1
|
Jia X, Liu Z, Li J, Yan B, Wang Z, Chen G. Characteristics of tar formation during integrated process of biomass anaerobic digestion and gasification. BIORESOURCE TECHNOLOGY 2025; 428:132448. [PMID: 40157581 DOI: 10.1016/j.biortech.2025.132448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The tar problem is a bottleneck issue of biomass gasification. The influence of anaerobic digestion on gasification tar formation is still unclear. In this work, the influence of the degree of anaerobic digestion on physicochemical properties of the digestate were investigated, and consequently on tar yield and distribution. The content of cellulose exhibits the most critical parameter affecting tar yield. Minimum tar yields (2.5 wt%, 1.9 wt% and 1.6 wt% for pyrolysis, CO2 gasification and H2O gasification) was obtained in day 9 with a maximum lignin content (29.5 wt%) and a minimum cellulose content (24.8 wt%). Both gasification agent of CO2 and H2O significantly reduce tar yields. The tar distribution was always dominated by benzofuran, 2,3-dihydro- and phenol derivatives regardless of the agent. This work provides in-depth insights and clarifies the tar formation characteristic of the integrated process, which helps to realize the efficient and green conversion of biomass.
Collapse
Affiliation(s)
- Xiaopeng Jia
- School of Environmental Science and Engineering/State Key Lab of Engines, Tianjin University, Tianjin 300072, China
| | - Zhenyan Liu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jian Li
- School of Environmental Science and Engineering/State Key Lab of Engines, Tianjin University, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/State Key Lab of Engines, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Biomass Wastes Utilization/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin 300072, China.
| | - Zhi Wang
- School of Environmental Science and Engineering/State Key Lab of Engines, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
2
|
Rawindran H, Khoo KS, Satpati GG, Maity S, Chandran K, Lim JW, Tong WY, Setiabudi HD, Yunus NM. Composition of carbohydrate, protein and lipid derived from microalgae using thermally pretreated solid waste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39559900 DOI: 10.1002/jsfa.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Microalgae are widely recognized for their capacity to generate value-added products in a variety of sectors, including the pharmaceutical and food industries, bioenergy industries and wastewater industries. The quality of a microalga is significantly influenced by its proliferation. Along with growth, the biochemical profile may also vary based on the nutrient that is supplemented. The majority of the supplemented nutrients utilized are not in a functional state, as they are typically extracted in liquid form or pretreated prior to use. Parallel to numerous commonly applied pretreatment processes, including chemical, mechanical and biological, thermal pretreatment appears to receive less attention. Hence it is crucial to comprehend the potential for thermal pretreatment as well as its mechanism in militating the solid waste to release additional nutrients in order to enhance the biochemical profile of microalgae. The current review takes a closer look at the impact of various thermal pretreatments on solid waste on influencing microalgal performance in terms of their overall biochemical profiles such as carbohydrates, proteins and lipids. This approach is likely to enhance the circular economy by utilizing waste products and effectively closing the loop on waste. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- Department of Chemistry, Faculty of Science, Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata, India
| | - Sudatta Maity
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Krittika Chandran
- School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, Mahsa University, Jenjarom, Malaysia
| | - Jun Wei Lim
- HICoE - Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Malaysia
| | - Herma Dina Setiabudi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang, Malaysia
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang, Malaysia
| | - Normawati M Yunus
- Centre of Research in Ionic Liquids (CORIL), Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| |
Collapse
|
3
|
Pal P, Singh AK, Srivastava RK, Rathore SS, Sahoo UK, Subudhi S, Sarangi PK, Prus P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024; 13:3007. [PMID: 39335935 PMCID: PMC11431570 DOI: 10.3390/foods13183007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The growing challenge of food waste management presents a critical opportunity for advancing the circular bioeconomy, aiming to transform waste into valuable resources. This paper explores innovative strategies for converting food wastes into renewable food resources, emphasizing the integration of sustainable technologies and zero-waste principles. The main objective is to demonstrate how these approaches can contribute to a more sustainable food system by reducing environmental impacts and enhancing resource efficiency. Novel contributions of this study include the development of bioproducts from various food waste streams, highlighting the potential of underutilized resources like bread and jackfruit waste. Through case studies and experimental findings, the paper illustrates the successful application of green techniques, such as microbial fermentation and bioprocessing, in valorizing food wastes. The implications of this research extend to policy frameworks, encouraging the adoption of circular bioeconomy models that not only address waste management challenges but also foster economic growth and sustainability. These findings underscore the potential for food waste to serve as a cornerstone in the transition to a circular, regenerative economy.
