1
|
Tahmasebi Sefiddashti F, Homayoonfal M. Nanostructure-manipulated filtration performance in nanocomposite membranes: A comprehensive investigation for water and wastewater treatment. Heliyon 2024; 10:e36874. [PMID: 39319140 PMCID: PMC11419920 DOI: 10.1016/j.heliyon.2024.e36874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
The main objective of this article is to examine one of the most important challenges facing researchers in the field of nanocomposite membranes: what is the most suitable arrangement (unmodified, functionalized, coated, or composite) and the most suitable loading site for the nanostructure? In the review articles published on nanocomposite membranes in recent years, the focus has been either on a specific application area (such as nanofiltration or desalination), or on a specific type of polymeric materials (such as polyamide), or on a specific feature of the membrane (such as antibacterial, antimicrobial, or antifouling). However, none of them have targeted the aforementioned objectives on the efficacy of improving filtration performance (IFP). Through IFP calculation, the results will be repeatable and generalizable in this field. The novelty of the current research lies in examining and assessing the impact of the loading site and the type of nanostructure modification on enhancing IFP. Based on the performed review results, for the researchers who tend to use nanocomposite membranes for treatment of organic, textile, brine and pharmaceutical wastewaters as well as membrane bioreactors, thePES NH 2 - PDA - Fe 3 O 4 M ,PAN Fe 3 O 4 / ZrO 2 M ,PVDF CMC - ZnO M ,AA AA - CuS PSf M andPVDF OCMCS / Fe 3 O 4 M with IFP equal to 132.27, 15, 423.6, 16.025 and 5, were proposed, respectively.
Collapse
Affiliation(s)
- Fateme Tahmasebi Sefiddashti
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
2
|
Peter S, Lyczko N, Thomas S, Leruth D, Germeau A, Fati D, Nzihou A. Fabrication of eco-friendly nanocellulose-chitosan-calcium phosphate ternary nanocomposite for wastewater remediation. CHEMOSPHERE 2024; 363:142779. [PMID: 38972455 DOI: 10.1016/j.chemosphere.2024.142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Nanocomposites have emerged as promising materials for pollutant removal due to their unique properties. However, conventional synthesis methods often involve toxic solvents or expensive materials. In this study, we present a novel ternary nanocomposite synthesized via a simple, cost-effective vacuum filtration method. The composite consists of calcium phosphate (CaP), biowaste-derived nanocellulose (diameter <50 nm) (NC), and chitosan (CH). The nanocomposite exhibited exceptional pollutant removal capabilities due to the hybrid approach of combining adsorption and size exclusion that widens and accelerates pollutant removal. When tested with synthetic wastewater containing 10 ppm of Ni ions and 10 ppm of Congo red (CR) dye, it achieved impressive removal rates of 98.7% for Ni ions and 100% for CR dye. Moreover, the nanocomposite effectively removed heavy metals such as Cd, Ag, Al, Fe, Hg, Mo, Li, and Se at 100%, and Ba, Be, P, and Zn at 80%, 92%, 87%, and 97%, respectively, from real-world municipal wastewater. Importantly, this green nanocomposite membrane was synthesized without the use of harmful chemicals or complex modifications and operated at a high flux rate of 146 L/m2.h.MPa. Its outstanding performance highlights its potential for sustainable pollutant removal applications.
Collapse
Affiliation(s)
- Sherin Peter
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| | - Nathalie Lyczko
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, and School of Energy Studies, Mahatma Gandhi University, Kottayam, 686 560, India.
