1
|
Syam Babu D, Vijay K, Shakira S, Mallemkondu VS, Barik P, Kuppam C, Kommoju V, Mikkili I, Mulatu A, Chanikya P, Raju MV. Laterite Integrated Persulfate Based Advanced Oxidation and Biological Treatment for Textile Industrial Effluent Remediation: Optimization and Field Application. Appl Bionics Biomech 2025; 2025:9325665. [PMID: 40017503 PMCID: PMC11865458 DOI: 10.1155/abb/9325665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2024] [Accepted: 01/11/2025] [Indexed: 03/01/2025] Open
Abstract
This study investigated a combined approach of a persulfate-based advanced oxidation process (AOP) followed by biological treatment of a textile industrial effluent. The effluent from the textile industry is primarily composed of various dyes in varying concentrations, resulting in high chemical oxygen demand (COD) and biological oxygen demand (BOD). The model pollutant rhodamine B (RhB) was used in the optimization studies. During the persulfate oxidation process (PSO), persulfate activation is required to generate sulfate radicals (SO4 •-). Raw laterite soil was used as a catalyst for the treatment of RhB in batch studies, and it was able to reduce the dye concentration by about 20% in 60 min of operation, with initial RhB concentrations of 150 mg L-1 and persulfate concentrations of 200 mg L-1. Furthermore, alkali-treated laterite soil (ATLS) was used as a catalyst, achieving 57%-60% removal in 60 min at pH 3 and complete removal after 72 h of biological treatment. Furthermore, the optimized conditions were tested on real field waters to determine efficiency, and it was observed that the PSO removed approximately 45% of COD, with further biological treatment for 72 h increasing the removal efficiency to 64%. All other parameters of water quality were reduced by more than 60%.
Collapse
Affiliation(s)
- Davuluri Syam Babu
- Department of Bio Technology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Kunamineni Vijay
- Department of Civil Engineering, Vishnu Institute of Technology, Bhimavaram 534202, Andhra Pradesh, India
| | - Shaik Shakira
- Department of Bio Technology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Venkatasai Sumasri Mallemkondu
- Department of Bio Technology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Puspita Barik
- Environmental Monitoring Solutions, Acoem Ecotech Industries Pvt., Ltd., Pithampur 454775, Madhya Pradesh, India
| | - Chandrasekhar Kuppam
- Department of Bio Technology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Vallayyachari Kommoju
- Department of Bio Technology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Indira Mikkili
- Department of Bio Technology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Adamu Mulatu
- Civil Engineering Department, Wollega University, Nekemte, Ethiopia
| | - Pinapala Chanikya
- Department of Civil Engineering, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - M. V. Raju
- Department of Civil Engineering, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| |
Collapse
|
2
|
Omar BM, Zyadah MA, Ali MY, El-Sonbati MA. Pre-treatment of composite industrial wastewater by Fenton and electro-Fenton oxidation processes. Sci Rep 2024; 14:27906. [PMID: 39537851 PMCID: PMC11561168 DOI: 10.1038/s41598-024-78846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The present study aims to characterize three industrial wastewater samples collected from petrochemical, food and beet sugar industries to determine the pollution potential and select the appropriate pre-treatment approach. According to the biodegradability profile of the multi-sourced mixed (composite) sample, the advanced oxidation process (AOPs) namely, Fenton (F) and Electro-Fenton (EF) were adopted as pre-treatment techniques and the operating parameters such as time, type of electrodes, pH, voltage, iron and H2O2 concentrations were critically examined. Analysis of Variance (ANOVA) was conducted to compare the performance efficiency of F& EF AOPs for treating the composite samples and the total operating costs for both approaches were assessed. The results revealed that, the initial values of the composite sample were 7.11, 19.2, 32.6, 19.3, 937, 1512, 860, 3.9, 2110 and 2.34 for pH, Total Dissolved Solids (TDS), Electrical Conductivity (EC), Salinity, BOD, COD, Oil and grease (O&G), Total Phosphorous (TP), Total Suspended Solids (TSS) and Total Kjeldahl Nitrogen (TKN), respectively. In addition, EF process achieved more removal efficiency for COD, O&G, BOD, TSS, and TKN (84.3%, 69%, 85%, 72% and 71.27%) compared to Fenton which displayed 78.43%, 66%, 69%, 70.1%, and 61%, respectively. Moreover, there are statistically significant differences (p < 0.05) between the initial and final (pretreated) values of the composite industrial wastewater for the addressed parameters and EF was significantly (p < 0.05) more effective than F process. The total operating costs were 3.117 and 2.063$ for F and EF, respectively, which confirmed that EF is more efficient and cost effective than F process. It was concluded that electro-Fenton process is favorable, eco-friendly and cost-effective option for pretreating real complicated multi-sourced industrial wastewater. The present study demonstrated a new avenue for achieving efficient management of industrial wastewater generated from similar industries.
