1
|
Verley JC, McLennon E, Rein KS, Dikgang J, Kankarla V. Current trends and patterns of PFAS in agroecosystems and environment: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:80-107. [PMID: 39256956 DOI: 10.1002/jeq2.20607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/13/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are one of the more well-known highly persistent organic pollutants with potential risks to agroecological systems. These compounds are of global concern due to their persistence and mobility, and they often lead to serious impacts on environmental, agricultural, and human health. In the past 20 years, the number of science publications on PFAS has risen; despite this, certain fundamental questions about PFAS occurrence, sources, mechanism of transport, and impacts on agroecosystems and the societies dependent on them are still open and evolving. There is a lack of systematic and comprehensive analysis of these concerns in agroecosystems. Therefore, we reviewed the current literature on PFAS with a focus on agroecosystems; our review suggests that PFASs are nearly ubiquitous in agricultural systems. We found the current research has limitations in analyzing PFAS in complex matrices because of their small size, distribution, and persistence within various environmental systems. There is consistency in the properties and composition of PFAS in and around agroecosystems, suggesting evidence of shared sources and similar components within different tropic levels. The introduction of new and varied sources of PFAS appear to be growing, adding to their residual accumulation in environmental matrices and leading to possible new types of chemical compounds that are difficult to assess accurately. This review determines existing research trends, understands mechanisms and incidence of PFAS within agroecosystems and their impact on human health, and thereby recommends further studies to remedy research gaps.
Collapse
Affiliation(s)
- Jackson C Verley
- Department of Marine and Earth Science, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Everald McLennon
- Crop and Soil Science Department, Klamath Basin Research and Extension Center, Oregon State University, Klamath Falls, Oregon, USA
| | - Kathleen S Rein
- Department of Marine and Earth Science, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Johane Dikgang
- Department of Economics and Finance, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Vanaja Kankarla
- Department of Marine and Earth Science, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
2
|
Qian X, Huang J, Cao C, Yao J, Wu Y, Wang L, Wang X. Bioelectricity drives transformation of nitrogen and perfluorooctanoic acid in constructed wetlands: Performances and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135891. [PMID: 39341192 DOI: 10.1016/j.jhazmat.2024.135891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
In this study, constructed wetland-microbial fuel cell (CW-MFC) filled with modified basalt fiber (MBF) via iron modification was utilized for treating perfluorooctanoic acid (PFOA) containing sewage. Results showed the significant promotion by bioelectricity on ammonium and total nitrogen by 7.80-8.14 %. Although such enhancement was suppressed by PFOA, higher removal was still observed with closed circuit, and PFOA removal also increased by 9.05 %. Bioelectricity contributed to enrichment of bacteria involved in nitrifying (Nitrospira and Ellin6067), denitrifying (like Thauera and Dechloromonas), iron redox (Geobacter), and sulfate-reducing (Desulfobacter), aligned with up-regulated of functional genes, including amoA, narG , napA, narK, narS, nrfA, sulp and sqr. Enrichment of autohydrogenotrophic and sulfide-oxidizing autotrophic denitrifiers, and nitrate dependent iron oxidation bacteria by bioelectricity all promoted denitrification. Moreover, bioelectricity boosted relative abundance of organic compounds degradation enzymes, such as dehydrogenase, decarboxylase, and dehalogenase, supporting the enhancement on PFOA removal. Generally, PFOA was converted to short-chain perfluorocarboxylic acids (PFCAs) via decarboxylation, hydroxylation, HF elimination, hydrolysis, F- elimination, C-C bond scission, and dehydration in CW-MFC. The final PFCAs-products determined was perfluorobutyric acid. This work estimated feasibility of treating PFOA containing sewage by CM-MFC, and offered new insights on enhancing mechanisms of nitrogen and PFOA conversion.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiawei Yao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xinyue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Shan Y, Yin Y, Wei J, Ma D, Zhan M, Yin Y, Yang L, Jiao W, Wick LY. Mechanisms of heating-electrokinetic co-driven perfluorooctanoic acid (PFOA) adsorption on zeolite. J Environ Sci (China) 2024; 146:264-271. [PMID: 38969454 DOI: 10.1016/j.jes.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 07/07/2024]
Abstract
Slow release of emerging contaminants limits their accessibility from soil to pore water, constraining the treatment efficiency of physio-chemical treatment sites. DC fields mobilize organic contaminants and influence their interactions with geo-matrices such as zeolites. Poor knowledge, however, exists on the joint application of heating and electrokinetic approaches on perfluorooctanoic acid (PFOA) transport in porous media. Here, we investigated electrokinetic PFOA transport in zeolite-filled percolation columns at varying temperatures. Variations of pseudo-second-order kinetic constants (kPSO) were correlated to the liquid viscosity variations (η) and elctroosmotic flow velocities (vEOF). Applying DC fields and elevated temperature significantly (>37%) decreased PFOA sorption to zeolite. A good correlation between η, vEOF, and kPSO was found and used to develop an approach interlinking the three parameters to predict the joint effects of DC fields and temperature on PFOA sorption kinetics. These findings may give rise to future applications for better tailoring PFOA transport in environmental biotechnology.