Collapse
Affiliation(s)
- Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad Road, Lucknow 226028, India;
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India;
| | - Saurabh Singh Rathore
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | | | - Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110003, India;
| | | | - Piotr Prus
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| |
Collapse
|
4
|
Dhull P, Kumar S, Yadav N, Lohchab RK. A comprehensive review on anaerobic digestion with focus on potential feedstocks, limitations associated and recent advances for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33736-6. [PMID: 38795291 DOI: 10.1007/s11356-024-33736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
With the escalating energy demand to accommodate the growing population and its needs along with the responsibility to mitigate climate change and its consequences, anaerobic digestion (AD) has become the potential approach to sustainably fulfil our demands and tackle environmental issues. Notably, a lot of attention has been drawn in recent years towards the production of biogas around the world in waste-to-energy perspective. Nevertheless, the progress of AD is hindered by several factors such as operating parameters, designing and the performance of AD reactors. Furthermore, the full potential of this approach is not fully realised yet due the dependence on people's acceptance and government policies. This article focuses on the different types of feedstocks and their biogas production potential. The feedstock selection is the basic and most important step for accessing the biogas yield. Furthermore, different stages of the AD process, design and the configuration of the biogas digester/reactors have been discussed to get better insight into process. The important aspect to talk about this process is its limitations associated which have been focused upon in detail. Biogas is considered to attain the sustainable development goals (SDG) proposed by United Nations. Therefore, the huge focus should be drawn towards its improvements to counter the limitation and makes it available to all the rural communities in developing countries and set-up the pilot scale AD plants in both developing and developed countries. In this regard, this article talks about the improvements and futures perspective related to the AD process and biogas enhancement.
Collapse
Affiliation(s)
- Paramjeet Dhull
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
| | - Nisha Yadav
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
| | - Rajesh Kumar Lohchab
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India.
| |
Collapse
|
5
|
Thomas AP, Kasa VP, Dubey BK, Sen R, Sarmah AK. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167243. [PMID: 37741416 DOI: 10.1016/j.scitotenv.2023.167243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Substituting synthetic plastics with bioplastics, primarily due to their inherent biodegradable properties, represents a highly effective strategy to address the current global issue of plastic waste accumulation in the environment. Advances in bioplastic research have led to the development of materials with improved properties, enabling their use in a wide range of applications in major commercial sectors. Bioplastics are derived from various natural sources such as plants, animals, and microorganisms. Polyhydroxyalkanoate (PHA), a biopolymer synthesized by bacteria through microbial fermentation, exhibits physicochemical and mechanical characteristics comparable to those of synthetic plastics. In response to the growing demand for these environmentally friendly plastics, researchers are actively investigating various cleaner production methods, including modification or derivatization of existing molecules for enhanced properties and new-generation applications to expand their market share in the coming decades. By 2026, the commercial manufacturing capacity of bioplastics is projected to reach 7.6 million tonnes, with Europe currently holding a significant market share of 43.5 %. Bioplastics are predominantly utilized in the packaging industry, indicating a strong focus of their application in the sector. With the anticipated rise in bioplastic waste volume over the next few decades, it is crucial to comprehend their fate in various environments to evaluate the overall environmental impact. Ensuring their complete biodegradation involves optimizing waste management strategies and appropriate disposal within these facilities. Future research efforts should prioritize exploration of their end-of-life management and toxicity assessment of degradation products. These efforts are crucial to ensure the economic viability and environmental sustainability of bioplastics as alternatives to synthetic plastics.
