apply MOF in the remediation of aqueous contaminants.
Collapse
Affiliation(s)
- Zihui Yuan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanlong Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chongpeng Qiu
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jinqiu Qi
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Cornelis F de Hoop
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Anjiu Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiaming Lai
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuefeng Zhang
- Departent of Sustainable Bioproducts, Mississippi State University, MS 39762, USA.
| | - Xingyan Huang
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
24
|
Bu L, Song Q, Jiang D, Shan X, Wang W, Chen Z. A novel molecularly imprinting polypyrrole electrochemiluminescence sensor based on MIL-101-g-C 3N 4 for supersensitive determination of ciprofloxacin. Mikrochim Acta 2023; 190:373. [PMID: 37648847 DOI: 10.1007/s00604-023-05956-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
Ciprofloxacin (CIP), a quinolone antibiotic, was rapidly and sensitively detected by integrating the molecularly imprinted polymer (MIP) with an ultra-sensitive electrochemiluminescence (ECL) method. g-C3N4, a typical polymer semiconductor, exhibited outstanding ECL efficiency and excellent ECL stability after combining with an iron-based metal-organic framework (MIL-101). Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the composites of MIL-101-g-C3N4 modified glassy carbon electrode (GCE). The specific sites that could target rebinding the CIP molecules were formed on the surface of MIP after extracting the CIP templates. The determination of specific concentrations of CIP could be realized according to the difference in ECL intensity (△ECL) between the eluting and rebinding of the CIP. Under optimal conditions, a good linear response of △ECL and the logarithm of CIP concentrations was obtained in the range 1.0 × 10-9 ~ 1.0 × 10-5 mol/L, with a detection limit of 4.5 × 10-10 mol/L (S/N = 3) (the working potential was -1.8 ~ 0 V). The RSD of all points in the calibration plot was less than 5.0% and the real samples recovery was between 98.0 and 104%. This paper displays satisfactory selectivity and sensitivity, providing a rapid, convenient, and cheap method for the determination of CIP in real samples.
Collapse
Affiliation(s)
- Liyin Bu
- School of Petrochemical Engineering, Changzhou University, ChangzhouJiangsu, 213164, China
| | - Qingyuan Song
- School of Petrochemical Engineering, Changzhou University, ChangzhouJiangsu, 213164, China
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, ChangzhouJiangsu, 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, ChangzhouJiangsu, 213164, China.
| |
Collapse
|
25
|
Song M, Han J, Wang Y, Chen L, Chen Y, Liao X. Effects and Mechanisms of Cu Species in Fe-MOFs on Fenton-Like Catalytic Activity and Stability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37464747 DOI: 10.1021/acsami.3c05928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Fe-based MOFs (Fe-MOFs) are deemed promising Fenton-like catalysts due to their well-developed pores and accessible active sites. However, their inferior catalytic activity, iron leaching, and low H2O2 utilization always hinder their application as Fe-based MOF catalysts. In this work, we manipulated the structure of Fe-oxo nodes in MIL-88B(Fe) via a CuI species substitution method, affording a mixed-valence (Cu-incorporated Fe-MOFs) with highly improved Fenton-like performance. It is found that the CuI serves as a shuttle to promote transfer between FeII/FeIII, inducing the formation of a larger amount of stable FeII sites, which was proven by experimental and DFT calculation results. A linear relationship was observed for the Fenton-like performance and the amount of CuI species for the catalysts. The corresponding value of the •OH formation is 2.17 eV for Cu-incorporated MIL-88B(Fe), which is significantly lower than that of MIL-88B(Fe) (2.69 eV). Meanwhile, the enriched CuI species suppress Fe species leaching during the catalytic reaction. The Fe-ion leakage of 0.4Cu@MIL-88B is very tiny (0.01-0.03 mg/L), significantly less than that of MIL-88B (2.00-3.02 mg/L). At the same time, H2O2 utilization for 0.4Cu@ MIL-88B(Fe) is 88%, which is almost 4.4 times that of pure MIL-88B(Fe). This work provides insights into the rational design of Fe-MOFs as promising Fenton-like catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Mengzhen Song
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jingru Han
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Yingzhi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - YanYan Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, China
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
26
|