| | - Denis Leruth
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Alain Germeau
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Dorina Fati
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| |
Collapse
|
3
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Jabbarvand Behrouz S, Khataee A, Vatanpour V, Orooji Y. Surface Bioengineering of Mo 2Ga 2C MAX Phase to Develop Blended Loose Nanofiltration Membranes for Textile Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10508-10521. [PMID: 38365188 DOI: 10.1021/acsami.3c16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The potential of blended loose nanofiltration membranes (LNMs) to fractionate dyes and inorganic salts in textile wastewater has become a focus of attention in recent years. In this research work, we fabricated LNMs based on polysulfone (PSf) membranes blended with l-histidine amino acid-functionalized Mo2Ga2C MAX phase (His-MAX). Scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), contact angle, ζ-potential, porosity, and pore size analyses were employed to characterize the LNMs. Blending 0.75 wt % of His-MAX additive with the PSf tailored the LNM's features by making it more water-friendly, increasing its porosity, enlarging its pores, and making its surface smoother. The pure water flux of 127.6 L/m2 h was achieved by LNM containing 0.75 wt % His-MAX, which was 2.5 times greater than the bare one. The mentioned LNM displayed a flux recovery ratio (FRR) of 68.27 and 98.57, 98.31, and 99.7% rejections for Direct red 23, Acid brown 75, and Reactive blue 21 solutions (100 mg/L), respectively. The 0.75 wt % His-MAX LNM could reject 99.1% of dye and 11.5% of salt while maintaining an FRR of 91.19% after four cycles of filtering a binary mixture solution containing Reactive blue 21 and Na2SO4. These findings highlight the potential of the fabricated LNM for desalinating dye solutions.
Collapse
Affiliation(s)
- Samira Jabbarvand Behrouz
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Wang R, Li Z, Tian Q, Ma Z, Zhu M. Making graphene oxide (GO)-cladded SiO 2 spheres (SiO 2 @GO) as inorganic fillers for dental restorative resin composites. Dent Mater 2023; 39:1076-1084. [PMID: 37827873 DOI: 10.1016/j.dental.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Graphene oxide (GO) is of great interest in dentistry as the functional filler, mainly owing to its ability to inhibit the formation of cariogenic bacteria and possess low cytotoxicity to different cells, such as human dental pulp cells, HeLa cells, etc. However, its typical brown color limits the practical application. METHODS Here, the refractive-index-matched monodisperse SiO2 were used as the supporting substrates to synthesize GO-cladded SiO2 spheres (xSiO2 @ yGO) through a mild electrostatic self-assembly process, where x and y represent the amount of SiO2 and GO in the reaction mixture, respectively. The morphology and the optical performance of the obtained xSiO2 @ yGO particles were modulated by varying the mass ratio of SiO2 and GO (5:1, 10:1, 50:1, and 100:1). All developed hybrid particles were silanized and formulated with dimethacrylate-based resins. These were tested for curing depth, polymerization conversion, mechanical performance, in vitro cell viability, and antibacterial activity. RESULTS Of all xSiO2 @ yGO materials, increasing the mass ratio to 100:1 made the 100SiO2 @GO particles appear light brown and possess the lowest light absorbance from 300 to 800 nm. The results of CIEL*a*b* system showed that all these hybrid particles exhibited obvious discoloration compared with SiO2 and GO, where 100SiO2 @GO possessed the smallest color difference. Furthermore, following the results of curing depth, polymerization conversion, and mechanical performance of dental composites, the optimal filler composition was 100SiO2 @GO at 5 wt% filler loading. The resultant 100SiO2 @GO-filled composite produced the highest flexural strength (115 ± 12 MPa) and the lowest bacterial concentration (6.7 × 108 CFU/mL) than those of the resin matrix (78 ± 11 MPa; 9.2 × 108 CFU/mL) and 5 wt% SiO2-filled composite (106 ± 9 MPa; 9.1 × 108 CFU/mL), respectively, without affecting in vitro cell viability. SIGNIFICANCE The facile and mild synthesis of xSiO2 @ yGO hybrid particles provided a convenient way to tune their optical property. The optimal 100SiO2 @GO particles could be considered as the promising antibacterial filler to be applied in dental care and therapy.
