1
|
Lekuona-Orkaizagirre A, Meaurio M, Gredilla A. Simplified vs extended in vitro methods for the evaluation of bioaccessibility of metals and metalloids present in urban recreational soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5358-5370. [PMID: 39924600 PMCID: PMC11868185 DOI: 10.1007/s11356-025-36017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Urban soils may contain different metals and metalloids and they can enter the human body by direct inhalation, ingestion or dermic absorption. According to USEPA, 200 mg·day-1 is the average daily ingested dose of soil for children aged from 1 to 12 years of age. In vitro bioaccessibility tests which are based on human physiology, have been used for the determination of the element fraction in soils that can be absorbed by human digestion. A total of 26 urban soils were collected in recreational areas from San Sebastian to evaluate the bioaccessibility of metals and metalloids (Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb) by SBET (Simplified Bioaccessibility Extraction Test) and RIVM (Dutch National Institute for Public Health and Environment) in vitro methodologies. SBET simulates the gastric conditions, while RIVM simulates mouth, gastric and intestinal conditions. ICP-MS was used for the simultaneous determination of the elements. Cd showed the highest percentage of bioaccessibility by both methods and Fe, Al and Cr resulted the least bioaccessible elements. Pb and Zn showed different results in each method. HQ (Hazard Quotient), HI (Hazard Index) and CR (Carcinogenic Risk) values obtained were higher with SBET methodology. According to HI (considering 10 metal(loid)s), non-carcinogenic effects may occur to children with the ingestion of three of the studied children's parks. Regarding CR index, all the studied soils were within the tolerable carcinogenic risk (considering Cr, As and Pb) for children, and the risk was sometimes negligible for adults. Considering the experimental difficulties related to RIVM, SBET method may be used for a simple and conservative first approach of the bioaccessibility of metals and metalloids accumulated in soil samples.
Collapse
Affiliation(s)
- Ainhoa Lekuona-Orkaizagirre
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain.
| | - Maite Meaurio
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Ainara Gredilla
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
2
|
Guo J, Chen L, Zhang X, Jin C, Cui Y. From brushite to hydroxylapatite: A study on phosphate mineral transformation and the fate of oxytetracycline. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104497. [PMID: 39809029 DOI: 10.1016/j.jconhyd.2025.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil. However, the impact of the transformation process, particularly involving the metastable phase brushite (DCPD), on the fate of antibiotics remains unclear. In this study, we synthesized DCPD and hydroxylapatite (HAP) and examined their transformation process to assess their removal capacity and investigate the migration and fate of oxytetracycline (OTC). The findings reveal that HAP exhibits a maximum immobilization capacity for OTC of 20.10 mg/g, surpassing that of DCPD by 2.56 times (7.86 mg/g). This disparity in immobilization capacity between DCPD and HAP leads to a redistribution of OTC between the solid and liquid phases during the transformation process. Notably, the introduction of OTC also inhibits the transformation process, potentially impacting the fate of other potentially harmful elements. The study highlights that the transformation process of calcium phosphorus minerals has a significant impact on the mobility and fate of antibiotics in soil, which aids in better management and mitigation of the environmental risks associated with fertilizer application.
Collapse
Affiliation(s)
- Jianan Guo
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| | - Lina Chen
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Xinying Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Changmin Jin
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Yue Cui
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| |
Collapse
|
3
|
Sheng M, Liu Y, Zeng G, Zhang Q, Peng H, Lei L, Liu H, He N, Xu H, Guo H. For aqueous/soil cadmium immobilization under acid attack, does the hydroxyapatite converted from Pseudochrobactrum sp. DL-1 induced vaterite necessarily show higher stability? JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135631. [PMID: 39182299 DOI: 10.1016/j.jhazmat.2024.135631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Microbial induced carbonate precipitation (MICP) technology was widely applied to immobilize heavy metals, but its long-term stability is tough to maintain, particularly under acid attack. This study successfully converted Pseudochrobactrum sp. DL-1 induced vaterite (a rare crystalline phase of CaCO3) to hydroxyapatite (HAP) at 30 ℃. The predominant conversion mechanism was the dissolution of CdCO3-containing vaterite and the simultaneous recrystallization of Ca4.03Cd0.97(PO4)3(OH)-containing HAP. For aqueous Cd immobilization, stability test at pH 2.0-10.0 showed that the Cd2+ desorption rate of Cd-adsorbed vaterite (3.96-4.35 ‱) were 7.13-20.84 times greater than that of Cd-adsorbed HAP (0.19-0.61 ‱). For soil Cd immobilization under 60 days of acid-rain erosion, the highest immobilization rate (51.00 %) of exchangeable-Cd and the lowest dissolution rate (-0.18 %) of carbonate-Cd were achieved with 2 % vaterite, while the corresponding rates were 16.78 % and 1.31 % with 2 % HAP, respectively. Furthermore, vaterite outperformed HAP in terms of soil ecological thorough evaluation. In conclusion, for Cd immobilization by MICP under acid attack, DL-1 induced vaterite displayed direct application value due to its exceptional stability in soil and water, while the mineral conversion strategy we presented is useful for further enhancing the stability in water.