Collapse
Affiliation(s)
- Anjaly P Thomas
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Vara Prasad Kasa
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Brajesh Kumar Dubey
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Institute of Agriculture, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Sharma V, Sharma D, Tsai ML, Ortizo RGG, Yadav A, Nargotra P, Chen CW, Sun PP, Dong CD. Insights into the recent advances of agro-industrial waste valorization for sustainable biogas production. BIORESOURCE TECHNOLOGY 2023; 390:129829. [PMID: 37839650 DOI: 10.1016/j.biortech.2023.129829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Diksha Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Rhessa Grace Guanga Ortizo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
7
|
Chen J, Cai Y, Wang Z, Xu Z, Li J, Ma X, Zhuang W, Liu D, Wang S, Song A, Xu J, Ying H. Construction of a synthetic microbial community based on multiomics linkage technology and analysis of the mechanism of lignocellulose degradation. BIORESOURCE TECHNOLOGY 2023; 389:129799. [PMID: 37774801 DOI: 10.1016/j.biortech.2023.129799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The efficient degradation of lignocellulose is a bottleneck for its integrated utilization. This research performed species analysis and made functional predictions in various ecosystems using multiomics coupling to construct a core synthetic microbial community with efficient lignocellulose degradation function. The synthetic microbial community was employed to degrade corn straw via solid-state fermentation. The degradation mechanisms were resolved using proteomics. The optimum culture conditions included 10% inoculum level (w/v), 4% nitrogen source ratio and a fermentation time of 23 d. Under these conditions, the degradation rates of cellulose, hemicellulose, and lignin were 34.91%, 45.94%, and 23.34%, respectively. Proteomic analysis revealed that lignin 1,4-β-xylanase, β-xylosidase and endo-1,4-β-xylanase were closely related to lignocellulose degradation. The metabolic pathways involved in lignocellulose degradation and the functional roles of eight strains were obtained. The synthesis of a microbial community via multiomics linkage technology can effectively decompose lignocellulose, which is useful for their further utilization.
Collapse
Affiliation(s)
- Jinmeng Chen
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Zhengzhong Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Jia Li
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Xiaotian Ma
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Dong Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China.
| | - Andong Song
- College of Life Science, Henan Agricultural University, 218 Ping An Avenue, Zhengdong New District, Zhengzhou 450002, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
8
|
Soni A, Das PK, Kumar S. Application of q-rung orthopair fuzzy based SWARA-COPRAS model for municipal waste treatment technology selection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88111-88131. [PMID: 37434060 DOI: 10.1007/s11356-023-28602-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Despite several methods available for the treatment of solid wastes, the management of municipal solid waste is still a crucial and complex process. The available methods for waste treatment range from advanced to conventional techniques. The identification of a proper method for municipal solid waste management involves several techno-eco and environmental considerations. To solve the real-world problems of municipal waste management, the research proposed an integrated q-rung orthopair fuzzy number-based stepwise weight assessment ratio analysis-complex proportional assessment (SWARA-COPRAS) mathematical model to rank the waste treatment techniques. The research aimed to develop a systematic approach for a suitable selection of waste treatment methods. Ten (10) different alternatives for waste treatments were ranked against seven (07) different techno-eco and environmental criteria. The ambiguity in the decision was handled by the q-rung orthopair fuzzy numbers. The proposed integrated model has identified upcycling and recycling of waste having priority values of 100% and 99.9%, respectively, as the suitable practices for the successful management of generated solid wastes, whereas landfilling has obtained a minimum priority value of 66.782% and, therefore, is least preferable for waste management. The ranking of the alternatives followed the sequence as upcycling > recycling > pyrolysis > hydrolysis > biotechnological > core plasma pyrolysis > incineration > composting > gasification > landfilling. The comparison between the rankings of the proposed model with other techniques has revealed that the values of Spearman's rank correlation coefficient are in the range of 0.8545 to 0.9272; thereby, the robustness of the proposed model is verified. Sensitivity analysis for the criteria weight has showed that the ranking results are influenced significantly by the change in criteria weights and suggested that an accurate estimation of the criteria weight is decisive in determining the overall ranking of the alternative. The study has provided a framework for decision-making in the technology selection for solid waste management.