Collapse
Affiliation(s)
- Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhihao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qingyi Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
7
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
8
|
Graphene in Polymeric Nanocomposite Membranes—Current State and Progress. Processes (Basel) 2023. [DOI: 10.3390/pr11030927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
One important application of polymer/graphene nanocomposites is in membrane technology. In this context, promising polymer/graphene nanocomposites have been developed and applied in the production of high-performance membranes. This review basically highlights the designs, properties, and use of polymer/graphene nanocomposite membranes in the field of gas separation and purification. Various polymer matrices (polysulfone, poly(dimethylsiloxane), poly(methyl methacrylate), polyimide, etc.), have been reinforced with graphene to develop nanocomposite membranes. Various facile strategies, such as solution casting, phase separation, infiltration, self-assembly, etc., have been employed in the design of gas separation polymer/graphene nanocomposite membranes. The inclusion of graphene in polymeric membranes affects their morphology, physical properties, gas permeability, selectivity, and separation processes. Furthermore, the final membrane properties are affected by the nanofiller content, modification, dispersion, and processing conditions. Moreover, the development of polymer/graphene nanofibrous membranes has introduced novelty in the field of gas separation membranes. These high-performance membranes have the potential to overcome challenges arising from gas separation conditions. Hence, this overview provides up-to-date coverage of advances in polymer/graphene nanocomposite membranes, especially for gas separation applications. The separation processes of polymer/graphene nanocomposite membranes (in parting gases) are dependent upon variations in the structural design and processing techniques used. Current challenges and future opportunities related to polymer/graphene nanocomposite membranes are also discussed.
Collapse
|
9
|
Keskin B, Eryıldız B, Paşaoğlu ME, Türken T, Vatanpour V, Koyuncu I. Fabrication and characterization of different braid‐reinforced
PVC
hollow fiber membranes to use in membrane bioreactor for wastewater treatment. J Appl Polym Sci 2023. [DOI: 10.1002/app.53794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Başak Keskin
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Bahriye Eryıldız
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Mehmet Emin Paşaoğlu
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Türker Türken
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
| | - Ismail Koyuncu
- Environmental Engineering Department Istanbul Technical University Maslak Turkey
- National Research Center on Membrane Technologies Istanbul Technical University Maslak Turkey
| |
Collapse
|
10
|
ANFIS-based forming limit prediction of stainless steel 316 sheet metals. Sci Rep 2023; 13:3115. [PMID: 36813804 PMCID: PMC9947116 DOI: 10.1038/s41598-023-28719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
Effect of microstructure on the formability of the stainless sheet metals is a major concern for engineers in sheet industries. In the case of austenitic steels, existence of strain-induced martensite ([Formula: see text]-martensite) in their micro structure causes considerable hardening and formability reduction. In the present study, we aim to evaluate the formability of AISI 316 steels with different intensities of martensite via experimental and artificial intelligence methods. In the first step, AISI 316 grade steels with 2 mm initial thicknesses are annealed and cold rolled to various thicknesses. Subsequently, the relative area of strain-induced martensite are measured using metallography tests. Formability of the rolled sheets are determined using hemisphere punch test to obtain forming limit diagrams (FLDs). The data obtained from experiments were further utilized to train and validate an artificial neural fuzzy interfere system (ANFIS). After training the ANFIS, predicted major strains by the neural network are compared to a new set experimental results. The results indicate that cold rolling has unfavorable effects on the formability of this type of stainless steels while significantly strengthens the sheets. Moreover, the ANFIS exhibits satisfactory results in comparison to the experimental measurements.