Feizpoor S, Habibi-Yangjeh A, Luque R. Preparation of TiO 2/Fe-MOF n‒n heterojunction photocatalysts for visible-light degradation of tetracycline hydrochloride. CHEMOSPHERE 2023:139101. [PMID: 37290505 DOI: 10.1016/j.chemosphere.2023.139101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Visible-light-assisted photocatalysis has been recognized as an effective solution to the degradation of various pollutants including antibiotics, pesticides, herbicides, microplastics, and organic dyes. Herein, an n-n heterojunction TiO2/Fe-MOF photocatalyst is reported, designed via hydrothermal synthesis route. TiO2/Fe-MOF photocatalyst was characterized by XPS, BET, EIS, EDS, DRS, PL, FTIR, XRD, TEM, SEM and HRTEM techniques. Inspired by XRD, FTIR, XPS, EDS, TEM, SEM, and HRTEM analyses, the successful synthesis of n-n heterojunction TiO2/Fe-MOF photocatalysts was proved. The migration efficiency of the light-induced electron-hole pairs was confirmed by the PL and EIS tests. TiO2/Fe-MOF exhibited a significant performance for tetracycline hydrochloride (TC) removal under visible light irradiation. TC removal efficiency for TiO2/Fe-MOF (15%) nanocomposite reached 97% within 240 min, ca. 11 times higher than pure TiO2. The photocatalytic enhancement of TiO2/Fe-MOF could be attributed to the broadening the light response range, forming an n-n junction between Fe-MOF and TiO2 components, suppressing charge recombination. Based on recycling experiments, TiO2/Fe-MOF had a good potential to be used in consecutive TC degradation tests.
Collapse
Affiliation(s)
- Solmaz Feizpoor
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Rafael Luque
- Departamento de Química Organica, Campus de Rabanales, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, Cordoba, 14014, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
27
|
Li Y, Li Y, Ding Z, Wan D, Gao Z, Sun Y, Liu Y. Synthesis of MRGO@ZIF-7-Based Molecular Imprinted Polymer by Surface Polymerization for the Fast and Selective Removal of Phenolic Endocrine-Disrupting Chemicals from Aqueous Environments. Processes (Basel) 2023. [DOI: 10.3390/pr11041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In this study, Zn(NO3)2·6H2O was selected as the metal source, and ZIF-7-modified magnetic graphene-based matrix materials (MRGO@ZIF-7) were prepared by in situ growth. ZIF-7 modified magnetic graphene-based molecular imprinting complexes (MRGO@ZIF7-MIP) were successfully synthesized by a surface molecular imprinting technique using bisphenol A (BPA) as the template molecule. The obtained experimental materials were characterized by X-ray diffraction (XRD), Brunner–Emmet–Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS). The proper adsorption and selective recognition ability of the MRGO@ZIF7-MIP were studied by an equilibrium adsorption method. The obtained MRGO@ZIF7-MIP showed significant molecular recognition of bisphenol A (BPA) and good selectivity and reproducibility for BPA in different aqueous environments such as drinking water, river water, and lake water. These properties make this material potentially applicable for the efficient removal of phenolic endocrine disruptors in real water environments.
Collapse
|
28
|
Huang P, Chang Q, Jiang G, Wang X, Zhu H, Liu Q. Rapidly and ultra-sensitive colorimetric detection of H 2O 2 and glucose based on ferrous-metal organic framework with enhanced peroxidase-mimicking activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121943. [PMID: 36209713 DOI: 10.1016/j.saa.2022.121943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this article, a novel metal-organic framework, namely MIL-101(FeII), was firstly synthesized via a facile method. In the presence of H2O2, MIL-101(FeII) possesses excellent peroxidase-like activity toward the classical chromogenic substrate, N,N-Diethyl-p-phenylenediamine sulfate salt (DPD). The substitution of Fe2+ enhances the construction of Fe(II)-oxo nodes and accelerates electrons transfer between DPD and H2O2, thereby improving the peroxidase-mimicking catalytic activity of MIL-101(FeII) nanoenzyme. Additionally, DPD molecules could be adsorbed readily onto the surface of the nanoparticles due to the π-π interaction. The study of Michaelis constant indicates that the MIL-101(FeII) exhibits a higher affinity towards DPD (0.16 mM) in contrast to horseradish peroxidase (0.78 mM). In view of the impressive catalytic performance of MIL-101(FeII), two reliable monitoring platforms for the rapid detection of H2O2 and glucose were established with extremely low detection limits of 18.04 nM and 0.87 μM in the ranges of 40-5000 nM and 1.2-300 μM, respectively. The study of the catalytic mechanism indicates that DPD oxidation is attributed to the hydroxyl radical (·OH) produced from the decomposition of H2O2 catalyzed by MIL-101(FeII). Furthermore, the developed sensor indicates high selectivity and stability and can be effectively appropriate for the detection of H2O2 and glucose in real samples. This work not only provides a novel nanozyme with superior catalytic performance for biological analysis, but also broadens the application field of MIL-101(FeII) material.