Collapse
Affiliation(s)
- Mingping Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Yikai Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Guoquan Zeng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - He Peng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Ling Lei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Nan He
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science by University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
4
|
Jin B, Wang S, Lei Y, Jia H, Niu Q, Dapaah MF, Gao Y, Cheng L. Green and effective remediation of heavy metals contaminated water using CaCO 3 vaterite synthesized through biomineralization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120136. [PMID: 38271884 DOI: 10.1016/j.jenvman.2024.120136] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Heavy metal pollution has attracted significant attention due to its persistent presence in aquatic environments. A novel vaterite-based calcium carbonate adsorbent, named biogenic CaCO3, was synthesized utilizing a microbially induced carbonate precipitation (MICP) method to remediate heavy metal-contaminated water. The maximum Cd2+ removal capacity of biogenic CaCO3 was 1074.04 mg Cd2+/g CaCO3 with a high Cd2+ removal efficiency greater than 90% (initial Cd2+ concentration 400 mg/L). Furthermore, the biogenic CaCO₃ vaterite, induced by microbial-induced calcium carbonate precipitation (MICP) process, demonstrated a prolonged phase transformation to calcite and enhanced stability. This resulted in a sustained high effectiveness (greater than 96%) following six consecutive recycling tests. Additionally, X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that the semi-stable vaterite type of biogenic CaCO3 spontaneously underwent dissolution and recrystallization to form thermodynamic stable calcite in aquatic environments. However, the presence of Cd2+ leads to the transformation of vaterite into CdCO3 rather than undergoing direct converting to calcite. This transformation is attributed to the relatively low solubility of CdCO3 compared to calcite. Meanwhile, the biogenic CaCO3 proved to be an efficient and viable method for the removal of Pb2+, Cu2+, Zn2+, Co2+, Ni2+ and Mn2+ from water samples, surpassing the performance of previously reported adsorbents. Overall, the efficient and promising adsorbent demonstrates potential for practical in situ remediation of heavy metals-contaminated water.
Collapse
Affiliation(s)
- Bingbing Jin
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Sheng Wang
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yuze Lei
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hui Jia
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Qijian Niu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Malcom Frimpong Dapaah
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Gao
- Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Liang Cheng
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166142. [PMID: 37574061 DOI: 10.1016/j.scitotenv.2023.166142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
6
|
Chen M, Zhou Y, Sun Y, Chen X, Yuan L. Coal gangue-based magnetic porous material for simultaneous remediation of arsenic and cadmium in contaminated soils: Performance and mechanisms. CHEMOSPHERE 2023; 338:139380. [PMID: 37394193 DOI: 10.1016/j.chemosphere.2023.139380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Remediation of arsenic (As) and cadmium (Cd) co-contaminated soil is a challenge in environmental remediation. In this study, coal gangue-based magnetic porous material (MPCG) was designed for simultaneous immobilization of As and Cd in contaminated soil. After the incubation experiment, the effects of CG and MPCG on the availability and fractions of As and Cd and the related microbial functional genes were analyzed to explore the potential remediation mechanisms of MPCG for As and Cd in contaminated soil. The results showed that the stabilization effect of MPCG on As and Cd was significantly higher than that of coal gangue. It reduced the available As and Cd by 17.94-29.81% and 14.22-30.41%, respectively, and transformed unstable As/Cd to stable. The remediation mechanisms of MPCG on As included adsorption, oxidation, complexation and precipitation/co-precipitation. Meanwhile, the remediation mechanisms of MPCG for Cd included adsorption, ion exchange, complexation and precipitation. In addition, MPCG increases the abundance of sulfate-reducing bacteria (dsrA) by 43.39-381.28%, which can promote sulfate reduction. The sulfide can precipitate with As and Cd to reduce the availability of As and Cd in soil. Thus, MPCG is a promising amendment for achieving the remediation of As and Cd co-contaminated soil.