Collapse
|
11
|
Zhang M, Wang X, Xue Y, Li J, Wang J, Fang C, Zhu L. Robust and Scalable In Vitro Surface Mineralization of Inert Polymers with a Rationally Designed Molecular Bridge. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8730-8741. [PMID: 36735823 DOI: 10.1021/acsami.2c21286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The artificial integration of inorganic materials onto polymers to create the analogues of natural biocomposites is an attractive field in materials science. However, due to significant diversity in the interfacial properties of two kinds of materials, advanced synthesis methods are quite complicated and the resultant materials are always vulnerable to external environments, which limits their application scenarios and makes them unsuitable for scalable production. Herein, we report a simple and universal approach to achieve robust and scalable surface mineralization of polymers using a rationally designed triple functional molecular bridge of fluorosilane, 3-[(perfluorohexyl sulfonyl) amino] propyltriethoxy silane (PFSS). In a two-step solution deposition, the fluoroalkyl and siloxane of the PFSS take charge of its adhesion and immobilization onto polymers by hydrophobic interaction and wrapping-like chemical cross-linking, and then the assembly and growth of inorganic nanoclusters for integration are achieved by strong chemical coordination of PFSS sulfonamide. The versatile mineralization of inorganic oxides (e.g., TiO2, SiO2, and Fe2O3) onto chemically inert polymer surfaces was realized very well. The resultant mineralized materials exhibit robust and multiple functionalities for hostile applications, such as hydrophilic membranes for removing oils in strong acidic and alkaline wastewaters, fabrics with advanced anti-bacteria for healthy wearing, and plates with strong mechanical performance for better use. Experimental results and theoretical calculations confirmed the homogenous distribution of the PFSS onto polymers via cross-linking for robust coordination with inorganic oxides. These results demonstrate a skillful enlightenment in the design of high-performance mineralized polymer materials used as membranes, fabrics, and medical devices.
Collapse
Affiliation(s)
- Mengxiao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Xiaohe Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunyun Xue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jiaqi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jianyu Wang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| |
Collapse
|
12
|
Sanoja-López KA, Quiroz-Suárez KA, Dueñas-Rivadeneira AA, Maddela NR, Montenegro MCBSM, Luque R, Rodríguez-Díaz JM. Polymeric membranes functionalized with nanomaterials (MP@NMs): A review of advances in pesticide removal. ENVIRONMENTAL RESEARCH 2023; 217:114776. [PMID: 36403656 DOI: 10.1016/j.envres.2022.114776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The excessive contamination of drinking water sources by pesticides has a pernicious impact on human health and the environment since only 0.1% of pesticides is utilized effectively to control the and the rest is deposited in the environment. Filtration by polymeric membranes has become a promising technique to deal with this problem; however, the scientific community, in the need to find better pesticide retention results, has begun to meddle in the functionalization of polymeric membranes. Given the great variety of membrane, polymer, and nanomaterial synthesis methods present in the market, the possibilities of obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that this technology will represent one of the main pesticide removal strategies in the future. In this direction, this review focused on, - the main characteristics of the nanomaterials and their impact on pristine polymeric membranes; - the removal performance of functionalized membranes; and - the main mechanisms by which membranes can retain pesticides. Based on these insights, the functionalized polymeric membranes can be considered as a promising technology in the removal of pesticides since the removal performance of this technology against pesticide showed a significant increase. Obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that functionalized membrane technology will represent one of the main pesticide removal strategies in the future.
Collapse
Affiliation(s)
- Kelvin Adrian Sanoja-López
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Kevin Alberto Quiroz-Suárez
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| |
Collapse
|
13
|
Teng L, Yue C, Zhang G. Epoxied SiO2 nanoparticles and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for improved oil water separation, anti-fouling, dye and heavy metal ions removal capabilities. J Colloid Interface Sci 2023; 630:416-429. [DOI: 10.1016/j.jcis.2022.09.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
14
|
Polyethyleneimine-Based Drug Delivery Systems for Cancer Theranostics. J Funct Biomater 2022; 14:jfb14010012. [PMID: 36662059 PMCID: PMC9862060 DOI: 10.3390/jfb14010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of nanotechnology, various types of polymer-based drug delivery systems have been designed for biomedical applications. Polymer-based drug delivery systems with desirable biocompatibility can be efficiently delivered to tumor sites with passive or targeted effects and combined with other therapeutic and imaging agents for cancer theranostics. As an effective vehicle for drug and gene delivery, polyethyleneimine (PEI) has been extensively studied due to its rich surface amines and excellent water solubility. In this work, we summarize the surface modifications of PEI to enhance biocompatibility and functionalization. Additionally, the synthesis of PEI-based nanoparticles is discussed. We further review the applications of PEI-based drug delivery systems in cancer treatment, cancer imaging, and cancer theranostics. Finally, we thoroughly consider the outlook and challenges relating to PEI-based drug delivery systems.