Collapse
Affiliation(s)
- Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, 04318, Leipzig, Germany
| | - Yuzhou Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dong Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingxiu Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liuqing Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Lukas Y Wick
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, 04318, Leipzig, Germany
| |
Collapse
|
4
|
Ganbat N, Altaee A, Hamdi FM, Zhou J, Chowdhury MH, Zaidi SJ, Samal AK, Almalki R, Tapas MJ. PFOA remediation from kaolinite soil by electrokinetic process coupled with activated carbon/iron coated activated carbon - permeable reactive barrier. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104425. [PMID: 39244813 DOI: 10.1016/j.jconhyd.2024.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
This study applied electrokinetic (EK) in situ soil remediation for perfluorooctanoic acid (PFOA) removal from kaolinite soil. The kaolinite soil was spiked with 10 mg/kg PFOA for the EK treatment using Sodium Cholate bio-surfactant coupled with Activated Carbon (AC) or iron-coated Activated Carbon (FeAC) permeable reactive barrier (PRB). The study also evaluated the impact of AC and FeAC PRBs' position on the EK process performance. In the EK with the PRB in the middle section, PFOA removal from kaolinite was 52.35 % in the AC-EK tests and 59.55 % in the FeAC-EK. Experimental results showed the accumulation of PFOA near the cathode region in FeAC PRB tests, hypothesising that Fe from the PRB formed a complex with PFOA ions and transported it to the cathode region. Spent PRBs were regenerated with methanol for PFOA extraction and reuse in the EK experiments. Although FeAC PRB achieved better PFOA removal than AC PRB, the EK tests with regenerated AC-EK and FeAC-EK PRBs achieved 40.37 % and 20.62 % PFOA removal. For EK with FeAC PRB near the anode, PFOA removal was 21.96 %. Overall, using PRB in conjunction with the EK process can further enhance the removal efficiency. This concept could be applied to enhance the removal of various PFAS compounds from contaminated soils by combining a suitable PRB with the EK process. It also emphasizes the feasibility of in-situ soil remediation technologies for forever chemical treatment.