Collapse
Affiliation(s)
- Basma M Omar
- Faculty of Science, Environmental Sciences Department, Damietta University, Damietta, 34517, Egypt.
| | - Mohamed A Zyadah
- Faculty of Science, Environmental Sciences Department, Damietta University, Damietta, 34517, Egypt
| | - Menna Y Ali
- Faculty of Science, Environmental Sciences Department, Damietta University, Damietta, 34517, Egypt
| | - Mervat A El-Sonbati
- Faculty of Science, Environmental Sciences Department, Damietta University, Damietta, 34517, Egypt.
| |
Collapse
|
3
|
Agarwal P, Sangal VK, Mathur S. Sequential electro-coagulation and electro-Fenton processes for the treatment of textile wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11118. [PMID: 39223779 DOI: 10.1002/wer.11118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Textile wastewater, laden with persistent dyes and non-biodegradable organics, poses a challenge for treatment in common effluent treatment plants (CETPs) using conventional methods. Pre-treatment of textile effluents is essential to ensure compatibility with CETPs. The present study employed three-dimensional (3D) aluminum and graphite electrodes for a sequential electro-coagulation and electro-Fenton (EC + EF) process. An experimental plan of 25 experiments was constructed using Taguchi method. The combination resulted in high removal efficiencies: 99.91% for color, 93.20% for chemical oxygen demand (COD), and 91.75% for total organic carbon (TOC) for the operating parameters; for EC, current density (J): 20 mA/cm2, time (t): 45 min, speed of rotation (N): 55 rpm; and for EF, current density (J): 25 mA/cm2, time (t): 50 min, iron concentration: 40 mg/L. Post-treatment, the wastewater exhibited an enhanced biodegradability index of 0.875, rendering it suitable for CETPs. There was an increase of 11% in the total energy consumption when energy spent during rotation and aeration at the time of EC and EF, respectively, were considered. This energy increases the cost and is not accounted for, in previous research. The energy consumption in kWh per g of COD removed at optimum condition for the hybrid treatment was 0.0314, which is lower than the energy consumption by other electrochemical processes employing plate electrodes. This indicates that 3D electrodes are more energy efficient than plate electrodes. PRACTITIONER POINTS: Hybrid electrochemical processes can be used as pre-treatment method for textile effluents. Three-dimensional electrodes improve removal rates with lower energy consumption. Significant color, COD, and TOC abatement were noted post-hybrid treatment of textile wastewater. Biodegradability of the textile effluent improves after the hybrid treatment.