Collapse
Affiliation(s)
- Ashish Soni
- Department of Mechanical Engineering, National Institute of Technology (NIT) Agartala, Jirania, Tripura, 799046, India.
| | - Pankaj Kumar Das
- Department of Mechanical Engineering, National Institute of Technology (NIT) Agartala, Jirania, Tripura, 799046, India
| | - Sanjay Kumar
- Department of Production Engineering, National Institute of Technology (NIT) Agartala, Agartala, Tripura, India
| |
Collapse
|
9
|
Shabbirahmed AM, Joel J, Gomez A, Patel AK, Singhania RR, Haldar D. Environment friendly emerging techniques for the treatment of waste biomass: a focus on microwave and ultrasonication processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79706-79723. [PMID: 37336854 DOI: 10.1007/s11356-023-28271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
In the recent past, an increasing interest is mostly observed in using microwave and ultrasonic irradiation to aid the biological conversion of waste materials into value-added products. This study is focused on various individual impacts of microwaves and ultrasonic waves for the treatment of biomass before the synthesis of value-added products. Following, a comprehensive review of the mechanisms governing microwaves and ultrasonication as the treatment methods, their effects on biomass disruption, solubilization of organic matter, modification of the crystalline structure, enzymatic hydrolysis and production of reducing sugars was performed. However, based on the lab-scale experiments evaluated, microwaves and ultrasonication were studied to be economically and energetically ineffective despite their beneficial effects on the waste biomass. This article reviews some of the difficulties associated with using microwaves and ultrasonic irradiation for the efficient processing of waste biomasses and identified some potential directions for future study.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Jesse Joel
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| |
Collapse
|
10
|
Li X, Huang X, Zhao C, Wang X, Dong B, Goonetilleke A, Kim KH. Characterizing molecular transformation of dissolved organic matter during high-solid anaerobic digestion of dewatered sludge using ESI FT-ICR MS. CHEMOSPHERE 2023; 320:138101. [PMID: 36764615 DOI: 10.1016/j.chemosphere.2023.138101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of anaerobic digestion (AD) on molecular characteristics of dissolved organic matter (DOM) in the dewatered sludge has been described by advanced electrospray ionization combined with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) technology. With the progress of AD, molecular amounts in DOM samples increased with the lowering in the carbon atom number of average molecular formula and average double bond equivalent (DBE). CHON and CHONS groups are the two main organic substances in sludge with their relative DOM proportions of 29.64% and 32.56%, respectively. The resistants (i.e., refractory organic matter) mainly consist of the proteins regions of CHO groups as well as the proteins/lignin regions of CHON groups. The contrasting temporal trends in protein contents (e.g., decrease (CHO and CHON) vs. increase (CHONS)) may imply differences in their degradation characteristics. Likewise, the multi-N (N3, N4) and S2 organic groups in the sludge are converted to N2 and S1 molecules, while the relative abundance of O atoms (in Ox molecules) tends to increase. In addition, the resistants in sludge DOM contain high oxidizing C and low unsaturation. The overall results of this research are expected to provide the theoretical basis for further optimization of the sludge AD process.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Xiang Huang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Chuyun Zhao
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Xuan Wang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
11
|
Zhu Z, Zhang S, Song C, Wang L, Cai F, Chen C, Liu G. Influences of organic loading, feed-to-inoculum ratio, and different pretreatment strategies on the methane production performance of eggplant stalk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85433-85443. [PMID: 35794328 DOI: 10.1007/s11356-022-20940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
A large amount of eggplant stalk (ES) is incinerated after harvesting of eggplant every year, which aggravates environmental pollution and waste of resources. Converting ES into methane through anaerobic digestion (AD) technology may be a potential treatment method, considering the low environmental impact and high energy recovery. Firstly, this study explored the effects of organic loading (OL) and feed to inoculum ratio (F/I ratio) on the AD of ES by response surface methodology (RSM). In order to achieve higher AD efficiency, various pretreatments (acid, alkali, alkaline hydrogen peroxide (AHP), microwave, and ultrasound) were introduced and comprehensively assessed with regard to methane production, organic matter destruction, and kinetic parameters. Results showed that OL had a more significant impact on AD process compared to F/I ratio and methane production was enhanced remarkably when the OL and F/I ratio were 35.0 g VS/L and 3.0, respectively. XRD, FTIR, and SEM analyses of pretreated ES showed that alkali and AHP pretreatments performed better in delignification. Under optimal conditions, the ES pretreated with 1.5% AHP (adjusted by KOH) performed the maximum methane production of 262.2 mL/g VS with a biodegradability of 95.0%, which increased by 334.1% compared to untreated ES. This paper not only provides the theoretical data about methane production performance of ES but also gives practical guidance for efficient utilization of similar vegetable stalk biowastes, which is also promising for large-scale industrial applications in the future.
