1
|
França D, Silva APN, Osajima JA, Silva-Filho EC, Medina-Carrasco S, Orta MDM, Jaber M, Fonseca MG. Diclofenac Removal by Alkylammonium Clay Minerals Prepared over Microwave Heating. ACS OMEGA 2024; 9:48256-48272. [PMID: 39676920 PMCID: PMC11635518 DOI: 10.1021/acsomega.4c05763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Diclofenac is an emerging contaminant widely detected in water and has had adverse effects on the biota. In this study, the adsorbents were prepared by reacting tetradecyl-(C14), hexadecyl-(C16), and octadecyltrimethylammonium (C18) bromides with sodium vermiculite (Na-Ver) and used for the removal of the first time for diclofenac sodium from aqueous solution. Synthesis was carried out in a microwave-assisted reactor operating at 50 °C for 5 min, using proportions of organic salts in 100 and 200% of the phyllosilicate cation exchange capacity. The stability of loaded alkylammonium solids was evaluated under drug adsorption conditions. Adsorption was mainly influenced by the amount of surfactant incorporated into the clay mineral according to the thermogravimetric and CHN elemental analysis data. Samples prepared with 200% CEC presented lower stability at pH 6.0 and 8.0. Drug adsorption was more effective for C14-Ver-200%, C16-Ver-200%, and C18-Ver-200% samples, with a maximum retention of 97.8, 110.1, and 108.0 mg g-1, respectively. The adsorptive capacities of C14-Ver-200%, C16-Ver-200%, C18-Ver-200%, C14-Ver-100%, C16-Ver-100%, and C18-Ver-100% were reduced to 29.0, 36.8, 41.0, 61.0, 50.4, and 58.0%, respectively, compared with their initial value after three adsorption cycles. X-ray diffraction (XRD) patterns revealed that diclofenac was adsorbed into the interlayer region of organovermiculites. Fourier transform infrared spectroscopy (FTIR), Zeta potential results, and the pH study of adsorption indicated that van der Waals interactions are dominant in the adsorption mechanism.
Collapse
Affiliation(s)
- Denise
B. França
- Universidade
Federal da Paraíba, Núcleo
de Pesquisa e Extensão - Laboratório de Combustíveis
e Materiais (NPE - LACOM), Cidade Universitária s/n − Campus I, 58051-900 João Pessoa, PB, Brazil
- Universidade
Federal do Piauí, Laboratório
Interdisciplinar de Materiais Avançados (LIMAV), Avenida Universitária s/n, 64049-550 Teresina, PI, Brazil
| | - Alice P. N. Silva
- Universidade
Federal da Paraíba, Núcleo
de Pesquisa e Extensão - Laboratório de Combustíveis
e Materiais (NPE - LACOM), Cidade Universitária s/n − Campus I, 58051-900 João Pessoa, PB, Brazil
| | - Josy A. Osajima
- Universidade
Federal do Piauí, Laboratório
Interdisciplinar de Materiais Avançados (LIMAV), Avenida Universitária s/n, 64049-550 Teresina, PI, Brazil
| | - Edson C. Silva-Filho
- Universidade
Federal do Piauí, Laboratório
Interdisciplinar de Materiais Avançados (LIMAV), Avenida Universitária s/n, 64049-550 Teresina, PI, Brazil
| | - Santiago Medina-Carrasco
- Universidad
de Sevilla, SGI Laboratorio
de Rayos X - Centro de Investigación, Tecnología e Innovación
de la Universidad de Sevilla (CITIUS), Avenida Reina Mercedes, 4B, 41012 Sevilla, Spain
| | - Maria del Mar Orta
- Universidad
de Sevilla, Departamento de Química
Analítica da Facultad de Farmacia, Calle Profesor García González 2, 41012 Sevilla, Spain
| | - Maguy Jaber
- Sorbonne
Université, CNRS UMR 8220,
Laboratoire d’Archéologie Moléculaire et Structurale
(LAMS), Case courrier
225, 4 pl. Jussieu, 75252 Paris Cedex 05, France
| | - Maria G. Fonseca
- Universidade
Federal da Paraíba, Núcleo
de Pesquisa e Extensão - Laboratório de Combustíveis
e Materiais (NPE - LACOM), Cidade Universitária s/n − Campus I, 58051-900 João Pessoa, PB, Brazil
| |
Collapse
|
2
|
Hu X, Ma Z. Reviving the Potential of Vermiculite-Based Adsorbents: Exceptional Ibuprofen Removal on Novel Amide-Containing Gemini Surfactants. ACS OMEGA 2024; 9:4841-4848. [PMID: 38313536 PMCID: PMC10831837 DOI: 10.1021/acsomega.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 02/06/2024]
Abstract
In this study, we introduce a novel series of gemini surfactants with amide groups (HDAB, HDAHD, and HDAPX) and use these surfactants to decorate sodium vermiculite (Na-Vt) for the adsorption of Ibuprofen (IBP) from wastewater. Exceptional IBP uptake on organo-vermiculites (organo-Vts) is obtained, with maximum adsorption capacities reaching 249.87, 342.21, and 460.15 mg/g for HDAB-Vt, HDAHD-Vt, and HDAPX-Vt (C0 = 500 mg/L, modifier dosage = 0.2 CEC), respectively. The adsorption of IBP is well fitted by pseudo-second-order, intraparticle diffusion, and Freundlich isotherm models, verifying chemical adsorption processes with multilayer arrangement of IBP in organo-Vts. Thermodynamically, the removal of IBP on HDAHD-Vt is exothermic, while the endothermic nature aptly describes the adsorption process of HDAB-Vt and HDAPX-Vt. Moreover, organo-Vts can be stably regenerated in three cycles. Outstanding adsorption performance of organo-Vts is attributed to synergistic effects of the partition process and functional interaction, which are influenced by the steric hindrance and chain configuration of the modifier. A combined evaluation of adsorption tests and fitting calculations is employed to reveal the adsorption mechanism: (i) the incorporation of amides into the alkyl chain significantly enhances the utilization of the interlayer space in organo-Vts. (ii) Smaller steric hindrance and higher rigidity of the modifier spacer contribute to improved adsorption performance. The findings in this study rekindle interest in Vt-based adsorbents, which demonstrate comparable potential to other emerging adsorbents that are yet to be fully explored.