Collapse
|
15
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
16
|
Eryildiz B, Keskin B, Pasaoglu ME, Turken T, Vatanpour V, Koyuncu I. Preparation and characterization of polyvinyl chloride membranes and their fouling behavior in water purification. J Appl Polym Sci 2022. [DOI: 10.1002/app.53496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bahriye Eryildiz
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| | - Basak Keskin
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| | - Mehmet Emin Pasaoglu
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| | - Turker Turken
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
17
|
Gan N, Lin Y, Zhang Y, Gitis V, Lin Q, Matsuyama H. Surface Mineralization of the TiO 2-SiO 2/PES Composite Membrane with Outstanding Separation Property via Facile Vapor-Ventilated In Situ Chemical Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12951-12960. [PMID: 36242562 DOI: 10.1021/acs.langmuir.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional polymeric membranes are broadly employed in water treatment processes; however, most of them suffer from relatively low water permeance and severe membrane fouling phenomena owing to their relatively hydrophobic nature. In this work, a novel class of inorganic-organic composite membranes was developed through a newly developed vapor-ventilated in situ chemical deposition method, where the Ti and Si precursors were first hydrolyzed and then conferred into metal oxides to form a continuous TiO2-SiO2 modification layer. Owing to the distinct physicochemical properties, the Ti and Si precursors were leveraged as quasi-molecular regulators to tune the membrane surface chemistry and pore aperture (within the nanoscale) to benefit highly efficient water purification by underpinning the rapid transport of water molecules and featuring an excellent fouling-resistant and fouling-releasing property against typical pollutants. The as-developed TiO2-SiO2/PES composite membrane showed a high water permeance of 187.4 L·m-2·h-1·bar-1, together with a relatively small mean pore aperture of 4.2 nm, showing an outstanding permeating efficiency among state-of-the-art membranes with a similar separation accuracy. This study provides a paradigm shift in membrane materials that could open avenues for developing high-performance inorganic-organic composite membranes for complex wastewater treatment.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, Guizhou, China
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Yiren Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Vitaly Gitis
- Unit of Environmental Engineering, The Faculty of Engineering Science, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva84105, Israel
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, Guizhou, China
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe657-8501, Japan
| |
Collapse
|
18
|
Al Harby NF, El-Batouti M, Elewa MM. Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203637. [PMID: 36296828 PMCID: PMC9610978 DOI: 10.3390/nano12203637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 05/26/2023]
Abstract
Water shortage is a major worldwide issue. Filtration using genuine polymeric membranes demonstrates excellent pollutant separation capabilities; however, polymeric membranes have restricted uses. Nanocomposite membranes, which are produced by integrating nanofillers into polymeric membrane matrices, may increase filtration. Carbon-based nanoparticles and metal/metal oxide nanoparticles have received the greatest attention. We evaluate the antifouling and permeability performance of nanocomposite membranes and their physical and chemical characteristics and compare nanocomposite membranes to bare membranes. Because of the antibacterial characteristics of nanoparticles and the decreased roughness of the membrane, nanocomposite membranes often have greater antifouling properties. They also have better permeability because of the increased porosity and narrower pore size distribution caused by nanofillers. The concentration of nanofillers affects membrane performance, and the appropriate concentration is determined by both the nanoparticles' characteristics and the membrane's composition. Higher nanofiller concentrations than the recommended value result in deficient performance owing to nanoparticle aggregation. Despite substantial studies into nanocomposite membrane manufacturing, most past efforts have been restricted to the laboratory scale, and the long-term membrane durability after nanofiller leakage has not been thoroughly examined.