Collapse
Affiliation(s)
- Min Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou, China
| | - Yuzhi Zhou
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China
| | - Yuan Sun
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou, China
| | - Xiaoyang Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China.
| | - Liang Yuan
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
7
|
Wu Y, Huang M, He C, Wang K, Nhung NTH, Lu S, Dodbiba G, Otsuki A, Fujita T. The Influence of Air Nanobubbles on Controlling the Synthesis of Calcium Carbonate Crystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217437. [PMID: 36363030 PMCID: PMC9655898 DOI: 10.3390/ma15217437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
Numerous approaches have been developed to control the crystalline and morphology of calcium carbonate. In this paper, nanobubbles were studied as a novel aid for the structure transition from vaterite to calcite. The vaterite particles turned into calcite (100%) in deionized water containing nanobubbles generated by high-speed shearing after 4 h, in comparison to a mixture of vaterite (33.6%) and calcite (66.3%) by the reaction in the deionized water in the absence of nanobubbles. The nanobubbles can coagulate with calcite based on the potential energy calculated and confirmed by the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. According to the nanobubble bridging capillary force, nanobubbles were identified as the binder in strengthening the coagulation between calcite and vaterite and accelerated the transformation from vaterite to calcite.
Collapse
Affiliation(s)
- Yongxiang Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Minyi Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chunlin He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kaituo Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nguyen Thi Hong Nhung
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Siming Lu
- Zhengzhou Non-Ferrous Metals Research Institute Ltd. of CHALCO, Zhengzhou 450041, China
| | - Gjergj Dodbiba
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Akira Otsuki
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile
- Waste Science & Technology, Luleå University of Technology, SE 971 87 Luleå, Sweden
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Dissolution and Solubility of the Calcite–Otavite Solid Solutions [(Ca1−xCdx)CO3] at 25 °C. MINERALS 2022. [DOI: 10.3390/min12060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A complete series of the calcite–otavite solid solutions [(Ca1−xCdx)CO3] were prepared, and their dissolution processes lasting nine months were experimentally investigated. For the dissolution in the N2-degassed water, the Ca concentrations of the aqueous phases increased up to the steady states after 5040 h of dissolution, and the Cd concentrations of the aqueous phases increased up to the highest values and then decreased gradually to the steady states of 0.017–6.476 μmol/L after 5040 h of dissolution. For the dissolution in the CO2-saturated water, the Ca and Cd concentrations of the aqueous phases increased up to the peak values and then decreased gradually to the steady states of 0.94–0.46 mmol/L and 0.046–9.643 μmol/L after 5040 h of dissolution, respectively. For the dissolution in the N2-degassed water at 25 °C, the mean solubility products (log Ksp) and the Gibbs free energies of formation (ΔGfθ) were estimated to be −8.45–−8.42 and −1129.65–−1129.48 kJ/mol for calcite [CaCO3] and −11.62–−11.79 and −671.81–−672.78 kJ/mol for otavite [CdCO3], respectively. Generally, the log Ksp values decreased non-linearly, and the ΔGfθ values increased linearly with the increasing Cd/(Ca+Cd) mole ratio (XCd) of the (Ca1−xCdx)CO3 solid solutions. In the Lippmann diagrams constructed for the sub-regular (Ca1−xCdx)CO3 solid solutions with the estimated Guggenheim coefficients a0 = −0.84 and a1 = −3.80 for the dissolution in the N2-degassed water or a0 = −1.12 and a1 = −3.83 for the dissolution in the CO2-saturated water, the (Ca1−xCdx)CO3 solid solutions dissolved incongruently, moved progressively up to the quasi-equilibrium curves for otavite and then along the quasi-equilibrium curve from right to left, approached the solutus curve and finally reached the minimum stoichiometric saturation curve for calcite. The considerably Cd-poor aqueous phases were finally in equilibrium with the CdCO3-rich solid phases.
Collapse
|