1
|
El-Araby R. Biofuel production: exploring renewable energy solutions for a greener future. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:129. [PMID: 39407282 PMCID: PMC11481588 DOI: 10.1186/s13068-024-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
Biofuel production has emerged as a leading contender in the quest for renewable energy solutions, offering a promising path toward a greener future. This comprehensive state-of-the-art review delves into the current landscape of biofuel production, exploring its potential as a viable alternative to conventional fossil fuels. This study extensively examines various feedstock options, encompassing diverse sources such as plants, algae, and agricultural waste, and investigates the technological advancements driving biofuel production processes. This review highlights the environmental benefits of biofuels, emphasizing their capacity to significantly reduce greenhouse gas emissions compared to those of fossil fuels. Additionally, this study elucidates the role of biofuels in enhancing energy security by decreasing reliance on finite fossil fuel reserves, thereby mitigating vulnerabilities to geopolitical tensions and price fluctuations. The economic prospects associated with biofuel production are also elucidated, encompassing job creation, rural development, and the potential for additional revenue streams for farmers and landowners engaged in biofuel feedstock cultivation. While highlighting the promise of biofuels, the review also addresses the challenges and considerations surrounding their production. Potential issues such as land use competition, resource availability, and sustainability implications are critically evaluated. Responsible implementation, including proper land-use planning, resource management, and adherence to sustainability criteria, is emphasized as critical for the long-term viability of biofuel production. Moreover, the review underscores the importance of ongoing research and development efforts aimed at enhancing biofuel production efficiency, feedstock productivity, and conversion processes. Technological advancements hold the key to increasing biofuel yields, reducing production costs, and improving overall sustainability. This review uniquely synthesizes the latest advancements across the entire spectrum of biofuel production, from feedstock selection to end-use applications. It addresses critical research gaps by providing a comprehensive analysis of emerging technologies, sustainability metrics, and economic viability of various biofuel pathways. Unlike previous reviews, this work offers an integrated perspective on the interplay between technological innovation, environmental impact, and socio-economic factors in biofuel development, thereby providing a holistic framework for future research and policy directions in renewable energy.
Collapse
Affiliation(s)
- R El-Araby
- Chemical Engineering and Pilot Plant Department, Institute of Engineering Research and New and Renewable Energy, National Research Centre, Cairo, Egypt.
| |
Collapse
|
2
|
Almeida PV, Gando-Ferreira LM, Quina MJ. Tomato Residue Management from a Biorefinery Perspective and towards a Circular Economy. Foods 2024; 13:1873. [PMID: 38928815 PMCID: PMC11202697 DOI: 10.3390/foods13121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The tomato industry is a relevant socio-economic activity in the European Union, while it generates a large variety of residues. Tomatoes unfit for consumption, tomato peels, seeds, industrial pomace, and plants are examples of residues of this industry. Commonly, some of the residues can be left in the field, composted, used for animal feeding, or valorized through anaerobic digestion. However, more economic value can be attributed to these residues if a biorefinery approach is applied. Indeed, many value-added compounds can be obtained by the integration of different processes while closing the carbon and nutrient loops. The extraction of bioactive compounds followed by anaerobic digestion and composting seems to be a viable proposal for a biorefinery approach. Thus, this study aims to review the biorefinery strategies for valorizing tomato residues, highlighting the main processes proposed. The recovery of lycopene, β-carotene, and phenolic compounds has been widely studied at the lab scale, while energy recovery has already been applied at the industrial scale. Although techno-economic analysis is scarce for tomato residue valorization processes, positive net present values (NPV) and low payback times (PBT) have been reported in the literature. Thus, more work comparing multiple extraction technologies and biorefinery strategies coupled with economic and environmental assessment should be performed to select the most promising management route for tomato residues.
Collapse
Affiliation(s)
| | | | - Margarida J. Quina
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.V.A.); (L.M.G.-F.)
| |
Collapse
|
3
|
Chen Y, Wang L, Fu Q, Wang Y, Liu D, Li T, Li M. Recycling of straw-biochar-biogas-electricity for sustainable food production pathways: Toward an integrated modeling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170804. [PMID: 38350576 DOI: 10.1016/j.scitotenv.2024.170804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
As global greenhouse gas emissions increase and fossil energy sources decline dramatically, the energy transition is at the heart of many countries' development initiatives. As a biomass resource, straw plays a positive role in energy transformation and environmental improvement. However, there is still a challenge to explore the best options and models for straw production and utilization of green and efficient biomass energy in agricultural systems. This study establishes an economic-environmental-resource synergistic Straw Green recycling optimization model based on straw-electricity-biochar-biogas core (Straw Green recycling optimization model, SGROM). Firstly, we explore the effects of biochar return to the field on crop yield and greenhouse gas emission by Meta-analysis method, and on this basis, we construct SGROM to weigh the three objectives of economic-greenhouse gas emission-resource utilization, and explore the best allocation ratio between four utilization methods of straw: power generation, biochar preparation, biogas and derivatives preparation and sale, so as to obtain a straw recycling and efficient low-carbon utilization model. Exploring the response of straw green utilization patterns to crop market prices with the help of deep learning methods, SGROM has been applied to the main grain producing areas in the Sanjiang Plain of China, and the results of comparison with the traditional straw utilization (TSU) model show that the greenhouse gas emissions per unit of production value of SGROM are 19.66 % lower than that of TSU model, the electricity consumption is saved by 2.00 %, and the optimal ratios of straw for power generation, biogas and biochar production, and sale are 1.00 %, 10.75 %, 62.11 % and 26.14 %. The economic benefits and total greenhouse gas emissions of the integrated straw utilization mode are better than those of the single straw utilization mode, proving the superiority of SGROM in optimizing the straw utilization mode.
