1
|
Itzhari D, Shuai W, Hartmann EM, Ronen Z. Heterogeneous Antibiotic Resistance Gene Removal Impedes Evaluation of Constructed Wetlands for Effective Greywater Treatment. Antibiotics (Basel) 2024; 13:315. [PMID: 38666991 PMCID: PMC11047525 DOI: 10.3390/antibiotics13040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Microorganisms carrying antimicrobial resistance genes are often found in greywater. As the reuse of greywater becomes increasingly needed, it is imperative to determine how greywater treatment impacts antimicrobial resistance genes (ARGs). Using qPCR and SmartChip™ qPCR, we characterized ARG patterns in greywater microbial communities before, during, and after treatment by a recirculating vertical flow constructed wetland. In parallel, we examined the impact of greywater-treated irrigation on soil, including the occurrence of emerging micropollutants and the taxonomic and ARG compositions of microbial communities. Most ARGs in raw greywater are removed efficiently during the winter season, while some ARGs in the effluents increase in summer. SmartChip™ qPCR revealed the presence of ARGs, such as tetracycline and beta-lactam resistance genes, in both raw and treated greywater, but most abundantly in the filter bed. It also showed that aminoglycoside and vancomycin gene abundances significantly increased after treatment. In the irrigated soil, the type of water (potable or treated greywater) had no specific impact on the total bacterial abundance (16S rRNA gene). No overlapping ARGs were found between treated greywater and greywater-irrigated soil. This study indicates ARG abundance and richness increased after treatment, possibly due to the concentration effects of the filter beds.
Collapse
Affiliation(s)
- Daniella Itzhari
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| | - Weitao Shuai
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; (W.S.); (E.M.H.)
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; (W.S.); (E.M.H.)
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Division of Pulmonary Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| |
Collapse
|
2
|
Kokotović I, Veseli M, Ložek F, Karačić Z, Rožman M, Previšić A. Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168751. [PMID: 38008314 DOI: 10.1016/j.scitotenv.2023.168751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased water temperature + 4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of M. nycterobia through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs.
Collapse
Affiliation(s)
- Iva Kokotović
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Marina Veseli
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Filip Ložek
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Czech Republic.
| | | | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Raj R, Tripathi A, Das S, Ghangrekar MM. Waste coconut shell-derived carbon monolith as an efficient binder-free cathode for electrochemical advanced oxidation treatment of endocrine-disrupting compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119328. [PMID: 37857210 DOI: 10.1016/j.jenvman.2023.119328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Discharge of endocrine-disrupting compounds such as methylparaben (MePa) into natural water bodies deteriorates the aquatic ecosystem. In this regard, electrochemical oxidation (EO) and electro-Fenton (EF) processes are acknowledged as effective methods to eliminate biorecalcitrant compounds from different wastewater matrices. In these systems, the H2O2-producing ability of carbon-based cathodes is put to advantage for producing homogenous hydroxyl radicals by simulating Fenton's reaction, which dramatically augments the contaminant removal efficiency. However, commercial carbon based cathodes are not economically affordable, especially for voluminous treatment. Hence in the present work, waste-derived carbonised coconut shell (CCS) monolith was employed as a cathode in EO and EF treatment of MePa. Almost the entire MePa with initial concentration of 10 mg/L was removed in 60 min by EO and 45 min by EF process at neutral pH, applied current density of 7.5 mA/cm2, NaCl concentration of 1.0 g/L and 10 mg/L of Fe2O3 dosing. The MePa removal efficiency of the CCS cathode-fitted system after 60 min was better than the commercial graphite plate and Ti-based mixed metal oxide employing system due to higher H2O2 electrosynthesis (H2O2 = 9.0 ± 0.6 mg/L after 60 min). Moreover, the same setup was used for treating 10 mg/L of MePa-spiked real sewage and demonstrated MePa and total organic carbon removal efficiency of 80.16 ± 2.31% and 37.42 ± 3.50%, respectively, in 45 min. Further, the CCS-mediated EF treatment achieved >90% removal of MePa for eight continuous batch cycles and recorded a current density drop of just 0.23% per cycle. The degradation pathway and toxicity assessment of the intermediates using the Ecological Structure Activity Relationships (ECOSAR) tool supported the eco-friendliness of the current treatment scheme.