Collapse
Affiliation(s)
- Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia; Photon Remediation, 219-241 Cleveland, St Redfern, NSW 2016, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Faris M Hamdi
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Mahedy Hasan Chowdhury
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, India
| | - Raed Almalki
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Marie Joshua Tapas
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| |
Collapse
|
5
|
He J, Castilla-Alcantara JC, Ortega-Calvo JJ, Harms H, Wick LY. DC Electric Fields Promote Biodegradation of Waterborne Naphthalene in Biofilter Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18234-18243. [PMID: 39353102 PMCID: PMC11483754 DOI: 10.1021/acs.est.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Biofiltration is a simple and low-cost method for the cleanup of contaminated water. However, the reduced availability of dissolved chemicals to surface-attached degrader bacteria may limit its efficient use at certain hydraulic loadings. When a direct current (DC) electric field is applied to an immersed packed bed, it invokes electrokinetic processes, such as electroosmotic water flow (EOF). EOF is a surface-charge-induced plug-flow-shaped movement of pore fluids. It acts at a nanometer distance above surfaces and allows the change of microscale pressure-driven flow profiles and, hence, the availability of dissolved contaminants to microbial degraders. In laboratory percolation columns, we assessed the effects of a weak DC electric field (E = 0.5 V·cm-1) on the biodegradation of waterborne naphthalene (NAH) by surface-attached Pseudomonas fluorescens LP6a. To vary NAH bioavailability, we used different NAH concentrations (C0 = 2.7, 5.1, or 7.8 × 10-5 mol·L-1) and Darcy velocities typical for biofiltration (U ¯ = 0.2-1.2 × 10-4 m·s-1). In DC-free controls, we observed higher specific degradation rates (qc) at higher NAH concentrations. The qc depended on U ¯ , suggesting bioavailability restrictions depending on the hydraulic residence times. DC fields consistently increased qc and resulted in linearly increasing benefits up to 55% with rising hydraulic loadings relative to controls. We explain these biodegradation benefits by EOF-altered microscale flow profiles allowing for better NAH provision to bacteria attached to the collectors even though the EOF was calculated to be 100-800 times smaller than bulk water flow. Our data suggest that electrokinetic approaches may give rise to future technical applications that allow regulating biodegradation, for example, in response to fluctuating hydraulic loadings.
Collapse
Affiliation(s)
- Jinyao He
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| | - Jose Carlos Castilla-Alcantara
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
- Instituto
de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avda. Reina Mercedes 10, Seville E-41012, Spain
| | - Jose Julio Ortega-Calvo
- Instituto
de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avda. Reina Mercedes 10, Seville E-41012, Spain
| | - Hauke Harms
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| | - Lukas Y. Wick
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| |
Collapse
|
6
|
Soltanian M, Gitipour S, Baghdadi M, Rtimi S. PFOA-contaminated soil remediation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49985-50011. [PMID: 39088169 DOI: 10.1007/s11356-024-34516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.
Collapse
Affiliation(s)
- Mehdi Soltanian
- School of Civil and Environmental Engineering, Faculty of engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Saeid Gitipour
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
7
|
Pasciucco E, Pasciucco F, Castagnoli A, Iannelli R, Pecorini I. Removal of heavy metals from dredging marine sediments via electrokinetic hexagonal system: A pilot study in Italy. Heliyon 2024; 10:e27616. [PMID: 38515701 PMCID: PMC10955240 DOI: 10.1016/j.heliyon.2024.e27616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Among the several treatment options, electrokinetic (EK) remediation is recognized as an effective technique for the removal of heavy metals from low-permeability porous matrices. However, most of the EK decontamination research reported was performed on linear configuration systems at a laboratory scale. In this study, a series of experiments were performed on a pilot-scale system where the electrodes were arranged in a hexagonal configuration, to assess the improvement of the EK process in the removal of inorganic contaminants from sediments dredged in the harbor of Piombino, Italy. HNO3 was used as acid conditioning and both pH effect and treatment duration time were investigated. Sediment characterization and metal fractionation were also presented, in order to understand how the bioavailability of metals affects the process efficiency. The increase in pH due to the buffering capacity of the sediment in the sections close to the cathode favored the precipitation and accumulation of metals. However, the results highlighted that longer treatment times, combined with an efficient pH reduction, can improve treatment performance, resulting in high removal efficiencies for all the target metals considered (a percentage removal greater than 50% was reached for Cd, Ni, Pb, Cu and Zn). Compared to different EK configuration systems, the hexagonal configuration arrangement applied in our study provides better results for the remediation of dredged marine sediment.