Collapse
Affiliation(s)
- Yingshan Chen
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Lijuan Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Province Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yijia Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Dong Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Province Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Province Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mo Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; National Key Laboratory of Smart Farm Technology and System, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Province Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Aravani VP, Papadakis VG. Technoeconomic assessment for the viable exploitation of biomass residues by an innovative pyrolysis-anaerobic digestion processing plant. ENVIRONMENTAL RESEARCH 2024; 243:117835. [PMID: 38052358 DOI: 10.1016/j.envres.2023.117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
In Greece, there is no organized practice in agricultural and animal wastes management. Their exploitation is still set aside, due mainly to economic reasons and lack of incentives for their efficient utilization. Therefore, in the present work a technoeconomic assessment for the environmentally friendly useful exploitation of biomass residues produced in the Prefectures of Ilia and Achaia (Western Greece) for the generation of energy by an integrated anaerobic digestion (AD)-pyrolysis processing plant was carried out. The processed biomass of the AD unit is corn residues and cattle manure, while the feedstock of pyrolysis unit is olive tree prunings. The residues will be transferred to collection areas by field tractors. Then an integrated harvester is used and afterwards, the residues are discharged from the lifting bin of the harvester to trucks and are transported to the processing unit. The total fixed capital for a capacity of 328,716 t/y is equal to 11.5 M€, while the initial working capital is equal to 2.1 M€. The total operational cost of this investment is estimated at 18.3 M€/y, the projected revenues amount to 21.4 M€/y and the net profit is equal to 3.1 M€/y. The return on investment is estimated at 23% and the payback period becomes equal to 4.4 years. From the sensitivity analysis becomes apparent that the capacity, the incentive cost, the fuel price, the products price and the total fixed capital affect significantly the investment characteristics of the proposed AD-pyrolysis processing unit. The amount of the expected profit is considered quite significant, and the evaluation criteria (return on investment and payback period) advocate for a more detailed examination of the investment plan, in the direction of undertaking the project.
Collapse
Affiliation(s)
- Vasiliki P Aravani
- Department of Civil Engineering, University of Patras, University Campus-Rio, 26504, Patras, Greece.
| | - Vagelis G Papadakis
- Department of Civil Engineering, University of Patras, University Campus-Rio, 26504, Patras, Greece
| |
Collapse
|
5
|
Aravani VP, Tsigkou K, Papadakis VG, Wang W, Kornaros M. Anaerobic co-digestion of agricultural residues produced in Southern Greece during the spring/summer season. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Rizzioli F, Bertasini D, Bolzonella D, Frison N, Battista F. A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Gottardo M, Bolzonella D, Adele Tuci G, Valentino F, Majone M, Pavan P, Battista F. Producing volatile fatty acids and polyhydroxyalkanoates from foods by-products and waste: A review. BIORESOURCE TECHNOLOGY 2022; 361:127716. [PMID: 35926558 DOI: 10.1016/j.biortech.2022.127716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
Dairy products, extra virgin olive oil, red and white wines are excellent food products, appreciated all around the world. Their productions generate large amounts of by-products which urge for recycling and valorization. Moreover, another abundant waste stream produced in urban context is the Organic Fraction of Municipal Solid Wastes (OFMSW), whose global annual capita production is estimated at 85 kg. The recent environmental policies encourage their exploitation in a biorefinery loop to produce Volatile Fatty Acids (VFAs) and polyhydroxyalkanoates (PHAs). Typically, VFAs yields are high from cheese whey and OFMSW (0.55-0.90 gCOD_VFAs/gCOD), lower for Olive Mill and Winery Wastewaters. The VFAs conversion into PHAs can achieve values in the range 0.4-0.5 gPHA/gVSS for cheese whey and OFMSW, 0.6-0.7 gPHA/gVSS for winery wastewater, and 0.2-0.3 gPHA/gVSS for olive mill wastewaters. These conversion yields allowed to estimate a huge potential annual PHAs production of about 260 M tons.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy
| | - Giulia Adele Tuci
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Francesco Valentino
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Pavan
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
8
|
Hydrogen and Methane Production from Anaerobic Co-Digestion of Sorghum and Cow Manure: Effect of pH and Hydraulic Retention Time. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The need for alternative energy sources is constantly growing worldwide, while the focus has shifted to the valorization of biomass. The aim of the present study was to determine the optimal pH and hydraulic retention time (HRT) values for treating a mixture of sorghum biomass solution with liquid cow manure (in a ratio 95:5 v/v) through anaerobic digestion, in a two-stage system. Batch tests were initially carried out for the investigation of the pH effect on bio-hydrogen and volatile fatty acids (VFA) production. The highest hydrogen yield of 0.92 mol H2/mol carbohydratesconsumed was obtained at pH 5.0, whereas the maximum degradation of carbohydrates and VFA productivity was observed at pH 6.0. Further investigation of the effect of HRT on hydrogen and methane production was carried out. The maximum yield of 1.68 mol H2/mol carbohydratesconsumed was observed at an HRT of 5 d, with H2 productivity of 0.13 L/LR·d. On the other hand, the highest CH4 production rate of 0.44 L/LR·d was achieved at an HRT of 25 d, with a methane yield of 295.3 mL/g VSadded, whereas at a reduced HRT of 20 d the process exhibited inhibition and/or overload, as indicated by an accumulation of VFAs and decline in CH4 productivity.
Collapse
|