Collapse
Affiliation(s)
- Nouf F. Al Harby
- Department of Chemistry, College of Science, Qassim University, Qassim 52571, Saudi Arabia
| | - Mervette El-Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mahmoud M. Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| |
Collapse
|
19
|
Al-Hazmi HE, Shokrani H, Shokrani A, Jabbour K, Abida O, Mousavi Khadem SS, Habibzadeh S, Sonawane SH, Saeb MR, Bonilla-Petriciolet A, Badawi M. Recent advances in aqueous virus removal technologies. CHEMOSPHERE 2022; 305:135441. [PMID: 35764113 PMCID: PMC9233172 DOI: 10.1016/j.chemosphere.2022.135441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses challenges of combining biochemical, membrane and disinfection processes for synergistic treatment of viruses in order to reduce the dissemination of waterborne diseases. Certainly, the combination technologies are proactive in minimizing and restraining the outbreaks of the virus. It emphasizes the importance of health authorities to confront the outbreaks of unknown viruses in the future.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Karam Jabbour
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | | | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Michael Badawi
- Université de Lorraine, Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS, 7019, Nancy, France.
| |
Collapse
|
20
|
Shan L, Yang Z, Li W, Li H, Liu N, Wang Z. Highly antifouling porous EVAL/F127 blend membranes with hierarchical surface structures. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Ahmadi Y, Kim KH. Hyperbranched polymers as superior adsorbent for the treatment of dyes in water. Adv Colloid Interface Sci 2022; 302:102633. [PMID: 35259566 DOI: 10.1016/j.cis.2022.102633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 01/22/2023]
Abstract
The effective control on environmental pollutants is crucial for the proper management of diverse environmental systems (e.g., soil, water, and air). In this respect, the utility of various functional materials such as hyperbranched polymers (HPs) has been recognized due to their great potentil as adsorbent for the mitigation of numerous environmental pollutants. Here, we highlight the latest progress achieved in the design and construction of HPs with high adsorption potentials. We focus on adsorption mechanisms, functionalization methods, the role of functional groups in adsorption capacity, and the choice of HPs in adsorption of cationic and anionic dyes. Recent published reports are reviewed to quantify and qualify the removal efficiency of pollutants through adsorption. We also evaluate the adsorbing efficiency of the constructed HPs and compared their performance with other such systems. The utilization potential of new materials (magnetic, polar, and biological) is highlighted along with the methods needed for their preparation and/or modification (surface, end-group, and zwitterionic) for the construction of efficient adsorbing systems. Finally, the advantages and limitations of adsorbing systems are described along with the existing challenges to help establish guidelines for future research. This article is thus expected to offer new path and guidance for developing advanced HP-based adsorbents.
Collapse
Affiliation(s)
- Younes Ahmadi
- Department of Analytical Chemistry, Kabul University, Kabul 1001, Afghanistan; Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
22
|
Fabrication of Polyethyleneimine-Functionalized Magnetic Cellulose Nanocrystals for the Adsorption of Diclofenac Sodium from Aqueous Solutions. Polymers (Basel) 2022; 14:polym14040720. [PMID: 35215633 PMCID: PMC8880636 DOI: 10.3390/polym14040720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Diclofenac sodium (DS), one of the most used non-steroidal anti-inflammatory drugs worldwide, is often detected in wastewater and natural water. This drug is ecotoxic, even at low concentrations. Therefore, it is essential to fabricate low-cost adsorbents that can easily and effectively remove DS from contaminated water bodies. In this study, a polyethyleneimine (PEI)-modified magnetic cellulose nanocrystal (MCNC) was prepared with a silane coupling agent as a bridge. TEM, FTIR, XRD, and VSM were used to demonstrate the successful preparation of MCNC-PEI. This composite adsorbent exhibited efficient DS removal. Furthermore, the adsorption performance of MCNC-PEI on DS was optimal under mildly acidic conditions (pH = 4.5). Adsorption kinetics showed that the adsorption process involves mainly electrostatic interactions. Moreover, the maximum adsorption capacity reached 299.93 mg/g at 25 °C, and the adsorption capacity only decreased by 9.9% after being reused five times. Considering its low cost, low toxicity, and high DS removal capacity, MCNC-PEI could be a promising adsorbent for treating DS-contaminated water.
Collapse
|
23
|
Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|