Collapse
Affiliation(s)
- Xianqi Hu
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Hebei 067000, P. R. China
| | - Zhuang Ma
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Hebei 067000, P. R. China
| |
Collapse
|
3
|
Shen T, Ji Y, Mao S, Han T, Zhao Q, Wang H, Gao M. "Functional connector" strategy on tunable organo-vermiculites: The superb adsorption towards Congo Red. CHEMOSPHERE 2023; 339:139658. [PMID: 37506892 DOI: 10.1016/j.chemosphere.2023.139658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
With the increasingly worldwide concentration of environmental pollution, exploiting cost-effective adsorbents has been a research hotspot. Here we introduce novel "functional connector" amide-containing gemini surfactants (LDAB, LDAPP, LDAMP and LDABP) and apply to modify Na-vermiculite (Na-Vt) for Congo red (CR) removal. Chain amide as the functional connector in the modifier, increases 6.9 times of CR uptake than traditional organo-Vts, which is further enhanced by tunning the functional group of modifier spacers. Superb uptake of CR on organo-Vts reaches 1214.05, 1375.47 and 1449.80 mg/g, and the removal efficiencies achieve 80.94%, 91.70% and 96.65% on LDAB-Vt, LDAPP-Vt and LDAMP-Vt, respectively. Notably, the maximum experimental adsorption capacity of LDAPP-Vt is 1759.64 mg/g. These experimental values are among the highest reported CR adsorbents. A combination experimental and theoretical analysis is conducted to unveil the structure-adsorptivity relationship: (i) Adsorptivity enhancement of organo-Vts is more effectively by regulating functional chains than the functional spacer. (ii) para-substituted aromatic spacers own the best adsorptive configuration and strongest stability for π-π interaction. (iii) π-π interaction provided by isolated aromatic ring is stronger than biphenyl, whose steric hindrance depresses the adsorptivity. Results in this study not only explain a new "functional connector" strategy to Vt-based adsorbents, but also provide a practical designing strategy for organic adsorbents characterized with high uptake capacity.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Yaxiong Ji
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Shanshan Mao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Tong Han
- PetroChina North East Chemical & Marketing Company, Shenyang, 110033, PR China
| | - Qing Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China.
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| |
Collapse
|
4
|
Alkhathami ND, Alamrani NA, Hameed A, Al-Qahtani SD, Shah R, El-Metwaly NM. Adsorption of pharmaceutical ibuprofen over functionalized zirconium metal-organic frameworks; Batch experiment and mechanism of interaction. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
El Mersly L, El Mouchtari EM, Moujahid EM, Briche S, Alaoui Tahiri A, Forano C, Prévot V, Rafqah S. Enhanced photocatalytic activity of hydrozincite-TiO 2 nanocomposite by copper for removal of pharmaceutical pollutant mefenamic acid in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24575-24589. [PMID: 36342608 DOI: 10.1007/s11356-022-23832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nanocomposites based on hydrozincite-TiO2 and copper-doped HZ-xCu-TiO2 (x = 0.1; 0.25; 0.35) were synthesized in a single step using the urea method. The samples were characterized by XRD, FTIR, SEM/TEM, and DRS. The study of adsorption capacity and photocatalytic efficiency of these nanocomposites have been tested on a pharmaceutical pollutant, mefenamic acid (MFA). Kinetic study of removal of MFA indicates that this pollutant was adsorbed on the surface of the synthesized phases, according to Langmuir's model. Such adsorption proved to be well adapted in a kinetic pseudo-second-order model with capacity of 13.08 mg/g for HZ-0.25Cu-TiO2. Subsequently, the kinetics of photocatalytic degradation under UV-visible irradiation was studied according to several parameters, which allowed us to optimize our experimental conditions. The nanocomposite HZ-0.25Cu-TiO2 showed significant removal efficiency of MFA. Elimination rate reached 100% after 20 min under UV-vis irradiation, and 77% after 7 h under visible light irradiation. Repeatability tests have shown that this nanocomposite is extremely stable after six photocatalytic cycles. By-products of MFA were detected by LC/MS. These photoproducts was produced by three types of reactions of hydroxylation: cyclization and cleavage of the aromatic ring. MFA underwent complete mineralization after 22 h of irradiation in the presence of the HZ-0.25Cu-TiO2.