Collapse
Affiliation(s)
- Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Akash Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - M M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
4
|
Medkova D, Hollerova A, Riesova B, Blahova J, Hodkovicova N, Marsalek P, Doubkova V, Weiserova Z, Mares J, Faldyna M, Tichy F, Svobodova Z, Lakdawala P. Pesticides and Parabens Contaminating Aquatic Environment: Acute and Sub-Chronic Toxicity towards Early-Life Stages of Freshwater Fish and Amphibians. TOXICS 2023; 11:333. [PMID: 37112561 PMCID: PMC10141211 DOI: 10.3390/toxics11040333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Pesticides and personal care products are two very important groups of contaminants posing a threat to the aquatic environment and the organisms living in it.. Therefore, this study aimed to describe the effects of widely used pesticides and parabens on aquatic non-target biota such as fish (using model organisms Danio rerio and Cyprinus carpio) and amphibians (using model organism Xenopus laevis) using a wide range of endpoints. The first part of the experiment was focused on the embryonal toxicity of three widely used pesticides (metazachlor, prochloraz, and 4-chloro-2-methyl phenoxy acetic acid) and three parabens (methylparaben, propylparaben, and butylparaben) with D. rerio, C. carpio, and X. laevis embryos. An emphasis was placed on using mostly sub-lethal concentrations that are partially relevant to the environmental concentrations of the substances studied. In the second part of the study, an embryo-larval toxicity test with C. carpio was carried out with prochloraz using concentrations 0.1, 1, 10, 100, and 1000 µg/L. The results of both parts of the study show that even the low, environmentally relevant concentrations of the chemicals tested are often able to affect the expression of genes that play either a prominent role in detoxification and sex hormone production or indicate cell stress or, in case of prochloraz, to induce genotoxicity.
Collapse
Affiliation(s)
- Denisa Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, 613 00 Brno, Czech Republic
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Aneta Hollerova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Barbora Riesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zuzana Weiserova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary medicine, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
5
|
Grgić I, Cetinić KA, Karačić Z, Previšić A, Rožman M. Fate and effects of microplastics in combination with pharmaceuticals and endocrine disruptors in freshwaters: Insights from a microcosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160387. [PMID: 36427730 DOI: 10.1016/j.scitotenv.2022.160387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Microplastic contamination of freshwater ecosystems has become an increasing environmental concern. To advance the hazard assessment of microplastics, we conducted a microcosm experiment in which we exposed a simplified aquatic ecosystem consisting of moss and caddisflies to microplastics (polyethylene, polystyrene and polypropylene) and pharmaceuticals and personal care products (1H-benzotriazole, bisphenol A, caffeine, gemfibrozil, ketoprofen, methylparaben, estriol, diphenhydramine, tris (1-chloro-2-propyl) phosphate) over the course of 60 days. We monitored the flux of microplastics within the microcosm, as well as the metabolic and total protein variation of organisms. This study offers evidence highlighting the capacity of moss to act as a sink for free-floating microplastics in freshwater environments. Moss is also shown to serve as a source and pathway for microplastic particles to enter aquatic food webs via caddisflies feeding off of the moss. Although most ingested microparticles were eliminated between caddisflies life stages, a small fraction of microplastics was transferred from aquatic to terrestrial ecosystem by emergence. While moss exhibited a mild response to microplastic stress, caddisflies ingesting microplastics showed stress comparable to that caused by exposure to pharmaceuticals. The molecular responses that the stressors triggered were tentatively identified and related to phenotypic responses, such as the delayed development manifested through the delayed emergence of caddisflies exposed to stress. Overall, our study provides valuable insights into the adverse effects of microplastics on aquatic species, compares the impacts of microplastics on freshwater biota to those of pharmaceuticals and endocrine disrupting compounds, and demonstrates the role aquatic organisms have in redistributing microplastics between aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
6
|
Duan Y, Xu Z, Liu Z. A multi-site recognition molecularly imprinted solid-phase microextraction fiber for selective enrichment of three cross-class environmental endocrine disruptors. J Mater Chem B 2023; 11:1020-1028. [PMID: 36637004 DOI: 10.1039/d2tb02156k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecularly imprinted solid-phase microextraction fibers with multi-site recognition were prepared for the simultaneous enrichment of three cross-class environmental endocrine disruptors (EEDs) in environmental water. The surface morphology of the multi-site recognition molecularly imprinted fibers was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and surface area and pore size analyzer. Under optimal extraction conditions, the molecularly imprinted fibers showed higher extraction capacity to bisphenol F, diethyl phthalate, and methyl paraben than non-imprinted polymer fibers and commercial fibers. Compared with commercial solid-phase microextraction fibers, the multi-site recognition molecularly imprinted fibers showed superior extraction performance at different concentrations of analytes. The selectivity study confirmed that the multi-site recognition molecularly imprinted solid-phase microextraction fibers were highly selective not only for specific template molecules but also for bisphenols, parabens, and phthalates. Furthermore, the method achieved a limit of detection of 0.003-0.02 μg L-1 for the three cross-class EEDs in environmental water samples with recoveries ranging from 75.76% to 112.69% and relative standard deviations below 11.46%. Thus, the novel MIP fibers with multi-site recognition prepared in this work have provided a promising approach in the field of specific adsorption and a strategy for the simultaneous and sensitive monitoring of multiple cross-class trace EEDs.