Collapse
Affiliation(s)
- Peipei Huang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Qing Chang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China.
| | - Guodong Jiang
- College of Chemistry and Chemical Engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430074, Hubei, China
| | - Xu Wang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Haipeng Zhu
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Qianqian Liu
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| |
Collapse
|
29
|
You Y, He Z. Phenol degradation in iron-based advanced oxidation processes through ferric reduction assisted by molybdenum disulfide. CHEMOSPHERE 2023; 312:137278. [PMID: 36400194 DOI: 10.1016/j.chemosphere.2022.137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In the iron-based advanced oxidation processes (AOPs), direct use of FeIII can be more convenient than FeII but the reduction of FeIII to FeII is a rate-limiting step. Introducing co-catalysts with abundant reducing sites to Fe-based AOPs can be an efficient way to accelerate the Fe redox process. Herein, molybdenum disulfide (MoS2) was used to enhance the catalytic performance of Fe3+/persulfate (PS) for phenol removal. In the Fe3+/MoS2/PS system, 99.6 ± 0.1% of phenol was removed in 60 min, comparable to that of the Fe2+/PS/MoS2 system (99.1 ± 0.3%). With the help of MoS2, 99.3 ± 4.2% of Fe3+ was transformed to Fe2+ in 10 min, and the Fe2+/Fe ratio was able to be maintained at 70.0 ± 1.4% after 60 min. The rapid and complete reduction of Fe3+ with MoS2 made it possible to replace Fe2+ by Fe3+, which is easier to store, transport, and use. The decrease in XPS peak area percentage of Mo(IV) and the lower valent S after reaction revealed that MoS2 acted as an electron provider in the Fe redox cycle. Quenching experiment results indicated that the phenol removal was highly depended on the surface-bound radicals, including both SO4•- and •OH. Those results have demonstrated that ferric salts can be directly used in the Fe-based AOPs and the redox cycle could be sustained with the assistance of MoS2.
Collapse
Affiliation(s)
- Yingying You
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
30
|
Liu Z, Sun X, Sun Z. CoNi alloy anchored onto N-doped porous carbon for the removal of sulfamethoxazole: Catalyst, mechanism, toxicity analysis, and application. CHEMOSPHERE 2022; 308:136291. [PMID: 36058366 DOI: 10.1016/j.chemosphere.2022.136291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Developing highly efficient, stable, recyclable, and application value heterogeneous catalysts in advanced oxidation processes has essential application value in the degradation of refractory pollutants. In this paper, the CoNi alloy anchored onto N-doped porous carbon (CoNi-600@NC) catalyst was prepared using bimetallic doped metal-organic frameworks as precursors. The magnetic CoNi-600@NC can activate peroxymonosulfate (PMS) to degrade sulfamethoxazole (SMX). Therefore, SMX can be removed 100% within 25 min. CoNi-600@NC/PMS has a broad pH (3-9) application range, good applicability, and repeatability. Radical quenching, quantitative and electrochemical experiments proved that the degradation of SMX was dominated by free radical (Superoxide anions) and non-free radical pathways (surface-bound radicals). Mechanistic analysis showed that the interaction between Co-Nx/pyridine N-sites and graphitized carbon with PMS induced the formation of surface-bound active species. Moreover, CoNi nanoparticles promoted the redox cycle of metals. The synergistic catalytic mechanisms between the CoNi alloy and the abundant functional groups gave CoNi-600@NC excellent catalytic properties and applicability. Using density functional theory predicted the reaction sites of SMX and proposed four degradation pathways. The toxicity of intermediates was comprehensively evaluated. In addition, a CoNi-600@NC continuous flow reactor was constructed with a daily treatment capacity of 45 L and 100% SMX removal. This study expands the application of persulfate advanced oxidation technology by synthesizing recyclable magnetic catalysts and provides new synergistic degradation mechanisms for removing refractory organics.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiuping Sun
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
31
|