Collapse
Affiliation(s)
- Palak Agarwal
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India
| | - Vikas K Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, India
| | - Sanjay Mathur
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India
| |
Collapse
|
4
|
Boyraz B, Unal Yilmaz E, Yazici Guvenc S, Can-Güven E, Varank G, Demir A. Alternative sequential combinations of electrocoagulation with electrooxidation and peroxi-coagulation for effective treatment of adhesive production industry wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122067. [PMID: 39111011 DOI: 10.1016/j.jenvman.2024.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Adhesive production industry wastewater can be characterized by high chemical oxygen demand (COD) sourced from high refractory organic contaminants and high total suspended solids (TSS) concentration. Biodegradability of the wastewater is low and wastewater quality is unstable. Various treatment processes have limited applicability in such characterized wastewater. In this study, the treatment performance of electrochemical processes was investigated. Because it is not possible to meet the discharge standards by application of only one process for high refractory organic content, sequential electrochemical processes were studied in this work. In the first step of the sequential process, electrocoagulation (EC) using Al electrodes by which better performance was achieved was applied. In the second step, electrooxidation (EO) and peroxi-coagulation (PC) processes were applied to the EC effluent. In EO, Ti/MMO was selected as the most effective anode whereas in PC, Fe was used as the anode, and graphite was used as the cathode. Box-Behnken Design was applied to optimize the operating conditions of EO and PC processes and to obtain mathematical model equations. In the EC process, 77% COD, 78.5% TSS, and 85% UV254 removal efficiency were obtained under the optimum conditions (pH 7.2, reaction time 35 min, and current density 0.5 mA/cm2). With the EO and PC processes applied to the effluent of EC, 68.5% COD, 77% TSS, and 83% UV254 removal and 77.5% COD, 87% TSS, and 86.5% UV254 removal were obtained, respectively. The specific energy consumption of EC-EO and EC-PC processes was 16.08 kWh/kg COD and 15.06 kWh/kg COD, respectively. Considering the treatment targets and process operating costs, it was concluded that both sequential electrochemical systems could be promising alternative systems for the treatment of adhesive production industry wastewater.
Collapse
Affiliation(s)
- Berfin Boyraz
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey
| | - Ezgi Unal Yilmaz
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey
| | - Senem Yazici Guvenc
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey
| | - Emine Can-Güven
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey.
| | - Gamze Varank
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey
| | - Ahmet Demir
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey
| |
Collapse
|
5
|
Mukherjee J, Lodh BK, Sharma R, Mahata N, Shah MP, Mandal S, Ghanta S, Bhunia B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. CHEMOSPHERE 2023; 345:140473. [PMID: 37866496 DOI: 10.1016/j.chemosphere.2023.140473] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Due to its complex and, often, highly contaminated nature, treating industrial wastewater poses a significant environmental problem. Many of the persistent pollutants found in industrial effluents cannot be effectively removed by conventional treatment procedures. Advanced Oxidation Processes (AOPs) have emerged as a promising solution, offering versatile and effective means of pollutant removal and mineralization. This comprehensive review explores the application of various AOP strategies in industrial wastewater treatment, focusing on their mechanisms and effectiveness. Ozonation (O3): Ozonation, leveraging ozone (O3), represents a well-established AOP for industrial waste water treatment. Ozone's formidable oxidative potential enables the breakdown of a broad spectrum of organic and inorganic contaminants. This paper provides an in-depth examination of ozone reactions, practical applications, and considerations involved in implementing ozonation. UV/Hydrogen Peroxide (UV/H2O2): The combination of ultraviolet (UV) light and hydrogen peroxide (H2O2) has gained prominence as an AOP due to its ability to generate hydroxyl radicals (ȮH), highly efficient in pollutant degradation. The review explores factors influencing the efficiency of UV/H2O2 processes, including H2O2 dosage and UV radiation intensity. Fenton and Photo-Fenton Processes: Fenton's reagent and Photo-Fenton processes employ iron ions and hydrogen peroxide to generate hydroxyl radicals for pollutant oxidation. The paper delves into the mechanisms, catalyst selection, and the role of photoactivation in enhancing degradation rates within the context of industrial wastewater treatment. Electrochemical Advanced Oxidation Processes (EAOPs): EAOPs encompass a range of techniques, such as electro-Fenton and anodic oxidation, which employ electrode reactions to produce ȮH radicals. This review explores the electrochemical principles, electrode materials, and operational parameters critical for optimizing EAOPs in industrial wastewater treatment. TiO2 Photocatalysis (UV/TiO2): Titanium dioxide (TiO2) photocatalysis, driven by UV light, is examined for its potential in industrial wastewater treatment. The review investigates TiO2 catalyst properties, reaction mechanisms, and the influence of parameters like catalyst loading and UV intensity on pollutant removal. Sonolysis (Ultrasonic Irradiation): High-frequency ultrasound-induced sonolysis represents a unique AOP, generating ȮH radicals during the formation and collapse of cavitation bubbles. This paper delves into the physics of cavitation, sonolytic reactions, and optimization strategies for industrial wastewater treatment. This review offers a critical assessment of the applicability, advantages, and limitations of these AOP strategies in addressing the diverse challenges posed by industrial wastewater. It emphasizes the importance of selecting AOPs tailored to the specific characteristics of industrial effluents and outlines potential directions for future research and practical implementation. The integrated use of these AOPs, when appropriately adapted, holds the potential to achieve sustainable and efficient treatment of industrial wastewater, contributing significantly to environmental preservation and regulatory compliance.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana, 501401, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India.