Collapse
Affiliation(s)
- Yunli Duan
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Smodlaka Tanković M, Baričević A, Gerić M, Domijan AM, Pfannkuchen DM, Kužat N, Ujević I, Kuralić M, Rožman M, Matković K, Novak M, Žegura B, Pfannkuchen M, Gajski G. Characterisation and toxicological activity of three different Pseudo-nitzschia species from the northern Adriatic Sea (Croatia). ENVIRONMENTAL RESEARCH 2022; 214:114108. [PMID: 35985485 DOI: 10.1016/j.envres.2022.114108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Diatoms of the genus Pseudo-nitzschia are cosmopolitans spread in seas and oceans worldwide, with more than 50 described species, dozens of which have been confirmed to produce domoic acid (DA). Here, we characterized and investigated the toxicological activity of secondary metabolites excreted into the growth media of different Pseudo-nitzschia species sampled at various locations in the northern Adriatic Sea (Croatia) using human blood cells under in vitro conditions. The results revealed that three investigated species of the genus Pseudo-nitzschia were capable of producing DA indicating their toxic potential. Moreover, toxicological data suggested all three Pseudo-nitzschia species can excrete toxic secondary metabolites into the surrounding media in addition to the intracellular pools of DA, raising concerns regarding their toxicity and environmental impact. In addition, all three Pseudo-nitzchia species triggered oxidative stress, one of the mechanisms of action likely responsible for the DNA damage observed in human blood cells. In line with the above stated, our results are of great interest to environmental toxicologists, the public and policy makers, especially in light of today's climate change, which favours harmful algal blooms and the growth of DA producers with a presumed negative impact on the public health of coastal residents.
Collapse
Affiliation(s)
| | - Ana Baričević
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Nataša Kužat
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, 21000 Split, Croatia
| | - Melissa Kuralić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Rožman
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Katarina Matković
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Matjaž Novak
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Martin Pfannkuchen
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Li X, Song C, Sun B, Gao J, Liu Y, Zhu J. Kinetics of zero-valent iron-activated persulfate for methylparaben degradation and the promotion of Cl . JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115973. [PMID: 36104884 DOI: 10.1016/j.jenvman.2022.115973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Methylparaben (MP) is an emerging pollutant, and the optimal conditions and kinetics of MP degradation using nano-zero-valent iron-activated persulfate (nZVI/PDS) need to be further investigated. This paper firstly investigated the response surface methodology (RSM) analysis of MP degradation by the heterogeneous system nZVI/PDS and concluded that the initial pH had the most significant effect on MP degradation. The optimal experimental conditions predicted by the RSM were as follows: initial pH 2.75, [nZVI]0 = 2.87 mM, [PDS]0 = 2.18 mM (MP degradation level of 95.30%). First- and second-order kinetic fits were performed for different initial pH levels and different concentrations of MP, nZVI, and PDS. It was determined that k = 0.0365 min-1 (R2 = 0.984) when the initial pH was 3, [PDS]0 = 2 mM, [MP]0 = 20 mg L-1, and [nZVI]0 = 3 mM (MP degradation level of 94.25%). The rest of the conditions were more closely fitted to the second-order reactions. The effects of different concentrations of anions and humic acid (HA) on the MP degradation level and k were examined, and it was found that Cl- could promote MP degradation to 97.69% (increased by 3.65%) and increase the k in accordance with the first-order reaction kinetics (0.0780 min-1, R2 = 0.991). Finally, the analysis of intermediates revealed 5 reaction pathways and 7 reaction intermediates, which inferred a possible reaction mechanism with the recycling performance of nZVI. In this paper, the superiority of nZVI/PDS for the purposes of activating MP degradation was affirmed. The presence of Cl- can enhance the level of MP degradation was confirmed, which provides a new direction for future practical engineering applications.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuang Song
- Tieling Ecological Environment Bureau, Tieling, 112008, China
| | - Beibei Sun
- Sinopec Ningbo Engineering CO., LTD., Ningbo, 315000, China
| | - Jingsi Gao
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Yanping Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Screening of Contaminants of Emerging Concern in Surface Water and Wastewater Effluents, Assisted by the Persistency-Mobility-Toxicity Criteria. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123915. [PMID: 35745037 DOI: 10.3390/molecules27123915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Contaminants of emerging concern (CECs) are compounds of diverse origins that have not been deeply studied in the past which are now accruing growing environmental interest. The NOR-Water project aimed to identify the main CECs and their sources in the water environment of Northern Portugal-Galicia (located in northwest Spain) transnational region. To achieve these goals, a suspect screening analytical methodology based on the use of liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was applied to 29 sampling sites in two campaigns. These sampling sites included river and sea water, as well as treated wastewater. The screening was driven by a library of over 3500 compounds, which included 604 compounds prioritized from different relevant lists on the basis of the persistency, mobility, and toxicity criteria. Thus, a total of 343 chemicals could be tentatively identified in the analyzed samples. This list of 343 identified chemicals was submitted to the classification workflow used for prioritization and resulted in 153 chemicals tentatively classified as persistent, mobile, and toxic (PMT) and 23 as very persistent and very mobile (vMvP), pinpointing the relevance of these types of chemicals in the aqueous environment. Pharmaceuticals, such as the antidepressant venlafaxine or the antipsychotic sulpiride, and industrial chemicals, especially high production volume chemicals (HPVC) such as ε-caprolactam, were the groups of compounds that were detected at the highest frequencies.
Collapse
|