1
|
Chen Z, Zhang J, Lv W, Zhang H, Li S, Zhang H, Shen Y, Geng C, Bai N. The unexpected effect of the compound microbial agent NP-M2 on microbial community dynamics in a nonylphenol-contaminated soil: the self-stability of soil ecosystem. PeerJ 2024; 12:e17424. [PMID: 38827279 PMCID: PMC11144391 DOI: 10.7717/peerj.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the β-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.
Collapse
Affiliation(s)
- Zhaoliang Chen
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Yue Shen
- Shanghai Agricultural Science and Technology Service Center, Shanghai, China
| | - Chunnu Geng
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| |
Collapse
|
2
|
Yang J, Zhang H, Tian K, Zhang Y, Zhang J. Novel lanthanum-iron oxide nanoparticles alleviate the inhibition of anaerobic digestion by carbamazepine through adsorption and bioaugmentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117975. [PMID: 37084648 DOI: 10.1016/j.jenvman.2023.117975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Several reports have shown that pharmaceuticals and personal care products (PPCPs) have some negative effects on anaerobic digestion (AD), yet there are no convenient and efficient strategies for mitigating the adverse influences. The typical PPCPs of carbamazepine have a strong negative effect on lactic acid AD process. Therefore, in this work, novel lanthanum-iron oxide (LaFeO3) nanoparticles (NPs) were used for adsorption and bioaugmentation to weak the negative effects of carbamazepine. The adsorption removal of carbamazepine increased from 0 to 44.30% as the dosage of LaFeO3 NPs was increased from 0 to 200 mg/L, providing the necessary prerequisites for bioaugmentation. Adsorption reduced the probability of direct contact between carbamazepine and anaerobes, partly alleviating the inhibition of carbamazepine on microbes. The highest methane (CH4) yield induced by LaFeO3 NPs (25 mg/L) was 226.09 mL/g lactic acid, increasing by 30.06% compared to the control yield with a recovery to 89.09% of the normal CH4 yield. Despite the ability of LaFeO3 NPs to restore normal AD performance, the biodegradation rate of carbamazepine remained below 10% due to its anti-biodegradability. Bioaugmentation was primarily reflected in the enhanced bioavailability of dissolved organic matter, while the intracellular LaFeO3 NPs promoted coenzyme F420 activity through binding to humic substances. Under the mediation of LaFeO3, a direct interspecies electron transfer system with Longilinea and Methanosaeta as functional bacteria was successfully constructed and the corresponding electron transfer rate was accelerated from 0.021 s-1 to 0.033 s-1. LaFeO3 NPs eventually recovered AD performance under carbamazepine stress in an adsorption and bioaugmentation manner.
Collapse
Affiliation(s)
- Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Huiwen Zhang
- College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Yun Zhang
- College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| |
Collapse
|