| | - Subhasis Mandal
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, 673 601, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, 799046, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| |
Collapse
|
6
|
Jegadeesan C, Somanathan A, Jeyakumar RB, Godvin Sharmila V. Combination of electrocoagulation with solar photo Fenton process for treatment of landfill leachate. ENVIRONMENTAL TECHNOLOGY 2023; 44:4441-4459. [PMID: 35757857 DOI: 10.1080/09593330.2022.2093654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The aim of the present work was to provide a viable and active way to remove COD and colour from landfill leachate treated by adopting combined process of electrocoagulation and solar photo Fenton process. Coagulating agents such as metal hydroxides are created by the electrolysis process through self-sacrificial electrodes. Aluminium and iron dissolves at the anode and hydrogen gas are generated at the cathode when aluminium and iron electrodes are utilised. The contaminants interact with the coagulating agent to generate enormous organic flocs. The leachate was obtained from a landfill in Madurai and then it was characterised in terms of its major predominant pollutants. In this study, the electrocoagulation process was used in conjunction with the solar photo Fenton process to treat the leachate under ideal conditions of pH = 7, NaCl = 2 g/L, voltage = 4 V, Al & Fe electrodes and inter electrode distance = 3 cm with a COD and colour removal effectiveness of 75% and 76%, respectively. Furthermore, the effluent from the electrocoagulation process was treated using a solar photo Fenton process at pH = 3, H2O2 = 10 g/L and Fe2+ = 1 g/L with COD and colour reduction effectiveness of 90% and 91%, respectively. In this combination of treatment systems, leachate biodegradability increased from 0.35 to 0.73, favouring the biological oxidation process in conventional treatment plants. This research demonstrates that employing this paired electrocoagulation-solar photo Fenton to treat landfill leachate can achieve consistent treatment effects with high removal efficiencies, and that it is an acceptable treatment technique for landfill leachate.
Collapse
Affiliation(s)
- Christiarani Jegadeesan
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - Adishkumar Somanathan
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - Rajesh Banu Jeyakumar
- Department of Life Sciences, Central University of Tamilnadu, Thiruvarur, Tamilnadu, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamilnadu, India
| |
Collapse
|
7
|
Jegadeesan C, Somanathan A, Jeyakumar RB. Sanitary landfill leachate treatment by aerated electrochemical Fenton process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117698. [PMID: 36963179 DOI: 10.1016/j.jenvman.2023.117698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The aerated electrochemical Fenton procedure was investigated as a viable treatment approach for electrolytic degradation and decolourization of sanitary landfill leachate. The optimization effects of initial pH, applied voltage, H2O2 concentration and combination of iron electrodes on detoxification were demonstrated by COD and colour removal from stabilized leachate, respectively. The study illustrates that, under the optimum experimental parameters voltage of 4.5 V, electrolysis time of 90 min, H2O2 dosage of 5 g/L, pH 3, 99% of chemical oxygen demand (COD) and 100% colour are removed from stabilized leachate, and the biodegradability ratio of the five-day biochemical oxygen demand (BOD5) to COD increases from 0.1 to 0.72. In addition, the pure catalytic metallic iron anode and cathode electrode used in the electrochemical Fenton process was first electro-oxidized to Fe2+ for use during the Fenton reaction, then with Fe3+ that was reverted back to Fe2+ under the applied electrochemical-magnetic field, resulting in the iron dissolution and regeneration circuit (Fe2+/Fe3+/Fe2+). Additionally, Fe2+/Fe3+ served as bridges for agglomerates to coalesce into big, closely packed particles for better filterability and sedimentation action. As a preparatory step for the biochemical treatment, this technology has been effectively used to treat stabilized landfill leachate containing toxic refractory recalcitrant organics on a large scale. Additionally, by estimating the scientific experiment with a regression model approach for the outcomes, RSM software was employed in order to standardize the ECF treatment process, significantly reducing the number of test cases and trials.