Collapse
Affiliation(s)
- Lekbira El Mersly
- Laboratoire de Chimie Analytique et Moléculaire, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Sidi Bouzid, B.P. 4162, 46000, Safi, Morocco
| | - El Mountassir El Mouchtari
- Laboratoire de Chimie Analytique et Moléculaire, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Sidi Bouzid, B.P. 4162, 46000, Safi, Morocco
| | - El Mostafa Moujahid
- Laboratoire Physico-Chimie Des Matériaux, Faculté Des Sciences, Université Chouaib Doukkali, EL Jadida, Morocco
| | - Samir Briche
- Département Stockage de L'Energie Et Revêtements Multifonctionnels (SERM), MAScIR Foundation, Rabat, Morocco
| | - Abdelaaziz Alaoui Tahiri
- Laboratoire de Chimie Analytique et Moléculaire, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Sidi Bouzid, B.P. 4162, 46000, Safi, Morocco
| | - Claude Forano
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000, Clermont-Ferrand, France
| | - Vanessa Prévot
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000, Clermont-Ferrand, France
| | - Salah Rafqah
- Laboratoire de Chimie Analytique et Moléculaire, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Sidi Bouzid, B.P. 4162, 46000, Safi, Morocco.
| |
Collapse
|
6
|
Gong J, Wang T, Zhang W, Han L, Gao M, Chen T, Shen T, Ji Y. Organo-Vermiculites Modified by Aza-Containing Gemini Surfactants: Efficient Uptake of 2-Naphthol and Bromophenol Blue. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3636. [PMID: 36296825 PMCID: PMC9609671 DOI: 10.3390/nano12203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
To explore the effect of spacer structure on the adsorption capability of organo-vermiculites (organo-Vts), a series of aza-containing gemini surfactants (5N, 7N and 8N) are applied to modify Na-vermiculite (Na-Vt). Large interlayer spacing, strong binding strength and high modifier availability are observed in organo-Vts, which endow them with superiority for the adsorption of 2-naphthol (2-NP) and bromophenol blue (BPB). The maximum adsorption capacities of 5N-Vt, 7N-Vt and 8N-Vt toward 2-NP/BPB are 142.08/364.49, 156.61/372.65 and 146.50/287.90 mg/g, respectively, with the adsorption processes well fit by the PSO model and Freundlich isotherm. The quicker adsorption equilibrium of 2-NP than BPB is due to the easier diffusion of smaller 2-NP molecules into the interlayer space of organo-Vts. Moreover, stable regeneration of 7N-Vt is verified, with feasibility in the binary-component system that is demonstrated. A combination of theoretical simulation and characterization is conducted to reveal the adsorption mechanism; the adsorption processes are mainly through partition processes, electrostatic interaction and functional interactions, in which the spacer structure affects the interlayer environment and adsorptive site distribution, whereas the adsorbate structure plays a role in the diffusion process and secondary intermolecular interactions. The results of this study demonstrate the versatile applicability of aza-based organo-Vts targeted at the removal of phenols and dyes as well as provide theoretical guidance for the structural optimization and mechanistic exploration of organo-Vt adsorbents.
Collapse
Affiliation(s)
- Jianchao Gong
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Tingting Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Innovation Laboratory of Materials for Energy and Environment Technologies, Department of Physics, College of Science, Tibet University, Lhasa 850000, China
| | - Wei Zhang
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Lin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Innovation Laboratory of Materials for Energy and Environment Technologies, Department of Physics, College of Science, Tibet University, Lhasa 850000, China
| | - Mingxiao Gao
- Anshan No. 1 Middle School, Anshan 114051, China
| | - Tianen Chen
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Tao Shen
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Yaxiong Ji
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
7
|
Multi-hydroxyl containing organo-vermiculites for enhanced adsorption of coexisting methyl blue and Pb(II) and their adsorption mechanisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Huang X, Wang Q, Mao R, Wang Z, Shen SGF, Mou J, Dai J. Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing. J Nanobiotechnology 2022; 20:343. [PMID: 35883146 PMCID: PMC9327406 DOI: 10.1186/s12951-022-01556-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. RESULTS In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo. CONCLUSIONS Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing.
Collapse
Affiliation(s)
- Xingtai Huang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Runyi Mao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Zeying Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China. .,Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Juan Mou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiewen Dai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China.
| |
Collapse
|