Collapse
Affiliation(s)
- Erika Pasciucco
- Department of Energy, Systems Territory and Construction Engineering, Via C.F. Gabba 22, Tuscany, University of Pisa, Pisa, 56122, Italy
| | - Francesco Pasciucco
- Department of Energy, Systems Territory and Construction Engineering, Via C.F. Gabba 22, Tuscany, University of Pisa, Pisa, 56122, Italy
| | - Alessio Castagnoli
- Department of Energy, Systems Territory and Construction Engineering, Via C.F. Gabba 22, Tuscany, University of Pisa, Pisa, 56122, Italy
| | - Renato Iannelli
- Department of Energy, Systems Territory and Construction Engineering, Via C.F. Gabba 22, Tuscany, University of Pisa, Pisa, 56122, Italy
| | - Isabella Pecorini
- Department of Energy, Systems Territory and Construction Engineering, Via C.F. Gabba 22, Tuscany, University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
8
|
Ganbat N, Hamdi FM, Ibrar I, Altaee A, Alsaka L, Samal AK, Zhou J, Hawari AH. Iron slag permeable reactive barrier for PFOA removal by the electrokinetic process. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132360. [PMID: 37657326 DOI: 10.1016/j.jhazmat.2023.132360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The efficacy of the Standalone Electrokinetic (EK) process in soil PFAS removal is negligible, primarily due to the intersecting mechanisms of electromigration and electroosmosis transportation. Consequently, the redistribution of PFAS across the soil matrix occurs, hampering effective remediation efforts. Permeable reactive barrier (PRB) has been used to capture contaminants and extract them at the end of the EK process. This study conducted laboratory-scale tests to evaluate the feasibility of the iron slag PRB enhanced-EK process in conjunction with Sodium Cholate (NaC) biosurfactant as a cost-effective and sustainable method for removing PFOA from the soil. A 2 cm iron slag-based PRB with a pH of 9.5, obtained from the steel-making industry, was strategically embedded in the middle of the EK reactors to capture PFOA within the soil. The main component of the slag, iron oxide, exhibited significant adsorption capacity for PFOA contamination. The laboratory-scale tests were conducted over two weeks, revealing a PFOA removal rate of more than 79% in the slag/activated carbon PRB-EK test with NaC enhancement and 70% PFOA removal in the slag/activated carbon PRB-EK without NaC. By extending the duration of the slag/AC PRB-EK test with NaC enhancement to three weeks, the PFOA removal rate increased to 94.09%, with the slag/AC PRB capturing over 87% of the initial PFOA concentration of 10 mg/L. The specific energy required for soil decontamination by the EK process was determined to be 0.15 kWh/kg. The outcomes of this study confirm the feasibility of utilizing iron slag waste in the EK process to capture PFOA contaminants, offering a sustainable approach to soil decontamination. Combining iron slag PRB and NaC biosurfactant provides a cost-effective and environmentally friendly method for efficient PFOA removal from soil.
Collapse
Affiliation(s)
- Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Faris M Hamdi
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia.
| | - Lilyan Alsaka
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Ramanagara, Bangalore 562 112, Karnataka, India
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
9
|
Ji B, Zhao Y, Yang Y, Li Q, Man Y, Dai Y, Fu J, Wei T, Tai Y, Zhang X. Curbing per- and polyfluoroalkyl substances (PFASs): First investigation in a constructed wetland-microbial fuel cell system. WATER RESEARCH 2023; 230:119530. [PMID: 36577258 DOI: 10.1016/j.watres.2022.119530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The presence of per- and polyfluoroalkyl substances (PFASs) in water environments has been linked to a slew of negative health effects in both animals and humans, but the green and eco-sustainable removal technologies remain largely unknown. Constructed wetland coupled microbial fuel cell (CW-MFC) is termed a "green process" to control pollutants and recover energy. However, so far, no study has investigated the removal of PFASs and their effects on the performance of the CW-MFC systems. Here, we investigated the removal performance of PFOA and PFOS in the CW-MFC systems both in the absence and presence of electricity circuit, and explored the distribution and fate of PFASs and their interactions with other elements in the systems. Our findings demonstrated excellent removal efficiency of >96% PFOA and PFOS in CW-MFC systems. PFOA and PFOS were distributed throughout the system via wastewater flow, while electrode material and plants are the main enrichment sites in which MFC enhanced up to 10% PFASs removal. However, a loss of 7.2-13.5% of nitrogen removal and a decrease of 7.3% in bioelectricity output were observed when PFASs were introduced in the system. The driven force led to the loss of nitrogen removal and bioelectricity generation lies in the accumulation of PFASs in system composition, which affected microbial activity and community composition, damaging the health of the plant, and in turn reducing CW-MFC's functioning. No doubt, CW-MFC systems provide an alternative technique for PFASs removal, alleviating some limitations to the physical and chemical techniques, but further investigation is highly needed.