Collapse
Affiliation(s)
- Christiarani Jegadeesan
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, 627007, India.
| | - Adishkumar Somanathan
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, 627007, India.
| | - Rajesh Banu Jeyakumar
- Department of Biotechnology, Central University of Tamilnadu, Thiruvarur, Tamilnadu, 610005, India.
| |
Collapse
|
8
|
Casado J. Minerals as catalysts of heterogeneous Electro-Fenton and derived processes for wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27776-7. [PMID: 37266777 DOI: 10.1007/s11356-023-27776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Advanced oxidation processes (AOPs) such as Fenton's reagent, which generates highly reactive oxygen species, are efficient in removing biorefractory organic pollutants from wastewater. However, Fenton's reagent has drawbacks such as the generation of iron sludge, high consumption of H2O2, and the need for pH control. To address these issues, Electro-Fenton (EF) and heterogeneous Electro-Fenton (HEF) have been developed. HEF, which uses solid catalysts, has gained increasing attention, and this review focuses on the use of mineral catalysts in HEF and derived processes. The reviewed studies highlight the advantages of using mineral catalysts, such as efficiency, stability, affordability, and environmental friendliness. However, obstacles to overcome include the agglomeration of unsupported nanoparticles and the complex preparation techniques and poor stability of some catalyst-containing cathodes. The review also discusses the optimal pH range and dosage of the heterogeneous catalysts and compares the performance of iron sulfides versus iron oxides. Although natural minerals appear to be the best choice for effluents at pH>4, no scale-up reports have been found. The need for further development in this field and the importance of considering the environmental impact of trace toxic metals or catalytic nanoparticles in the treated water on the receiving ecosystem is emphasized. Finally, the article acknowledges the high energy consumption of HEF processes at the lab scale and calls for their performance development to achieve environmentally friendly and cost-effective results using real wastewaters on a pilot scale.
Collapse
Affiliation(s)
- Juan Casado
- Facultad de Ciencias y Biociencias, Universidad Autónoma de Barcelona, Campus UAB s/n, 08038, Bellaterra, Barcelona, Spain.
| |
Collapse
|
9
|
Scaria J, Nidheesh PV. Pre-treatment of real pharmaceutical wastewater by heterogeneous Fenton and persulfate oxidation processes. ENVIRONMENTAL RESEARCH 2023; 217:114786. [PMID: 36395865 DOI: 10.1016/j.envres.2022.114786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This study compares the pre-oxidation of pharmaceutical wastewater by hydroxyl radical based advanced oxidation (HR-AOP) and a sulfate radical based advanced oxidation process (SR-AOP). The heterogeneous Fenton process is chosen as a model HR-AOP and persulfate (PS) activation as a model SR-AOP. The pre-treatment efficacy of both processes in terms of TOC, and COD removals using Fe3O4-rGO catalyst were considered. Under the investigated experimental conditions, both processes yielded fluctuating COD values with time. The heterogeneous Fenton process discovered to be the most efficient to remove 68.7% TOC in 180 min of treatment, when Fe3O4-rGO: H2O2 = 300 mg L-1:150 mM H2O2 was used at pH 3. Notably, the heterogeneous Fenton system was not considerably inhibited at the natural pH of pharmaceutical wastewater (6.75), as the process successfully removed 64.6% TOC. On the other hand, in persulfate activation studies, Fe3O4-rGO: PS = 400 mg L-1: 5 mM was the ideal condition for removing 59.5% TOC in 180 min at pH 3. Whereas the natural pH condition significantly inhibited the TOC removal, as only 20.8% TOC removal was feasible. The wastewater characterisation before and after Fenton treatment reveals that Fenton oxidation leads to an increase in inorganics (chlorides: 160 ± 15 mg L-1, nitrates: 63.14 ± 3.08 mg L-1, sulfates: 266.31 ± 31.39 mg L-1) necessitating an additional treatment step to reduce COD and inorganics further.