Huang P, Chang Q, Jiang G, Xiao K, Wang X. MIL-101(FeII3,Mn) with dual-reaction center as Fenton-like catalyst for highly efficient peroxide activation and phenol degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Li L, Yang S, Wang Y, Hui S, Xiao T, Kong J, Zhao X. Nitrogen-doped carbon nanosheets for efficient degradation of bisphenol A by H2O2 activation at neutral pH values. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Wang T, Zhu Q, Zhu Q, Yang Q, Wang S, Luo L. A highly stable bimetallic organic framework for enhanced electrical performance of cellulose nanofiber-based triboelectric nanogenerators. NANOSCALE ADVANCES 2022; 4:4314-4320. [PMID: 36321143 PMCID: PMC9552755 DOI: 10.1039/d2na00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Triboelectric nanogenerators (TENGs) have garnered considerable attention as an emerging energy harvesting technology. To improve the electrical properties of the triboelectric materials in TENGs, various micro- and nanomaterials with strong charge-trapping capabilities are introduced as filler materials. However, the fillers generally perform a single function and lack long-term operational durability. Hence, further research is required to achieve stable and efficient TENGs. In this study, NH2 metal-organic frameworks (NH2-MOFs) were combined with a cellulose nanofiber (CNF) to prepare a composite film. NH2-MOFs have an aminated bimetallic organic backbone with strong charge-induction and charge-trapping capabilities. Thus, their addition significantly improved the stability, positive triboelectric properties and charge-trapping performance of the composite film. The optimized composite film and a fluorinated ethylene propylene film were used as triboelectric pairs to assemble a TENG. The electrical performance of the TENG was approximately 230% greater than that of a TENG with a pure CNF film and remained very stable for at least 90 days. These results demonstrate that NH2-MOFs are promising fillers for improving the performance of TENGs and expanding the range of materials used in TENG construction.
Collapse
Affiliation(s)
- Tingting Wang
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 PR China
- Guangxi Bossco Environment Protecting Technology Co., Ltd Nanning 530007 PR China
| | - Qiuxiao Zhu
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 PR China
| | - Qi Zhu
- Guangxi Bossco Environment Protecting Technology Co., Ltd Nanning 530007 PR China
| | - Qifeng Yang
- Guangxi Bossco Environment Protecting Technology Co., Ltd Nanning 530007 PR China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 PR China
- Guangxi Key Lab of Clean Pulp and Papermaking and Pollution Control, Guangxi University Nanning 530004 PR China
- Guangxi Bossco Environment Protecting Technology Co., Ltd Nanning 530007 PR China
| | - Lianxin Luo
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 PR China
- Guangxi Key Lab of Clean Pulp and Papermaking and Pollution Control, Guangxi University Nanning 530004 PR China
| |
Collapse
|
34
|
Hu C, Jiang Z, Yang C, Wang X, Wang X, Zhen S, Wang D, Zhan L, Huang C, Li Y. Efficient and Sustainable in situ Photo‐Fenton Reaction to Remove Phenolic Pollutants by NH
2
‐MIL‐101(Fe)/Ti
3
C
2
T
x
Schottky‐Heterojunctions. Chemistry 2022; 28:e202201437. [DOI: 10.1002/chem.202201437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Cong‐Yi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Zhong‐Wei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Chang‐Ping Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Xiao‐Yan Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Xue Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Shu‐Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Dong‐Mei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University) Chongqing Science and Technology Bureau College of Pharmaceutical Sciences Southwest University Chongqing 400715 P. R. China
| | - Cheng‐Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University) Chongqing Science and Technology Bureau College of Pharmaceutical Sciences Southwest University Chongqing 400715 P. R. China
| | - Yuan‐Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
35
|
Qin Y, Yang S, You X, Liu Y, Qin L, Li Y, Zhang W, Liang W. Carbon nitride coupled with Fe-based MOFs as an efficient photoelectrocatalyst for boosted degradation of ciprofloxacin: Mechanism, pathway and fate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|