1
|
Gao J, Sun F, Liu P, Zhou J, Zhang Y. Sludge Recycling from Non-Lime Purification of Electrolysis Wastewater: Bridge from Contaminant Removal to Waste-Derived NOX SCR Catalyst. Catalysts 2024; 14:535. [DOI: 10.3390/catal14080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst developed from the sludge produced with Fe/C micro-electrolysis Fenton technology (MEF) in wastewater treatment was investigated, taking into account various sludge compositions, Fe/C ratios, and contaminant contents. It was found that, at about 300 °C, the NOX removal rate could reach 100% and there was a wide decomposition temperature zone. The effect of individual components of electroplating sludge, i.e., P, Fe and Ni, on NOX degradation performance of the obtained solids was investigated. It was found that the best effect was achieved when the Fe/P was 8/3 wt%, and variations in the Ni content had a limited effect on the NOX degradation performance. When the Fe/C was 1:2 and the Fe/C/P was 1:2:0.4, the electroplating sludge formed after treatment with Fe/C MEF provided the best NOX removal rate at 100%. Moreover, the characterization results show that the activated carbon was also involved in the catalytic reduction degradation of NOX. An excessive Fe content may cause agglomeration on the catalyst surface and thus affect the catalytic efficiency. The addition of P effectively reduces the catalytic reaction temperature, and the formation of phosphate promotes the generation of adsorbed oxygen, which in turn contributes to improvements in catalytic efficiency. Therefore, our work suggests that controlling the composition in the sludge is an efficient way to modulate SCR catalysis, providing a bridge from contaminant-bearing waste to efficient catalyst.
Collapse
Affiliation(s)
- Ju Gao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fucheng Sun
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Zhejiang Environmental Science & Design Institute, 109 Tianmushan Rd., Hangzhou 310000, China
| | - Pei Liu
- Shanghai Solid Waste Disposal Co., Ltd., 2491 Jiazhugong Rd., Shanghai 201807, China
| | - Jizhi Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yufeng Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Wang H, Liu X, Zhang Z. Approaches for electroplating sludge treatment and disposal technology: Reduction, pretreatment and reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119535. [PMID: 37979382 DOI: 10.1016/j.jenvman.2023.119535] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/20/2023]
Abstract
Electroplating sludge (ES) has become an obstacle to the sustainable development of the electroplating industry. Electroplating sludge has a large storage capacity, with a high concentration of soluble pollutants (heavy metals), which has great potential to harm the local ecosystems and human health. Although much research has been done in this area, there seems to be no mature and stable solution. Therefore, the latest technologies for the reduction, pretreatment and reuse of electroplating sludge are emphatically introduced based on the analysis of the characteristics of electroplating sludge and its impact on the ecological environment. The factors hindering the treatment and disposal of electroplating sludge are pointed out, and reasonable and feasible suggestions to solve this problem are proposed. The solidification and removal mechanism of heavy metals in electroplating sludge is emphatically analyzed. The physicochemical and separation processes of heavy metals, as well as thermal treatment technique are discussed. Finally, it is proposed to establish a database of the physicochemical properties and elemental content of electroplating sludge to achieve its systematic treatment and digestion. We hope that this paper can help solve the problem of electroplating sludge and promote the sustainable development of the electroplating industry.
Collapse
Affiliation(s)
- Huimin Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoming Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zengqi Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Cao C, Yu J, Xu X, Li F, Yang Z, Wang G, Zhang S, Cheng Z, Li T, Pu Y, Xian J, Yang Y, Pu Z. A review on fabricating functional materials by electroplating sludge: process characteristics and outlook. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64827-64844. [PMID: 37093385 DOI: 10.1007/s11356-023-26934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
As the end product of the electroplating industry, electroplating sludge (ES) has a huge annual output and an abundant heavy metal (HM). The effective disposal of ES is attracting increasing attention. Currently, the widely used ES disposal methods (e.g. landfill and incineration) make it difficult to effectively control of HMs and synchronously utilise metal resources, leading to a waste of metal resources, HMs migration, and potential harm to the environment and human health. Therefore, techniques to limit HMs release into the environment and promote the efficient utilisation of metal resources contained within ES are of great interest. Based on these requirements, material reuse is a great potential means of ES management. This review presents an overview of the process flows, principles and feasibilities of the methods employed for the material reuse of ES. Several approaches have been investigated to date, including (1) additions in building materials, (2) application in pigment production, and (3) production of special functional materials. However, these three methods vary in their treatment scales, property requirements, ability to control HMs, and degree of utilisation of metal resources in ES. Currently, the safety of products and costs are not paid enough attention, and the large-scale disposal of HMs is not concordant with the effective management of HMs. Accordingly, this study proposes a holistic sustainable materialised reuse pattern of ES, which combines the scale and efficiency of sludge disposal and pays attention to the safety of products and the cost of transformation process for commercial application.
Collapse
Affiliation(s)
- Chenchen Cao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Yu
- School of Geography and Tourism, Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Normal University, Wuhu, 241003, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China.
| | - Feng Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|