Collapse
Affiliation(s)
- Jaimy Scaria
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Nidheesh PV, Gökkuş Ö. Advances in electrocoagulation process. CHEMOSPHERE 2023; 310:136779. [PMID: 36208801 DOI: 10.1016/j.chemosphere.2022.136779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Ömür Gökkuş
- Department of Environmental Engineering, Erciyes University, Turkey.
| |
Collapse
|
11
|
Bani-Melhem K, Al-Kilani MR, Tawalbeh M. Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater. CHEMOSPHERE 2023; 310:136668. [PMID: 36209869 DOI: 10.1016/j.chemosphere.2022.136668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The constant need for sacrificial electrodes is one of the limitations of applying the EC in wastewater treatment. Accordingly, this study proposes a sustainable alternative in reusing scrap metallic wastes as electrode materials. Four different types of metallic wastes (beverage cans, used aluminum (Al) foil, scrap iron, and scrap mild steel) are proposed as sacrificial electrodes for grey water (GW) treatment using the EC technique. At electrical current densities (CD) ranging between 5 and 20 mA/cm2, the treatment performance was evaluated for a reaction time of 10 min in terms of the removal efficiency of some key parameters such as color, turbidity, chemical oxygen demand (COD), and electrical conductivity, energy and material consumption, and metal contamination of GW from electrodes. The results demonstrated that using metallic wastes as sacrificial electrodes can achieve a considerable reduction in color, turbidity, COD, and electric conductivity of about 97.2%, 99%, 88%, and 89%, respectively. However, their reuse as electrodes revealed some important concerns. Al foil undergoes quick and substantial perforation and loss of surface area during electrolysis. The scrap iron and scrap mild steel were found to cause metal contamination by increasing Fe ions in the treated GW. Generally, metal scrap wastes can serve effectively as alternative sustainable electrodes. However, further research is recommended regarding the operating costs, which are considered crucial aspects of the EC process in terms of energy consumption and the most efficient method of fabricating the metallic wastes into a form suitable for reuse in the EC technique.
Collapse
Affiliation(s)
- Khalid Bani-Melhem
- Department of Water Management and Environment, Faculty of Prince El-Hassan Bin Talal for Natural Resources and Environment, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Muhammad Rasool Al-Kilani
- Department of Land, Water and Environment, Faculty of Agriculture, University of Jordan, Amman, 11942, Jordan
| | - Muhammad Tawalbeh
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
Nidheesh PV, Khan FM, Kadier A, Akansha J, Bote ME, Mousazadeh M. Removal of nutrients and other emerging inorganic contaminants from water and wastewater by electrocoagulation process. CHEMOSPHERE 2022; 307:135756. [PMID: 35917977 DOI: 10.1016/j.chemosphere.2022.135756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The continual discharge of emerging inorganic pollutants into natural aquatic systems and their negative effects on the environment have motivated the researchers to explore and develop clean and efficient water treatment strategies. Electrocoagulation (EC) is a rapid and promising pollutant removal approach that does not require any chemical additives or complicated process management. Therefore, inorganic pollutant treatment via the EC process is considered one of the most feasible processes. The potential developments of EC process may make the process a wise choice for water treatment in the future. Thus, the present study mainly focuses on the use of EC technology to remove nutrients and other emerging inorganic pollutants from water medium. The operating factors that influence EC process efficiency are explained. The major advancement of the EC technique as well as field-implemented units are also discussed. Overall, this study mainly focuses on emerging issues, present advancements, and techno-economic considerations in EC process.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India.
| | - Farhan M Khan
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - J Akansha
- School of Civil Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632 014, India
| | - Million Ebba Bote
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, PoBox - 378, Ethiopia
| | - Milad Mousazadeh
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|