Collapse
Affiliation(s)
- Zhe Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Si Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ligong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Fanfan Cai
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building, 15 North 3rd Ring East Road, Beijing, 100029, China.
| |
Collapse
|
12
|
Enhancement of anaerobic digestion performance of corn straw via combined sodium hydroxide-cellulase pretreatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ahmed B, Tyagi S, Rahmani AM, Kazmi AA, Varjani S, Tyagi VK. Novel insight on ferric ions addition to mitigate recalcitrant formation during thermal-alkali hydrolysis to enhance biomethanation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154621. [PMID: 35306085 DOI: 10.1016/j.scitotenv.2022.154621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Thermal-chemical pre-treatment has proven to facilitate the solubilization of organics and improvement in biogas generation from the organic fraction of municipal solid waste (OFMSW). However, the production of recalcitrant is inevitable when OFMSW is pretreated at high temperatures and alkali dosage. This study develops a strategy to use Fe3+ to reduce the formation of recalcitrant compounds, i.e., 5-HydroxyMethyl Furfural (5-HMF), furfurals, and humic acids (HA) during thermal-alkali pre-treatment. It was postulated that the formation of the recalcitrant compound during pre-treatment can be reduced by Fe3+ dosing to oxidize intermediates of Maillard reactions. A decrease in 5-HMF (45-49%) and furfurals (54-66%) was observed during Fe3+ (optimum dose: 10 mg/L) mediated thermal-alkali pre-treatment owing to the Lewis acid behavior of FeCl3. The Fe3+ mediated assays show a substantial improvement in VS removal (28%) and biogas yield, i.e., 31% (292 mL/gVSadded) in 150 °C + 3 g/L NaOH, 34% (316 mL/gVSadded) in 175 °C + 3 g/L NaOH, and 36% (205 mL/gVSadded) in 200 °C + 3 g/L NaOH assays, over their respective controls (no Fe3+ dosing). The reducing property of Fe3+ rendered a low ORP (-345 mV) in the system than control, which is beneficial to the anaerobic microbiome. Electrical conductivity (EC) also shows a three-fold increase in Fe3+ mediated assays over control, promoting direct interspecies electron transfer (DIET) amongst microbes involved in the electrical syntrophy. The score plot and loading plots from principal component analysis (PCA) showed that the results obtained by supplementing 10 mg/L Fe3+ at 150, 175, and 200 °C were significantly different. The correlation of the operational parameters was also mutually correlated. This work provides a techno-economically and environmentally feasible option to mitigate the formation of recalcitrant compounds and enhance biogas production in downstream AD by improving the degradability of pretreated substrate.
Collapse
Affiliation(s)
- Banafsha Ahmed
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Shivi Tyagi
- Department of Environmental Science, Gurukul Kangri University, Haridwar, India
| | - Ali Mohammad Rahmani
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Vinay Kumar Tyagi
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|