Collapse
Affiliation(s)
- Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, P.R. China; Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Jinan University, Guangzhou 510632, P.R. China; School of Civil Engineering, Yantai University, Yantai, 264005, P.R. China.
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, P.R. China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, P.R. China.
| | - Yang Yang
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Qiwen Li
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Ying Man
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Yunv Dai
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Jingmiao Fu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, P.R. China; Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, P.R. China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Yiping Tai
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Xiaomeng Zhang
- Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Jinan University, Guangzhou 510632, P.R. China.
| |
Collapse
|
10
|
Gidudu B, Chirwa EMN. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022; 27:7381. [PMID: 36364207 PMCID: PMC9657640 DOI: 10.3390/molecules27217381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Electrokinetic remediation has, in recent years, shown great potential in remediating polluted environments. The technology can efficiently remove heavy metals, chlorophenols, polychlorinated biphenyls, phenols, trichloroethane, benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and entire petroleum hydrocarbons. Electrokinetic remediation makes use of electrolysis, electroosmosis, electrophoresis, diffusion, and electromigration as the five fundamental processes in achieving decontamination of polluted environments. These five processes depend on pH swings, voltage, electrodes, and electrolytes used in the electrochemical system. To apply this technology at the field scale, it is necessary to pursue the design of effective processes with low environmental impact to meet global sustainability standards. It is, therefore, imperative to understand the roles of the fundamental processes and their interactions in achieving effective and sustainable electrokinetic remediation in order to identify cleaner alternative solutions. This paper presents an overview of different processes involved in electrokinetic remediation with a focus on the effect of pH, electrodes, surfactants, and electrolytes that are applied in the remediation of contaminated soil and how these can be combined with cleaner technologies or alternative additives to achieve sustainable electrokinetic remediation. The electrokinetic phenomenon is described, followed by an evaluation of the impact of pH, surfactants, voltage, electrodes, and electrolytes in achieving effective and sustainable remediation.
Collapse
|
11
|
Niarchos G, Ahrens L, Kleja DB, Fagerlund F. Per- and polyfluoroalkyl substance (PFAS) retention by colloidal activated carbon (CAC) using dynamic column experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119667. [PMID: 35750303 DOI: 10.1016/j.envpol.2022.119667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Developing effective remediation methods for per- and polyfluoroalkyl substance (PFAS)-contaminated soils is a substantial step towards counteracting their widespread occurrence and protecting our ecosystems and drinking water sources. Stabilisation of PFAS in the subsurface using colloidal activated carbon (CAC) is an innovative, yet promising technique, requiring better understanding. In this study, dynamic soil column tests were used to assess the retardation of 10 classical perfluoroalkyl acids (PFAAs) (C5-C11 perfluoroalkyl carboxylic acids (PFCAs) and C4, C6, C8 perfluoroalkane sulfonates (PFSAs)) as well as two alternative PFAS (6:2 and 8:2 fluorotelomer sulfonates) using CAC at 0.03% w/w, to investigate the fate and transport of PFAS under CAC treatment applications. Results showed high retardation rates for long-chain PFAS and eight times higher retardation for the CAC-treated soil compared to the non-treated reference soil for the ∑PFAS. Replacement of shorter chain perfluorocarboxylic acids (PFCAs), such as perfluoropentanoic acid (PFPeA), by longer chained PFAS was observed, indicating competition effects. Partitioning coefficients (Kd values) were calculated for the CAC fraction at ∼103-105 L kg-1 for individual PFAS, while there was a significant positive correlation (p < 0.05) between perfluorocarbon chain length and Kd. Mass balance calculations showed 37% retention of ∑PFAS in treated soil columns after completion of the experiments and 99.7% higher retention rates than the reference soil. Redistribution and elution of CAC were noticed and quantified through organic carbon analysis, which showed a 23% loss of carbon during the experiments. These findings are a step towards better understanding the extent of CAC's potential for remediation of PFAS-contaminated soil and groundwater and the limitations of its applications.
Collapse
Affiliation(s)
- Georgios Niarchos
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05, Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Dan Berggren Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P. O. Box 7090, SE-750 07, Uppsala, Sweden
| | - Fritjof Fagerlund
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05, Uppsala, Sweden
| |
Collapse
|